Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2016 Jun 9;4(3):e00466-16. doi: 10.1128/genomeA.00466-16

Draft Genome Assembly of the Bloom-Forming Cyanobacterium Nodularia spumigena Strain CENA596 in Shrimp Production Ponds

Rafael Vicentini Popin a, Janaina Rigonato a, Vinicius Augusto Carvalho Abreu a, Ana Paula Dini Andreote a, Savênia Bonoto Silveira b, Clarisse Odebrecht b, Marli Fatima Fiore a,
PMCID: PMC4901217  PMID: 27284148

Abstract

We report here the draft genome assembly of the brackish cyanobacterium Nodularia spumigena strain CENA596 isolated from a shrimp production pond in Rio Grande do Sul, Brazil. The draft genome consists of 291 contigs with a total size of 5,189,679 bp. Secondary metabolite annotations resulted in several predicted gene clusters, including those responsible for encoding the hepatotoxin nodularin.

GENOME ANNOUNCEMENT

Nodularia spumigena is a cyanobacterium species known for producing the hepatotoxin nodularin (1), a cyclic pentapeptide with a chemical structure similar to microcystin. Nodularin also acts as an inhibitor of the protein phosphatase serine/threonine family, particularly phosphatases type 1 (PP1) and 2A (PP2A) of eukaryotic cells (24), and it is a suspected carcinogen and tumor promoter (5). Due to the persistence of nodularin in the environment and possible processes of bio-accumulation in organisms, environmental and economic problems as well as harm to animals and humans may occur in areas with cyanobacterial bloom. The occurrence of major blooms of the halotolerant species N. spumigena has been described in ocean coastlines, estuaries, and saline lakes of Europe, Australia, New Zealand, and the African continent (612). In the American continent, the presence of N. spumigena bloom was reported in saline lakes and ponds in the United States (13, 14), Mexico (15), and Uruguay (16). The first report of N. spumigena documented in Brazil was in 2011 in shrimp production ponds, causing the death of these crustaceans (17). Here, we announce the draft genome assembly of the strain CENA596 isolated from an N. spumigena bloom in 5 December 2013 in a shrimp production pond (32°12′19″ S, 52°10′42″ W) in the Marine Aquaculture Station of the Federal University of Rio Grande, located on the Cassino Beach, Rio Grande, Rio Grande do Sul State, Brazil. Genomic DNA extraction was performed using the UltraClean microbial DNA isolation kit (MoBio Laboratories, USA) and quantified using the Qubit Fluorometer (Thermofisher/Life Technology, USA). Whole genome sequencing was performed with MiSeq platform (Illumina, USA) using the MiSeq Reagent Kit v3 600 cycle (Illumina). Bases with quality scores under Phred 20 and sequences shorter than 100 bp were removed with PRINSEQ 0.20.4 (18). De novo genome assembly was carried out with Platanus 1.2.4 (19). Assembly statistics were obtained with Assemblathon 2 (20). The final draft genome assembly consisted of 699-fold average coverage and 291 contigs (>526-bp length), with a total size of 5,189,679 bp, and GC content of 41.2%. The automatic annotation using Prokka 1.10 (21) predicted 4,484 coding sequences, 36 tRNA genes, and 1 rRNA gene. The RAST annotation system (22) predicted 370 subsystems, which represent only 33% of the assigned sequences. Genes encoding resistance to heat shock, osmotic and oxidative stress, antibiotics, toxic compounds such as mercury, copper, and chromium, along with genes involved in nitrogen metabolism, siderophores, and auxin biosynthesis were found. Secondary metabolite gene cluster prediction was done using the antiSMASH 3.0 server (23) and resulted in 12 predicted gene clusters indicating the potential biosynthesis of nodularin, spumigin, anabaenopeptin, and geosmin, among others. This Nodularia spumigena genome sequence from South America contributes to the improvement of the current classification of the halotolerant cyanobacterial group and to the understanding of the genetic, ecological, and evolutionary factors related to nodularin production, which is important information for the development of rapid and sensitive methods for the detection and monitoring of cyanobacteria and their toxins in the environment.

Nucleotide sequence accession number.

The Nodularia spumigena CENA596 whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number LWAJ00000000. The version described in this paper is version LWAJ01000000.

ACKNOWLEDGMENTS

R.V.P. and S.B.S. thank the Brazilian Federal Agency for the Support and Evaluation of Graduate Education (CAPES) for fellowship support. J.R. and V.A.C.A. received a postdoctoral fellowship from the CAPES-PNPD program. M.F.F. and C.O. thank the National Council for Scientific and Technological Development (CNPq) for a research fellowship (310244/2015-3 and 308090/2013-6, respectively). We further acknowledge the Center of Functional Genomics Applied to Agriculture and Agroenergy (USP, Campus “Luiz de Queiroz”) for generating Illumina MiSeq data.

Footnotes

Citation Popin RV, Rigonato J, Abreu VAC, Andreote APD, Silveira SB, Odebrecht C, Fiore MF. 2016. Draft genome assembly of the bloom-forming cyanobacterium Nodularia spumigena strain CENA596 in shrimp production ponds. Genome Announc 4(3):e00466-16. doi:10.1128/genomeA.00466-16.

REFERENCES

  • 1.Rinehart KL, Harada K, Namikoshi M, Chen C, Harvis CA, Munro MHG, Blunt JW, Mulligan PE, Beasley VR, Dahlem AM, Carmichael WW. 1988. Nodularin, microcystin, and the configuration of Adda. J Am Chem Soc 110:8557–8558. doi: 10.1021/ja00233a049. [DOI] [Google Scholar]
  • 2.Eriksson JE, Meriluoto JA, Kujari HP, Osterlund K, Fagerlund K, Hällbom L. 1988. Preliminary characterization of a toxin isolated from the cyanobacterium Nodularia spumigena. Toxicon 26:161–166. doi: 10.1016/0041-0101(88)90168-7. [DOI] [PubMed] [Google Scholar]
  • 3.Honkanen RE, Dukelow M, Zwiller J, Moore RE, Khatra BS, Boynton AL. 1991. Cyanobacterial nodularin is a potent inhibitor of type 1 and type 2A protein phosphatases. Mol Pharm 40:577–583. [PubMed] [Google Scholar]
  • 4.Yoshizawa S, Matsushima R, Watanabe MF, Harada K, Ichihara A, Carmichael WW, Fujiki H. 1990. Inhibition of protein phosphatases by microcystins and nodularin associated with hepatotoxicity. J Cancer Res Clin Oncol 116:609–614. doi: 10.1007/BF01637082. [DOI] [PubMed] [Google Scholar]
  • 5.Ohta T, Sueoka E, Iida N, Komori A, Suganuma M, Nishiwaki R, Tatematsu M, Kim SJ, Carmichael WW, Fujiki H. 1994. Nodularin, a potent inhibitor of protein phosphatases 1 and 2A, is a new environmental carcinogen in male F344 rat liver. Cancer Res 24:6402–6406. [PubMed] [Google Scholar]
  • 6.Akcaalan R, Mazur-Marzec H, Zalewska A, Albay M. 2009. Phenotypic and toxicological characterization of toxic Nodularia spumigena from a freshwater lake in Turkey. Harmful Algae 8:273–278. doi: 10.1016/j.hal.2008.06.007. [DOI] [Google Scholar]
  • 7.Carmichael WW, Eschedor JT, Patterson GM, Moore RE. 1988. Toxicity and partial structure of a hepatotoxic peptide produced by the cyanobacterium Nodularia spumigena Mertens emend. L575 from New Zealand. Appl Environ Microbiol 54:2257–2263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Harding WR, Rowe N, Wessels JC, Beattie KA, Codd GA. 1995. Death of a dog attributed to the cyanobacterial (blue-green algal) hepatotoxin nodularin in South Africa. J S Afr Vet Assoc 66:256–259. [PubMed] [Google Scholar]
  • 9.Main DC, Berry PH, Peet RL, Robertson JP. 1977. Sheep mortalities associated with the blue green alga Nodularia spumigena. Aust Vet J 53:578–581. doi: 10.1111/j.1751-0813.1977.tb15830.x. [DOI] [PubMed] [Google Scholar]
  • 10.Mazur-Marzec H, Krezel A, Kobos J, Plinski M. 2006. Toxic Nodularia spumigena blooms in the coastal waters of the gulf of Gdańsk: a ten-year survey. Oceanologia 48:255–273. [Google Scholar]
  • 11.Nehring S. 1993. Mortality of dogs associated with a mass development of Nodularia spumigena (Cyanophyceae) in a brackish lake at the German North Sea coast. J Plankton Res 15:867–872. doi: 10.1093/plankt/15.7.867. [DOI] [Google Scholar]
  • 12.Sivonen K, Kononen K, Carmichael WW, Dahlem AM, Rinehart KL, Kiviranta J, Niemelä SI. 1989. Occurrence of the hepatotoxic cyanobacterium Nodularia spumigena in the Baltic sea and structure of the toxin. Appl Environ Microbiol 55:1990–1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Beutel MW, Horne AJ, Roth JC, Barratt NJ. 2001. Limnological effects of anthropogenic desiccation of a large, saline lake, Walker lake, Nevada. Hydrobiologia 466:91–105. doi: 10.1023/A:1014569521381. [DOI] [Google Scholar]
  • 14.Galat DL, Verdin JP, Sims LL. 1990. Large-scale patterns of Nodularia spumigena blooms in pyramid lake, Nevada, determined from landsat imagery: 1972-1986. Hydrobiologia 197:147–164. doi: 10.1007/BF00026947. [DOI] [Google Scholar]
  • 15.Falcón LI, Escobar-Briones E, Romero D. 2002. Nitrogen fixation patterns displayed by cyanobacterial consortia in Alchichica crater-lake, Mexico. Hydrobiologia 467:71–78. doi: 10.1023/A:1014984629985. [DOI] [Google Scholar]
  • 16.Pérez MC, Bonilla S, De León L, Šmarda J, Komárek J. 1999. A bloom of Nodularia baltica-spumigena group (Cyanobacteria) in a shallow coastal lagoon of Uruguay, South America. Algol Stud 93:91–101. [Google Scholar]
  • 17.Haraguchi L, Odebrecht C. 2012. Potentially toxic microalgae in a subtropical estuary and adjacent coast in Brazil with emphasis on the new record of Nodularia spumigena (32°S; 52°W), p. 37–40. In: Proceedings of the 15th International Conference on Harmful Algae. Abstract Book, 15th ICHA, International Society for the Study of Harmful Algae, Seattle, WA. [Google Scholar]
  • 18.Schmieder R, Edwards R. 2011. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864. doi: 10.1093/bioinformatics/btr026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Kajitani R, Toshimoto K, Noguchi H, Atsushi T, Ogura Y, Okuno M, Yabana M, Harada M, Nagayasu E, Kohara Y, Fujiyama A, Hayashi T, Itoh T . 2014. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res 24:1384–1395. doi: 10.1101/gr.170720.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M, Birol I, Boisvert S, Chapman JA, Chapuis G, Chikhi R, Chitsaz H, Chou WC, Corbeil J, Del Fabbro C, Docking TR, Durbin R, Earl D, Emrich S, Fedotov P, Fonseca NA, Ganapthy G, Gibbs RA, Gnerre S, Godzaridis E, Goldstein S, Haimel M, Hall G, Haussler D, Hiatt JB, Ho IY, Howard J, Hunt M, Jackman SD, Jaffe DB, Jarvis ED, Jiang H, Kazakov S, Kersey PJ, Kitzman JO, Knight JR, Koren S, Lam T-W, Lavenier D, Laviolette F, Li Y, Li Z, Lio B, Liu Y, Luo R, MacCallum I, MacManes MD, Maillet N, Melnikov S, Naquin D, Ning Z, Otto TD, Paten B, Paulo OS, Phillippy AM, Pina-Martins F, Place M, Przybylski D, Qin X, Qu C, Ribeiro FJ, Richards S, Rokhsar DS, Ruby JG, Scalabrin S, Schatz MC, Schwartz DC, Sergushichev A, Sharpe T, Shaw TI, Shendure J, Shi Y, Simpson JT, Song H, Tsarev F, Vezzi F, Vicedomini R, Vieira BM, Wang J, Worley KC, Yin S, Yiu S-M, Yuan J, Zhang G, Zhang H, Zhou S, Korf IF. 2013. Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. GigaScience 2:10. doi: 10.1186/2047-217X-2-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi: 10.1093/bioinformatics/btu153. [DOI] [PubMed] [Google Scholar]
  • 22.Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. doi: 10.1186/1471-2164-9-75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W, Breitling R, Takano E, Medema MH. 2015. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–W243. doi: 10.1093/nar/gkv437. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES