Abstract
Here, we report the draft genome sequences of methicillin-susceptible Staphylococcus captis pulsotype NCRS-C (CR02 strain) and multiresistant Staphylococcus captis pulsotype NCRS-A (CR07 strain).
GENOME ANNOUNCEMENT
Staphylococcus capitis is a Gram-positive coccus belonging to the coagulase-negative staphylococcus group (CoNS) that is frequently found on the human skin and mucosa (1). Recently, a few studies have reported the emergence of S. capitis, which was found to be a major cause of late-onset sepsis (LOS) in several neonatal intensive care units (NICUs) (2, 3). A clonal population of methicillin-resistant S. capitis NRCS-A strains has spread into several geographically distant NICUs (4). These isolates exhibit reduced susceptibility to vancomycin, which is the most widely used antimicrobial agent in the NICU setting (5, 6).
In order to elucidate the molecular mechanisms behind the wide-spreading of methicillin-resistant S. capitis and methicillin-susceptible S. capitis in NICUs in France, we sequenced two different pulsotypes (NRCS-A and NRCS-C) of S. capitis strains (CR07 and CR02).
In this report, we present the draft genome sequences of multiresistant S. capitis pulsotype NRCS-A and methicillin-susceptible S. capitis pulsotype NRCS-C isolated from blood cultures from NICUs in Lyon, France.
These two pulsotype strains were grown in blood agar at 37°C, and genomic DNA was extracted using the PureLink genomic DNA kit (Invitrogen), according to the manufacturer’s recommended protocol. The DNA libraries were prepared from 1 µg DNA genomic extracted following GS rapid library protocol (Roche 454; Roche).
The genome sequence of each S. capitis strain was determined by high-throughput sequencing performed on a Genome Sequencer FLX + system (454 Life Sciences/Roche) using FLX Titanium reagents, according to the manufacturer’s protocols and instructions. De novo assemblies were performed using Roche Newbler assembly software (version 2.9).
An automatic syntactic and functional annotation of the draft genome was performed using the MicroScope platform pipeline (7). The syntactic analysis combines a set of programs including AMIGene (8), tRNAscan-SE (9), RNAmmer (10), Rfam scan (11), and Prodigal software (12) to predict genomic objects that are mainly coding sequences (CDSs) and RNA genes. More than 20 bioinformatics methods were used for functional and relational analyses. The homology search was performed in the generalist databank UniProt (13) and in more specialized databases such as COG (14), InterPro (15), PRIAM profiles for enzymatic classification (16), prediction of protein localization using TMHMM (17), SignalP (18), and PsortB (19) tools.
The draft genome sequence of methicillin-susceptible S. capitis NRCS-C (CR02 strain) has 33.05% G+C content, is 2,344,750 bp in length which is distributed in 320 contigs (average coverage, 7.0×) with 2,415 genes, 2,476 CDSs, 42 pseudo genes, 4 rRNAs (5S,16S, 23S), and 59 tRNAs.
The draft genome sequence of methicillin-resistant S. capitis NRCS-A (CR07 strain) has 32.83% G+C content, is 2,477,101 bp in length which is distributed in 26 contigs (average coverage, 31×) with 2,411 CDSs, 4 rRNAs (5S,16S, 23S), and 61 tRNAs.
Nucleotide sequence accession numbers.
These whole-genome sequences were deposited at GenBank under the accession numbers CZWI00000000 and CZWH00000000 for a methicillin-susceptible S. capitis NRCS-C strain (CR02) and a multiresistant S. capitis NRCS-A strain (CR07), respectively. The versions described in this paper are the first versions.
ACKNOWLEDGMENTS
This work was supported by a grant from the Fondation pour la Recherche Médicale (FRM, grant ING20111223510) and by the Institut National de la Recherche Médicale (INSERM) and the French Ministry of Health. This work was also supported by a grant from the NIH for H3Africa BioNet.
Footnotes
Citation Lemriss H, Dumont Y, Lemriss S, Martins-Simoes P, Butin M, Lahlou L, Rasigade JP, El Kabbaj S, Laurent F, Ibrahimi A. 2016. Genome sequences of multiresistant Staphylococcus capitis pulsotype NRCS-A and methicillin-susceptible S. capitis pulsotype NRCS-C. Genome Announc 4(3):e00541-16. doi:10.1128/genomeA.00541-16.
REFERENCES
- 1.Li X, Lei M, Song Y, Gong K, Li L, Liang H, Jiang X. 2014. Whole genome sequence and comparative genomic analysis of multidrug-resistant Staphylococcus capitis subsp. urealyticus strain LNZR-1. Gut Pathog 6:45. doi: 10.1186/s13099-014-0045-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Klingenberg C, Rønnestad A, Anderson AS, Abrahamsen TG, Zorman J, Villaruz A, Flaegstad T, Otto M, Sollid JE, Ericson J. 2007. Persistent strains of coagulase negative staphylococci in neonatal intensive care unit: virulence factors and invasiveness. Clin Microbiol Infect 13:1100–1111. doi: 10.1111/j.1469-0691.2007.01818.x. [DOI] [PubMed] [Google Scholar]
- 3.Rasigade J-P, Raulin O, Picaud J-C, Tellini C, Bes M, Grando J, Ben Saïd M, Claris O, Etienne J, Tigaud S, Laurent F. 2012. Methicillin-resistant Staphylococcus capitis with reduced vancomycin susceptibility causes late-onset sepsis in intensive care neonates. PLoS One 7:e31548. doi: 10.1371/journal.pone.0031548. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Butin M, Rasigade JP, Martins-Simões P, Meugnier H, Lemriss H, Goering RV, Kearns A, Deighton MA, Denis O, Ibrahimi A, Claris O, Vandenesch F, Picaud JC, Laurent F. 2016. Wide geographical dissemination of the multiresistant Staphylococcus capitis NRCS-A clone in neonatal intensive-care units. Clin Microbiol Infect 22:46–52. doi: 10.1016/j.cmi.2015.09.008. [DOI] [PubMed] [Google Scholar]
- 5.Cui B, Smooker PM, Rouch DA, Daley AJ, Deighton MA. 2013. Differences between two clinical Staphylococcus capitis subspecies as revealed by biofilm, antibiotic resistance, and pulsed-field gel electrophoresis profiling. J Clin Microbiol 51:9–14. doi: 10.1128/JCM.05124-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S, Lajus A, Le Fèvre F, Longin C, Mornico D, Roche D, Rouy Z, Salvignol G, Scarpelli C, Thil Smith AA, Weiman M, Médigue C. 2013. MicroScope—an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res 41:D636–D647. doi: 10.1093/nar/gks1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Vallenet D, Labarre L, Rouy Z, Barbe V, Bocs S, Cruveiller S, Lajus A, Pascal G, Scarpelli C, Médigue C. 2006. MaGe: amicrobial genome annotation system supported by synteny results. Nucleic Acids Res 34:53–65. doi: 10.1093/nar/gkj406. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Bocs S, Cruveiller S, Vallenet D, Nuel G, Médigue C. 2003. AMIGene: annotation of microbial genes. Nucleic Acids Res 31:3723–3726. doi: 10.1093/nar/gkg590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Lowe TM, Eddy SR. 1997. tRNA scan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964. doi: 10.1093/nar/25.5.0955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T, Ussery DW. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. doi: 10.1093/nar/gkm160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR, Bateman A. 2009. Rfam: updates to the RNA families database. Nucleic Acids Res 37:D136–D140. doi: 10.1093/nar/gkn766. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. doi: 10.1186/1471-2105-11-119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.UnitProt Consortium. 2009. The universal protein Re-source (UniProt) 2009. Nucleic Acids Res 37:D169–D174. doi: 10.1093/nar/gkn664. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA. 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41. doi: 10.1186/1471-2105-4-41. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF, Selengut JD, Sigrist CJ, Thimma M, Thomas PD, Valentin F, Wilson D, Wu CH, Yeats C. 2009. InterPro: the integrative protein signature database. Nucleic Acids Res 37:D211–D215. doi: 10.1093/nar/gkn785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Claudel-Renard C, Chevalet C, Faraut T, Kahn D. 2003. Enzyme-specific profiles for genome annotation: PRIAM. Nucleic Acids Res 31:6633–6639. doi: 10.1093/nar/gkg847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Sonnhammer EL, von Heijne G, Krogh A. 1998. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182. [PubMed] [Google Scholar]
- 18.Bendtsen JD, Nielsen H, von Heijne G, Brunak S. 2004. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795. doi: 10.1016/j.jmb.2004.05.028. [DOI] [PubMed] [Google Scholar]
- 19.Gardy JL, Laird MR, Chen F, Rey S, Walsh CJ, Ester M, Brinkman FS. 2005. PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21:617–623. doi: 10.1093/bioinformatics/bti057. [DOI] [PubMed] [Google Scholar]
