Abstract
Background
During corticogenesis, genetic programs encoded in progenitor cells at different developmental stages and inherited in postmitotic neurons specify distinct layer and area identities. Transcription factor Zbtb20 has been shown to play a role for hippocampal development but whether it is implicated in mammalian neocortical morphogenesis remains unknown.
Results
Here, we report that during embyogenesis transcription factor Zbtb20 has a dynamic spatio-temporal expression pattern in mitotic cortical progenitors through which it modulates the sequential generation of cortical neuronal layer identities. Zbtb20 knock out mice exhibited enhanced populations of early born L6-L4 neuronal subtypes and a dramatic reduction of the late born L3/L2 neurons. This defect was due to a temporal misbalance in the production of earlier versus later born neurons, leading to a progressive diminishing of the progenitor pool for the generation of L3-L2 neurons. Zbtb20 implements these temporal effects in part by binding to promoter of the orphan nuclear receptor CoupTF1/Nr2f1. In addition to its effects exerted in cortical progenitors, the postmitotic expression of Zbtb20 in L3/L2 neurons starting at birth may contribute to their proper differentiation and migration.
Conclusions
Our findings reveal Zbtb20 as a novel temporal regulator for the generation of layer-specific neuronal identities.
Electronic supplementary material
The online version of this article (doi:10.1186/s13041-016-0242-2) contains supplementary material, which is available to authorized users.
Keywords: Zbtb20, Development, Neocortex, Temporal identity, Transcription factor
Background
The mammalian neocortex (Ncx), in which neurons are arranged radially in six layers and tangentially in numerous functional domains, is a recent acquisition in brain evolution. During development, the majority of cortical glutamatergic neurons are generated by radial glial cells (RGCs) in the germinative ventricular (VZ) and subventricular (SVZ) zone of the dorsolateral pallium. Generation of neuronal sets with a layer-specific identity depends on an intrinsically encoded genetic program and environmental cues acting during the S-phase of the mitotic cycle [1]. Neurons with different fates are produced according to an “inside-first outside-last” schedule: first, lower layer (LL) neurons (L6/L5), followed by generation of the upper layer (UL) neurons (L4/L3/L2). During mouse development, the layer specific neuronal subtypes are generated throughout embryonic (E) stages E10.5 – E17.5 in partially overlapping time windows with a peak for generation at E11.5 for L1, E12.5 (L6), E13.5 (L5), E14.5 (L4) and E16.5-E17.5 (L3-L2) [2–5]. The birthdate of cortical neurons is directly also related to their projection identity. Thus, while the early born L6 and L5 neurons extend outside the brain thalamocortical (TCA) and corticospinal motor neuron (CSMN) projections, the late-born UL neurons make interhemispheric (callosal) projections inside the brain [6]. Increasing recent evidence support the view that the precise temporal programs for production of LL and UL neuronal fates relies on intrinsic mechanisms in early and late progenitors, respectively, characterized by specific combinatorial expression of TFs at distinct developmental time points [7–13]. For instance, suppression of the expression of Foxg1 at E10.5 is required to make a switch from generation of reelin-positive Cajal-Retzius cells, located in the marginal zone (MZ) of the cortex, to the production of neuronal subsets located in cortical plate (CP) [14]. Furthermore, while Fezf2 and Otx1 expression in apical VZ progenitors controls the fate specification of the LL neurons [15, 16], the expression of Svet1, Cux1 and Cux2 during later stages of neurogenesis in SVZ progenitors seems to specify UL neuronal fate [17–20]. The expression of TFs in postmitotic CP neurons may regulate through feedback signalling mechanism the progenitor progeny in the germinative zone [21] or the fate of the postmitotic neurons [7–13].
Neurons with distinct morphology, connectivity, neurotransmitter usage and function are tangentially organized in numerous functional domains, implicating that mechanisms of layer and area formation are interrelated. According to the current view, cortical arealization is presaged by encoded positional information (“protomap”) through graded expression of sets of TFs along the anteroposterior and mediolateral axis in the two germinative zones of the neocortex [5, 22]. Disruption of the graded expression of such TFs in VZ/SVZ leads to severe defects in the areal size and location in the Ncx [23–25]. As recently shown, affecting the intrinsic genetic mechanisms encoded by the graded expression of TF Pax6 in cortical progenitors results in an altered size of cortical somatosensory (SS) area and in parallel alterations in the sensory thalamus involving selective death of neurons in particular thalamic nuclei. Consequently, a new type of “top-down plasticity” driven by competition-mediated axon elimination and neuronal apoptosis re-patterns the sensory thalamus [26].
In a microarray screen aimed to find out genes with graded expression in the developing cortex, we identified TF Zbtb20 as a gene showing caudal-high to rostral-low expression gradient in VZ of E16.5 cortex, and subsequently maintains a restricted high expression in the adult hippocampus (Hi) [27]. The gene Zbtb20 (also named DPZF [28], HOF [29] or ZNF288) encodes a TF, belonging to the POK-family of BTB zinc finger transcriptional repressors, implicated in developmental processes and cancer [30]. Zbtb20 has been localized exclusively in immature post-mitotic neurons in Hi and migrating granule cell precursors of DG [29]. Previous research, using both gain-of-function (GOF) [31–33] and loss-of-function (LOF) [34, 35] approaches, has described the important role of TF Zbtb20 in specifying the medial pallium, the anlage of the Hi formation.
Recent studies have implicated Zbtb20 mutations in human neurodevelopmental syndromes associated with behavioral abnormalities, including intellectual disability [36], Primrose syndrome [37], autism [38], and schizophrenia [39]. The reported alterations in brain morphology in these disorders suggest possible cortical involvement beyond the hippocampus. However, no data are presently available on the involvement of Zbtb20 in neocortical morphogenesis.
In this study, we present first evidence that TF Zbtb20 exerts a dynamic expression in the germinative zones of the cortex (pallium), marks specifically the uppermost L3-L2 cortical neurons and exerts a crucial control in the timely generation of distinct neuronal fates throughout cortical neurogenesis.
Results
Dynamic Zbtb20 expression in telencephalic progenitors
By E11.5 a gradient of Zbtb20-lacZ activity was evident in the VZ of the lateral pallium (LP) of the heterozygous Zbtb20lacZ/+ embryos (Additional file 1: Figure S1A, arrow). Between E12.5 and E13.5, Zbtb20 immunostaining confirmed a strong signal in both the ventral (VP) and lateral (LP) pallium (Fig. 1a, arrow). Double staining for Zbtb20 and the pallial progenitor marker Pax6 revealed a nearly complete co-expression at E13.5 (Fig. 1b1-b6) in LP (101 out of 101 assayed Zbtb20+ cells co-expressed Pax6 (100 %, n = 3). In VP, however, only 40 % of the Zbtb20+ cells co-expressed Pax6 (59 out of 148 Zbtb20+ cells, n = 3). Notably, co-labelling for Zbtb20 and TF CoupTF1, which at this stage is expressed by both pallial and subpallial progenitors, showed a complete co-expression in LP and VP (143 out of 143 Zbtb20+ cells in LP/VP (n = 3) co-expressed CoupTF1 (Fig. 1c1-c6).
By E14.5-E15.5 the expression of Zbtb20 was spread throughout the entire pallial VZ (Fig. 1d; Additional file 1: Figure S1B, arrows). Co-staining for Zbtb20, RGC marker Pax6 and the mitotic marker phosphorylated vimentin (pVim) confirmed that TF Zbtb20 is expressed in dividing RGCs at the apical surface of VZ (Fig. 1e1-e4, arrows; 90 out of 93 assayed pVim+ cells on the apical surface were co-labeled for Zbtb20, 97 %, n = 3).
At early postnatal (P) stages (P4), Zbtb20 immunosignal was evident in the most superficial layers of LP/DP (Fig. 1f, arrow), where Zbtb20+ cells co-expressed Satb2 (Fig. 1g1-g3, arrows; 102 out of 129 assayed Zbtb20+ cells were co-labeled for Satb2, 79 %, n = 3) and Brn2 (Additional file 2: Figure S2A1-A3, arrows; 111 out of 121 assayed Zbtb20+ cells were co-labeled for Brn2, 93 %, n = 3), markers of UL neocortical neurons [40, 41]. However, Zbtb20 did not co-localize with neither the L5 marker Ctip2 (Additional file 2: Figure S2B1-B3) nor the L4 marker ROR [42] (Additional file 2: Figure S2C1-C3), suggesting that the Zbtb20 expression in UL neurons is restricted to L2-L3 neurons. The expression pattern in ULs was preserved at P8 but almost disappeared at P12 (data not shown). In the early postnatal SVZ, Zbtb20 also maintained a strong expression in Nestin + RGCs (Fig. 1h1-h3; 90 out of 92 assayed Zbtb20+ cells in SVZ were co-labeled for Nestin, 92 %, n = 3), suggesting a possible involvement in postnatal neurogenesis.
In summary, beginning at E11.5 in VZ of VP/LP, the expression of TF Zbtb20 expands into the VZ of the entire pallium at E14.5 and thereafter, suggesting that the timed expression of Zbtb20 may be involved in generation and/or specification of the UL neurons.
Disturbances in superficial neocortical layers in Zbtb20 loss-of-function
Cresyl violet (Nissl) staining of P10 coronal brain sections revealed apparent defects in cortical layering in Zbtb20lacZ/lacZ mice (Fig. 2a1-b2). While the LLs (L6, L5) appeared overrepresented in the Zbtb20lacZ/lacZ somatosensory (SS) cortex, the ULs (L4-L2) seemed thinner (Fig. 2b1-b2). This impression was confirmed by NeuN immunoassaying (Fig. 2b3-b4). In order to investigate the UL disturbances in more detail, we performed immunostaining for specific UL neuronal markers. Given the widespread expression of Zbtb20 in VZ of the entire pallium at E14.5, we first investigated the expression of the L4 marker ROR [43]. Intriguingly, in the mutant cortex, the thickness of L4 was greatly augmented (Fig. 2c1-c3). This notion was confirmed by another marker with a strong expression in L4, TF CoupTF1 (see below). Immunoassaying for the global (L2-L4) UL marker Cux1 [18, 19], however, showed a reduction of UL neurons (Fig. 2d1-d3). Additional UL markers, Brn2 (L2, L3, and L5; [40, 41]) and Satb2 (L4-L2; [7, 8]) confirmed the strongly diminished representation of UL subsets in the Zbtb20lacZ/lacZ mice (Fig. 2h1-i3).
The overall reduction of ULs, accompanied by the selective expansion of L4, raised a question on the status of the L2-L3 neurons in the mutant cortex. Therefore, we quantified the L3-L2 Cux1+/ROR− population (Fig. 2f2, g2, arrow), which was markedly depleted (Fig. 2g3), in contrast to the L4 Cux1+/ROR+ population, which was augmented (Fig. 2g4). In order to study whether L3 or L2 neuronal subsets were specifically affected, we made use of the expression patterns of TF FoxP1, which is expressed in L6a and L5-L3 [44] and TF Brn2, which specifically marks L3 and L2 [40, 41]. Double immunostaining for FoxP1 and Brn2 revealed an ectopic expansion of FoxP1 expression into the normal position of L2 in the mutant cortex, while cells specifically fated to L2 identity (Brn2+/FoxP1−, Fig. 2j1-j2, arrows) were almost completely missing (Fig. 2j3). The depletion of the ULs was not due to an enhanced apoptosis, as studied by the expression of activated Caspase-3 (data not shown). To investigate whether the molecular boundary between L5 and L4 was preserved, we applied Ctip2 (L5)/ROR (L4) double immunohistochemical (IHC) staining, and we found that these two subpopulations of cortical neurons were properly segregated (Fig. 2k1-k2).
To sum up, these findings indicate that Zbtb20 deficiency results in a significant diminishing of L3 and especially L2 neuronal subsets as well as in an augmented and ectopic presence of L4 neurons in UL position.
Enhanced deep layers and normal arealization in Zbtb20lacZ/lacZ cortex
To study quantitatively the apparent enhancement of both L5 and L6 sets in the mutants (Fig. 2b1-b4), we performed IHC staining and counting of cells in the SS cortex on cross sections of both genotypes with antibodies for TFs FoxP2 [44] in L6 (Fig. 3a1-a4), Tbr1 [9] in L6 (Fig. 3b1-b4) and Ctip2 [15, 45] in L5 (Fig. 3c1-c4). Indeed, the results revealed a statistically significant increased number of both L6 and L5 neurons in the mutant as compared with the control Ncx (Fig. 3a5, b5, c5). Furthermore, ISH staining of sagittal P4 brain sections indicated that the mutant cortex displayed enhanced LL neuronal subsets, including Fezf2+ L5 [15, 46] (Additional file 3: Figure S3A1-A4), Clim1+ L5 [46] (Additional file 3: Figure S3B1-B4), and Id2+ L5 and Id2+ L6 [47] (Additional file 3: Figure S3C1-C4). In order to confirm that the described layering abnormalities in the Zbtb20lacZ/lacZ mice are not restricted to the SS cortex, we studied the patterning of the primary motor cortex and, similarly to SS cortex, we found a decrease of the ULs and enhancement of the LLs (Additional file 4: Figure S4).
In layer 5, the rostral limit of expression of TF Id2 outlines the position of the border between the motor/somatosensory (M/SS) cortex, which is also marked by the caudal limit of Id2 expression in L3-L2 [48]. In Zbtb20lacZ/lacZ cortex, the M/SS boundary appeared rostrally displaced into the M field (Additional file 3: Figure S3C1-C2, asterisk). We therefore examined other cortical area-specific markers, including Cadherin-8 (Additional file 3: Figure S3D1-D2, asterisk), Serotonin (Additional file 3: Figure S3E1-E2, asterisk), Bhlhb5 (Additional file 3: Figure S3 F1-F2, asterisk), ROR (Fig. 2c1-c2, asterisk, and data not shown), Cadherin-6 and Lmo3 (data not shown). None of these markers exhibited shifts in the mutants along the antero-posterior axis, so we concluded that the neocortical arealization in Zbtb20lacZ/lacZ mice is grossly not affected. This notion is also supported by the preserved pattern of the graded expression of TFs Pax6, Emx2, Foxg1 and Lhx2 in Zbtb20lacZ/lacZ embryonic pallium at E12.5 [35], a stage at which these TFs are known to have crucial roles in specification of the intrinsic program of cortical arealization encoded in the progenitors [23].
ZBTB20 modulates the temporal onset for generation of distinct neuronal layer identities
To investigate whether Zbtb20 controls the switch to generation of neurons with different layer identities, we performed BrdU birthdating experiments at E12.5, E14.5 and E16.5 when predominantly LLs (L6, L5), L4 or L3-L2 neurons are born, respectively (Fig. 4). Taking advantage of the fact the pattern of NeuN immunostaining allowed distinguishing the location of LL and UL in the postnatal cortex (Fig. 2b3-b4), we calculated the percentage of BrdU+/NeuN+ cells located to either LLs (L5-L6) or ULs (L2-L4) out of the total BrdU+/NeuN+ cells in frames spanning the entire cortex (Additional file 5: Figure S5). Analysis of the position of the E12.5-born cells revealed no differences in their laminar location between WT and the mutant (Fig. 4a1-a3; Additional file 5: Figure S5A1-A3). In contrast, birthdating at E14.5, revealed a significantly larger proportion of BrdU+ cells in the deep position of the Zbtb20lacZ/lacZ cortex, and on contrary, a smaller fraction of such cells was found in the superficial position of the mutants (Additional file 5: Figure S5B1-B3; also Fig. 4f1-f3). Similarly, BrdU pulse labelling at E16.5 (at the peak of UL generation) showed a reduced distribution of tagged cells at superficial position and significantly more deeply located BrdU+ cells in the mutant cortex (bins 4–6; Fig. 4k1-k3), that was also evident on BrdU/NeuN double-stained sections (Additional file 5: Figure S5C1-C3).
Using BrdU co-staining with layer-specific neuronal markers, for L5 (Neurofilament/Smi32 and Ctip2) and L6 (Tbr1), we quantitatively investigated the layer fate of cells generated at stages E12.5, E14.5 or E16.5. The results revealed that the mutant Ncx had significantly increased populations of L6 and L5 neurons born at E12.5 (Fig. 4c1-e3), as well as at E14.5, the peak of generation of L4 neurons during normal corticogenesis (Fig. 4h1-j2). At E16.5 such expansion of L6/L5 fate identities was no more evident (Fig. 4m1-m2). However, the cells born at E16.5 in the mutant Ncx demonstrated a significant increase of the co-labeling with the L4 marker ROR as compared to the control Ncx (Fig. 4o1-o2, arrows, O3). These results suggest that the developmental window for generation of L6-L5-L4 neurons was expanded by at least 2 days for each neuronal type, which will profoundly affects the progenitor pool size for L3-L2 neurons. In a further support of such a scenario were the results after analysis of the fractions of Cux1+/ROR+ (L4) and Cux1+/ROR− (L3-L2) neuronal subsets born at stages E12.5, E14.5 or E16.5 in WT and mutant mice (Additional file 6: Figure S6). We found that at P12, the UL fractions born at E12.5 or E14.5 did not differ significantly between WT and mutant mice (Additional file 6: Figure S6A1-B3). However, changes were observed in the E16.5-born UL neuronal fractions in Zbtb20 LOF as compared to WT: the L4 fraction was larger, while the L3-L2 fraction was diminished (Additional file 6: Figure S6C1-C3).
Together, these results strongly suggest that the timed expression of transcriptional repressor Zbtb20 in cortical progenitors (appearing in the entire pallium only after E14.5) could control the transition from early- versus late born neuronal layer identities.
Impaired late neurogenesis and neuronal migration in Zbtb20-deficient cortex
By using 40 min BrdU-pulse labelling in vivo at E16.5 (the peak of production of UL neurons) we found a significant reduction of the progenitor proliferation in the Zbtb20LOF cortex (Fig. 5a1-a3). Additionally, BrdU/Ki67 double-labelling after a 24 h BrdU pulse (E15.5- > E16.5), indicated an increased progenitor exit from the mitotic cycle as measured by the percentage of the BrdU+/Ki67− cells versus all BrdU+ cells (Fig. 5b1-b3). Consistent with these data, we found at E16.5 in the mutant DP a reduction of Tbr2+ IPs (Fig. 5c1-c3), the main neuronal source for generation of neurons with an UL neural fate [49]. Notably, we did not detect changes in the progenitor cell exit during early neurogenesis (time window of LL generation) using a 24 h BrdU pulse at E12.5- > E13.5, followed by BrdU/Ki67 double-labelling (Fig. 5d1-d3).
Our previous expression analysis of Zbtb20 in developing cortex at stage E18.5 suggested a migratory delay of NeuroD1+ neurons (Fig. 4h2 of [35]). At the same stage, we showed here a band of Id2+, Math2/Nex+ neurons in the pallial SVZ in Zbtb20 KO mice (Additional file 7: Figure S7, arrows), suggesting migratory abnormalities of the lately-born neurons. Indeed, in the UL birthdating experiments at E16.5, the mutant Ncx contained significantly more E16.5-born BrdU+/Cux1+ cells in the L6 (Fig. 4n1-n3) as well as in the subcortical white matter (data not shown). Notably, the retained Cux1+ cells were ROR− (Fig. 2e2/f2; arrowheads) indicating that a sub-population of correctly specified L3/L2 neurons exhibits an impaired migration towards their final destination to the CP. Notably, the postmitotic expression of Zbtb20 in cortical plate is confined to the Cux1+/ROR− population.
Zbtb20 deficiency affects the expression of CoupTF1 in developing cortex
As noticed, the orphan nuclear receptor CoupTF1, whose strong expression is normally restricted to L4 in the SS area [45, 50] was ectopically expressed as a thick band along the entire AP axis of the Zbtb20 mutant (Fig. 6a1-a4; arrows). Similar to the presented here abnormalities of Ncx in Zbtb20 LOF, overexpression of CoupTF1 in the pallial VZ promotes progenitor exit from mitotic cycle, inhibits the IPs production and causes enhanced generation of early-born at the expense of late generated neuronal fates [51]. At E12.5, both CoupTF1 [50, 52] and Zbtb20 are expressed at the corticostriatal border in faint DV gradients. Indeed, the double IHC at E12.5 showed a co-localization of Zbtb20 and CoupTF1 in the VZ of the control animals (Fig. 1c1-c3), and significant enhancement of CoupTF1 expression in Zbtb20lacZ/lacZ mice as revealed by both ISH (Fig. 6b1-b2) and IHC (Fig. 6C1-C2). Thus, the observed increased generation of early-born neuronal fates (L6,L5) in Zbtb20 LOF might be mediated by modulation of CoupTF1 expression.
To study a possible regulation of CoupTF1 expression by Zbtb20 at molecular level, we investigated whether Zbtb20 binds to the promoter of CoupTF1 [53] (Fig. 6d-d2, Additional file 8: Figure S8). In ChIP assays, we used neural stem cultures (NSC) from E15.5 cortices from WT and Zbtb20KO embryos and Zbtb20 antibody. We found that Zbtb20 binds with low affinities with fragments at locations of −172/-364 (ChIP_3) and +53/+256 (ChIP_5) of the CoupTF1 promoter and the first intron (Additional file 8: Figure S8). Zbtb20 occupies the CoupTF1 promoter with highest affinity at the location of −153/+49 (ChIP_4), which contains multiple DNA binding motifs of Zbtb20 [33] (Fig. 6d1-d2, Additional file 8: Figure S8). These data suggests that TF Zbtb20 is a regulator of the expression of CoupTF1 most probably acting as a repressor. In a further support, ISH with Zbtb20 in situ probe on E15.5 brain sections from WT and CoupTF1−/− mice [51], showed a decreased mRNA signal (Additional file 9: Figure S9; arrows) suggesting a cross regulatory loop between these two TFs.
Discussion
Here we identify TF Zbtb20 as essential regulator of the timed sequential generation of distinct neuronal layer identities in developing cortex. Our results suggest that by executing a robust expression in the germinative zone of the entire pallium after E14.5, the Zbtb20 imposes cell-intrinsic temporal limits for generation of L6-L4 versus L3-L2 neuronal fates.
Zbtb20 is a regulator of timed neurogenesis in developing neocortex
During corticogenesis, the timed generation of layer-specific fates depends on intrinsic and extrinsic cues acting at a given developmental stage [1]. This process includes consecutive steps of repression of cell fates generated during earlier stage. Here we showed that in a lack of TF Zbtb20 in the cortical progenitors, neurons with L6-L5-L4 identity continue to be produced heterochronicly, in an expanded by at least 2 days time window, thus substantially shortening the time for production of L3 and especially of L2 neurons (Fig. 7). We consider that this temporal alteration of the schedule for layer production together with the disclosed enhanced exit from mitosis of E16.5 progenitors are the main factors leading to L6-L5-L4 enlargement in the Zbtb20LOF. Because of its dynamics of expression, Zbtb20 exerts different roles at distinct developmental stages: at E14.5, the time at which the full extent of Zbtb20 expression in the pallial VZ progenitors is achieved, this TF restricts L6-L5 versus L4 fate, while at E16.5, the peak of UL generation, Zbtb20 restricts L4 versus L3-L2 fate. In addition, in Zbtb20 LOF cohorts of progenitors leave the cell cycle prematurely, diminishing the progenitor pool that remains for the latest-born neuronal types.
Genes known to regulate the sequential transitions between cortical subtypes include CoupTF1 [51, 54, 55], FoxG1 [14, 56], Gli3 [57] and Brn2 [58]. The expression of neither FoxG1 [35] nor Gli3 (this study, data not shown) were altered in Zbtb20lacZ/lacZ mice. Interestingly, both Zbtb20 and CoupTF1 exerted a similar expression dynamics, starting in progenitors of VP, LP at E12.5 and progressively expanding at later stages in VZ/SVZ of the entire pallium, and even continue to be co-localized postnatally in UL neurons. As shown here, Zbtb20 binds the promoter of CoupTF1, and in Zbtb20 LOF the expression of CoupTF1 was elevated as early as E12.5, indicating that Zbtb20 controls directly the expression of CoupTF1. Notably, several aspects of the neocortical phenotype in Zbtb20KO mice are reminiscent to abnormalities observed after in vivo overexpression of CoupTF1 [51], including: (i) expansion of early born neuronal sets, (ii) changed balance between early and late born neurons, (iii) enhanced cell cycle exit of progenitors and (iv) diminished production of IPs. On the contrary, in the pallium of CoupTF1 KO mice, the expression of Zbtb20 was reduced, making possible the existence of a feedback loop between Zbtb20 and CoupTF1. The lack of birthdating and cell cycle abnormalities during L6-L5 neurogenesis in the mutant pallium during the early neurogenesis indicates that Zbtb20 most probably exerts effects on temporal specification of the LLs via the ectopic CoupTF1 expression.
Acting at the border between the archi- and isocortex, Zbtb20 repression seems to be important to inhibit neocortical cell fate [33]. Upon overexpression in progenitors of medial pallium, Zbtb20 directly binds and represses the activity of genes that are specifically expressed in LL neurons (Tbr1, FoxP2, Fezf2, Ctip2, Sox5) or ULs (e.g. Rorb, Satb2, Cux1/Cux2) [33]. However, in developing Ncx, Zbtb20 co-exists with, and thus might directly repress, only few of those TFs: Fezf2 and FoxP2 (in mitotic VZ precursors), Cux1/2 (in mitotic cells in VZ/SVZ as well as in postmitotic cells in ULs), and Satb2/Brn2 (in postmitotic ULs). The enhancement of markers which do not co-exist in the same cells with Zbtb20, such as Ctip2 (L6 and L6) and ROR (L4), can be explained by action of Zbtb20 at the level of the progenitors of these neurons. The expansion of Ctip2+ L5 subsets in Zbtb20 LOF of neurons most probably involves a de-repression of the Fezf2 gene in VZ/SVZ. Together with the results in [33], our data suggest that TF Zbtb20 acts as a modulator of the Fezf2/Ctip2/Tbr1/Satb2 network mostly in pallial VZ progenitors.
The mutant phenotype of the latest-born Zbtb20+ L3-L2 cells suggests also an involvement of Zbtb20 at the postmitotic level, probably influencing their proper migration towards the cortical plate. The involvement of Zbtb20 in the regulation of neuronal migration of late-born UL cells was supported by our findings indicating: (i) retention of Cux1+/ROR− (Fig. 2f2, arrowheads) and Bhlhb5+ (Additional file 3: Figure S3 F2, inset) cells below the ULs of the mutant at P12; (ii) their birth date at E16.5 (Fig. 4n2); (iii) accumulation of postmitotic cells in the mutant SVZ at E18.5 (Additional file 7: Figure S7). Thus, the prenatal reduction of UL precursor pool is possibly exacerbated by a postnatal migrational deficit of L3-L2 neurons. Potential target genes for this deficit are TFs Cux1 which is expressed in both mitotic and postmitotic progenitors [19], and Brn2 [40] which was recently shown as a possible Zbtb20 downstream target [59].
Conclusions
Transcription factor Zbtb20 is expressed in the ventricular zone of the developing neocortex in a dynamic spatiotemporal pattern. Loss of Zbtb20 in cortical radial glia cells leads to prolongation of the developmental time limits for sequential production of early-born cortical layer identities (L6, L5 and L4). This dramatically shortens the time of production of later born (L3, L2) neuronal sets which are severely underrepresented. Mechanistically, the deficiency of Zbtb20 leads to decreased proliferation and enhanced exit from mitotic cycle of the late cortical progenitors, an effect mediated at least in part via modulation of the expression of CoupTF1/Nr2f1.
Methods
Animal experiments
Animals were handled in accordance with the German Animal Protection Law, after an approval of the experiments by the Niedersächsische Landesamt für Verbraucherschutz und Lebesmittelsicherheit (LAVES)/Oldenburg, contract No 33.9-42502-04-11/0622 from 07.12.2011. Experiments were completed prior to January 1st 2013. All surgical procedures were performed under isoflurane/N2O anesthesia, and all efforts were made to minimize suffering. The Zbtb20 gene targeting and the generation of the transgenic mice have been previously described [35]. The Zbtb20 knock out (KO) mice lack the functionally important BTB/POZ domain of the protein as well as the first of five zinc fingers, which were replaced by a lacZ-neomycin cassette. Therefore, homozygous mutants will be referred to as Zbtb20lacZ/lacZ mice within this study. The specificity of the deletion and the complete loss of Zbtb20 protein have been confirmed as described [35].
ChIP analysis
ChIP analyses were performed as described previously [60] with some modifications. Cortical progenitors were prepared from E15.5 WT and Zbtb20KO mice [35] and cultured as described [61]. ChIP experiments were performed using an EZ ChIP assay kit (Millipore), according to the supplier’s instructions with Zbtb20 antibody (HPA016815, Sigma). A genomic fragment of the Trim11 gene and a GFP antibody plus IgG were used as negative DNA and antibody controls, respectively [60]. Primer sequences are listed Additional file 10: Table S1.
Histological processing
Isolated embryos or brains at defined stages were washed in cold phosphate-buffered saline (PBS) and fixed in 4 % paraformaldehyde (PFA) overnight at 4 °C. Tissues were rinsed in PBS, and processed for standard cryo-embedding. Cryosections (16 μm thick) were washed and blocked for 1 h in blocking solution containing a normal serum. Primary antibodies were incubated overnight at 4 °C in the blocking solution. After washing, the sections were incubated with species-specific secondary antibodies from the Alexa series (Invitrogen) in blocking solution for 2 h at room temperature (RT), washed again and mounted with Vectashield mounting-medium (Vector Labs) containing DAPI. We used the following primary antibodies/dilutions: mouse anti-β-galactosidase (1:200; Promega, Madison, WI), rat anti-BrdU (1:200; Abcam), mouse anti-BrdU (1:50; BD Bioscience), goat anti-Brn2 (1:50, Santa Cruz Biotech, Santa Cruz, CA), rabbit anti-Caspase-3 (1:200; Cell Signalling, Cambridge, UK), mouse anti-CoupTF1 (1:1000; Perseus Proteomics, Tokyo, Japan), rat anti-Ctip2 (1:200; Abcam), rabbit anti-Cux1 (1:250; Santa Cruz), rabbit anti-FoxP1 (1:500, Abcam), rabbit anti-FoxP2 (1:500, Abcam), rat anti-Ki67 (1:100; Dako), mouse anti-Nestin (1:100; Millipore, Billerica, MA), mouse anti-NeuN (1:100; Millipore), mouse anti-Neurofilament (1:100; Abcam), rabbit anti-Pax6 (1:300; Covance), mouse anti-Pax6 (1:100; Developmental Studies Hybridoma Bank, DHSB), mouse anti-phospho-Histone H3 (1:50; Cell Signalling), mouse anti-phospho-Vimentin (1:300; MBL), mouse anti-ROR (1:100; Perseus Proteomics), mouse anti-Satb2 (1:200; Abcam), mouse anti-Sox2 (1:50; R&D systems), rabbit anti-Tbr1 (1:300; Abcam), rabbit anti-Tbr2 (1:200; Chemicon), rabbit anti-Zbtb20 (1:25–1:100, Sigma). The anti-BrdU antibodies were visualized after pre-treatment of tissues in 2 N HCl at 37 °C for 30 min. The anti-Zbtb20 antibody was used after an antigen retrieval by heating in a microwave (800 W, 3 times, 5 min each) in a citrate buffer (pH 6.0).
In situ hybridization
Whole heads from E12.5 or whole brains from E18.5 or P4 mice were dissected in ice-cold DEPC-treated PBS, fixed in 4 % PFA/PBS for 3 h at 4 °C, washed in PBS, and incubated in 25 % sucrose overnight at 4 °C. Specimens were sectioned at 16 μm after embedding and freezing in OCT cryomatrix (Leica Microsystems Nussloch GmbH, Wetzlar, Germany). Nonradioactive in situ hybridization was done as described [27].
Image analysis and quantification
Images were captured with an Olympus BX60 microscope, a Leica DM6000 epifluorescent system or a laser confocal microscope (Leica Sp5). For cell counts in sections from wild type (WT) and homozygous brains, we blindly counted the positive cells within equally sized frames (size of frames provided in the figure legends) on coded cross sections of somatosensory cortex in WT and mutant mice (n ≥ 3 per genotype). For BrdU birthdating experiments, frames spanning the entire cortex on cross brain sections were divided into 10 equally-sized bins, the BrdU+ cells in every bin were counted and divided by the total number of BrdU+ cells in all 10 bins. The size of the counting frames for BrdU/marker co-localization are provided in the figure legends.
Laser confocal microscopy was used to verify co-localization of multiple fluorescent signals. We performed Z sectioning at 0.5-1 μm intervals and optical stacks of at least 10 images were used for analysis, by the Leica Advanced Fluorescence software version 2.3.6. All images were processed with Adobe Photoshop (Version CS2) by overlaying the pictures, adjusting brightness, contrast and size.
Statistical analysis
Statistical evaluation was performed by Student’s T-test or one-way ANOVA followed by Tukey-Kramer’s post hoc analysis. Statistical significance between control and experimental condition was considered if p < 0.05. Data are presented as means ± s.e.m.
Abbreviations
CP, cortical plate; CSMN, corticospinal motor neurons; DP, dorsal pallium; GOF, gain-of-function; Hi, hippocampus; LL, lower layer; LOF, loss-of-function; LP, lateral pallium; MZ, marginal zone; Ncx, neocortex; pVim, phosphorylated vimentin; RGCs, radial glial cells; SS, somatosensory; SVZ, subventricular zone; TCA, thalamocortical axons; TF, transcription factor; UL, upper layer; VP, ventral pallium; VZ, ventricular zone.
Acknowledgements
We are grateful to M. Daniel and S. Schlott for outstanding technical assistance. We thank the following researchers for providing us with in situ probes: E.A. Grove, D.D.M. O’Leary, V. Tarabykin, F. Guillemot, M. Hibi, M. Lie, J. Liu, M. Price, T. Rabbitts, V. Tarabykin, S. Tole, and J. Rubenstein.
Funding
This work was supported by the Max Planck Society (AS), The DFG *Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB) (AS, TCT), and the Alexander von Humboldt Foundation (ABT).
Authors’ contributions
ABT and AS designed research, ABT and TCT performed research, EHR contributed to generating Zbtb20KO mice; AS and ABT analyzed data; MS provided embryo brains from CoupTF1KO mutant, AS and ABT wrote the manuscript. All authors read and approved the final manuscript.
Competing interests
The authors declare that they have no competing interests.
Consent for publication
Not applicable.
Ethics approval and consent to participate
No experiments were done with human beings. Animal experiments have been approved by the Ethics Committee of Lower Saxony.
Additional files
Contributor Information
Anton B. Tonchev, Email: anton.tonchev@mu-varna.bg
Anastassia Stoykova, Email: astoyko@gwdg.de.
References
- 1.McConnell SK, Kaznowski CE. Cell cycle dependence of laminar determination in developing neocortex. Science. 1991;254:282–5. doi: 10.1126/science.1925583. [DOI] [PubMed] [Google Scholar]
- 2.Angevine JB, Jr, Sidman RL. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature. 1961;192:766–8. doi: 10.1038/192766b0. [DOI] [PubMed] [Google Scholar]
- 3.Takahashi T, Nowakowski RS, Caviness VS., Jr The mathematics of neocortical neuronogenesis. Dev Neurosci. 1997;19:17–22. doi: 10.1159/000111179. [DOI] [PubMed] [Google Scholar]
- 4.Nowakowski RS, Caviness VS, Jr, Takahashi T, Hayes NL. Population dynamics during cell proliferation and neuronogenesis in the developing murine neocortex. Results Probl Cell Differ. 2002;39:1–25. doi: 10.1007/978-3-540-46006-0_1. [DOI] [PubMed] [Google Scholar]
- 5.Rakic P. Specification of cerebral cortical areas. Science. 1988;241:170–6. doi: 10.1126/science.3291116. [DOI] [PubMed] [Google Scholar]
- 6.Kwan KY, Sestan N, Anton ES. Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development. 2012;139:1535–46. doi: 10.1242/dev.069963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Alcamo EA, Chirivella L, Dautzenberg M, Dobreva G, Fariñas I, Grosschedl R, et al. Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron. 2008;57:364–77. doi: 10.1016/j.neuron.2007.12.012. [DOI] [PubMed] [Google Scholar]
- 8.Britanova O, de Juan Romero C, Cheung A, Kwan KY, Schwark M, Gyorgy A, et al. Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron. 2008;57:378–92. doi: 10.1016/j.neuron.2007.12.028. [DOI] [PubMed] [Google Scholar]
- 9.Hevner RF, Shi L, Justice N, Hsueh Y, Sheng M, Smiga S, et al. Tbr1 regulates differentiation of the preplate and layer 6. Neuron. 2001;29:353–66. doi: 10.1016/S0896-6273(01)00211-2. [DOI] [PubMed] [Google Scholar]
- 10.Joshi PS, Molyneaux BJ, Feng L, Xie X, Macklis JD, Gan L. Bhlhb5 regulates the postmitotic acquisition of area identities in layers II-V of the developing neocortex. Neuron. 2008;60:258–72. doi: 10.1016/j.neuron.2008.08.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Kwan KY, Lam MM, Krsnik Z, Kawasawa YI, Lefebvre V, Sestan N. SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons. Proc Natl Acad Sci U S A. 2008;105:16021–6. doi: 10.1073/pnas.0806791105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.McKenna WL, Betancourt J, Larkin KA, Abrams B, Guo C, Rubenstein JL, et al. Tbr1 and Fezf2 regulate alternate corticofugal neuronal identities during neocortical development. J Neurosci. 2011;31:549–64. doi: 10.1523/JNEUROSCI.4131-10.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Srinivasan K, Leone DP, Bateson RK, Dobreva G, Kohwi Y, Kohwi-Shigematsu T, et al. A network of genetic repression and derepression specifies projection fates in the developing neocortex. Proc Natl Acad Sci U S A. 2012;109:19071–8. doi: 10.1073/pnas.1216793109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Hanashima C, Li SC, Shen L, Lai E, Fishell G. Foxg1 suppresses early cortical cell fate. Science. 2004;303:56–9. doi: 10.1126/science.1090674. [DOI] [PubMed] [Google Scholar]
- 15.Arlotta P, Molyneaux BJ, Chen J, Inoue J, Kominami R, Macklis JD. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron. 2005;45:207–21. doi: 10.1016/j.neuron.2004.12.036. [DOI] [PubMed] [Google Scholar]
- 16.Frantz GD, Weimann JM, Levin ME, McConnell SK. Otx1 and Otx2 define layers and regions in developing cerebral cortex and cerebellum. J Neurosci. 1994;14:5725–40. doi: 10.1523/JNEUROSCI.14-10-05725.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Tarabykin V, Stoykova A, Usman N, Gruss P. Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development. 2001;128:1983–93. doi: 10.1242/dev.128.11.1983. [DOI] [PubMed] [Google Scholar]
- 18.Zimmer C, Tiveron MC, Bodmer R, Cremer H. Dynamics of Cux2 expression suggests that an early pool of SVZ precursors is fated to become upper cortical layer neurons. Cereb Cortex. 2004;14:1408–20. doi: 10.1093/cercor/bhh102. [DOI] [PubMed] [Google Scholar]
- 19.Nieto M, Monuki ES, Tang H, Imitola J, Haubst N, Khoury SJ, et al. Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II-IV of the cerebral cortex. J Comp Neurol. 2004;479:168–80. doi: 10.1002/cne.20322. [DOI] [PubMed] [Google Scholar]
- 20.Franco SJ, Gil-Sanz C, Martinez-Garay I, Espinosa A, Harkins-Perry SR, Ramos C, et al. Fate-restricted neural progenitors in the mammalian cerebral cortex. Science. 2012;337:746–9. doi: 10.1126/science.1223616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Seuntjens E, Nityanandam A, Miquelajauregui A, Debruyn J, Stryjewska A, Goebbels S, et al. Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors. Nat Neurosci. 2009;12:1373–80. doi: 10.1038/nn.2409. [DOI] [PubMed] [Google Scholar]
- 22.Elsen GE, Hodge RD, Bedogni F, Daza RA, Nelson BR, Shiba N, et al. The protomap is propagated to cortical plate neurons through an Eomes-dependent intermediate map. Proc Natl Acad Sci U S A. 2013;110:4081–6. doi: 10.1073/pnas.1209076110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Mallamaci A, Stoykova A. Gene networks controlling early cerebral cortex arealization. Eur J Neurosci. 2006;23:847–56. doi: 10.1111/j.1460-9568.2006.04634.x. [DOI] [PubMed] [Google Scholar]
- 24.O’Leary DD, Sahara S. Genetic regulation of arealization of the neocortex. Curr Opin Neurobiol. 2008;18:90–100. doi: 10.1016/j.conb.2008.05.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Sur M, Rubenstein JL. Patterning and plasticity of the cerebral cortex. Science. 2005;310:805–10. doi: 10.1126/science.1112070. [DOI] [PubMed] [Google Scholar]
- 26.Zembrzycki A, Chou SJ, Ashery-Padan R, Stoykova A, O’Leary DD. Sensory cortex limits cortical maps and drives top-down plasticity in thalamocortical circuits. Nat Neurosci. 2013;16:1060–7. doi: 10.1038/nn.3454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Muhlfriedel S, Kirsch F, Gruss P, Chowdhury K, Stoykova A. Novel genes differentially expressed in cortical regions during late neurogenesis. Eur J Neurosci. 2007;26:33–50. doi: 10.1111/j.1460-9568.2007.05639.x. [DOI] [PubMed] [Google Scholar]
- 28.Zhang W, Mi J, Li N, Sui L, Wan T, Zhang J, et al. Identification and characterization of DPZF, a novel human BTB/POZ zinc finger protein sharing homology to BCL-6. Biochem Biophys Res Commun. 2001;282:1067–73. doi: 10.1006/bbrc.2001.4689. [DOI] [PubMed] [Google Scholar]
- 29.Mitchelmore C, Kjaerulff KM, Pedersen HC, Nielsen JV, Rasmussen TE, Fisker MF, et al. Characterization of two novel nuclear BTB/POZ domain zinc finger isoforms. Association with differentiation of hippocampal neurons, cerebellar granule cells, and macroglia. J Biol Chem. 2002;277:7598–609. doi: 10.1074/jbc.M110023200. [DOI] [PubMed] [Google Scholar]
- 30.Kelly KF, Daniel JM. POZ for effect-POZ-ZF transcription factors in cancer and development. Trends Cell Biol. 2006;16:578–87. doi: 10.1016/j.tcb.2006.09.003. [DOI] [PubMed] [Google Scholar]
- 31.Nielsen JV, Nielsen FH, Ismail R, Noraberg J, Jensen NA. Hippocampus-like corticoneurogenesis induced by two isoforms of the BTB-zinc finger gene Zbtb20 in mice. Development. 2007;134:1133–40. doi: 10.1242/dev.000265. [DOI] [PubMed] [Google Scholar]
- 32.Nielsen JV, Blom JB, Noraberg J, Jensen NA. Zbtb20-induced CA1 pyramidal neuron development and area enlargement in the cerebral midline cortex of mice. Cereb Cortex. 2010;20:1904–14. doi: 10.1093/cercor/bhp261. [DOI] [PubMed] [Google Scholar]
- 33.Nielsen JV, Thomassen M, Møllgård K, Noraberg J, Jensen NA. Zbtb20 defines a hippocampal neuronal identity through direct repression of genes that control projection neuron development in the isocortex. Cereb Cortex. 2014;24:1216–29. doi: 10.1093/cercor/bhs400. [DOI] [PubMed] [Google Scholar]
- 34.Xie Z, Ma X, Ji W, Zhou G, Lu Y, Xiang Z, et al. Zbtb20 is essential for the specification of CA1 field identity in the developing hippocampus. Proc Natl Acad Sci U S A. 2010;107:6510–5. doi: 10.1073/pnas.0912315107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Rosenthal EH, Tonchev AB, Stoykova A, Chowdhury K. Regulation of archicortical arealization by the transcription factor Zbtb20. Hippocampus. 2012;22:2144–56. doi: 10.1002/hipo.22035. [DOI] [PubMed] [Google Scholar]
- 36.Vuillaume ML, Delrue MA, Naudion S, Toutain J, Fergelot P, Arveiler B, et al. Expanding the clinical phenotype at the 3q13.31 locus with a new case of microdeletion and first characterization of the reciprocal duplication. Mol Genet Metab. 2013;110:90–7. doi: 10.1016/j.ymgme.2013.07.013. [DOI] [PubMed] [Google Scholar]
- 37.Cordeddu V, Redeker B, Stellacci E, Jongejan A, Fragale A, Bradley TE, et al. Mutations in ZBTB20 cause Primrose syndrome. Nat Genet. 2014;46:815–7. doi: 10.1038/ng.3035. [DOI] [PubMed] [Google Scholar]
- 38.Rasmussen MB, Nielsen JV, Lourenco CM, Melo JB, Halgren C, Geraldi CV, et al. Neurodevelopmental disorders associated with dosage imbalance of ZBTB20 correlate with the morbidity spectrum of ZBTB20 candidate target genes. J Med Genet. 2014;51:605–13. doi: 10.1136/jmedgenet-2014-102535. [DOI] [PubMed] [Google Scholar]
- 39.Lowther C, Costain G, Melvin R, Stavropoulos DJ, Lionel AC, Marshall CR, et al. Adult expression of a 3q13.31 microdeletion. Mol Cytogenet. 2014;7:23. doi: 10.1186/1755-8166-7-23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.McEvilly RJ, de Diaz MO, Schonemann MD, Hooshmand F, Rosenfeld MG. Transcriptional regulation of cortical neuron migration by POU domain factors. Science. 2002;295:1528–32. doi: 10.1126/science.1067132. [DOI] [PubMed] [Google Scholar]
- 41.Sugitani Y, Nakai S, Minowa O, Nishi M, Jishage K, Kawano H, et al. Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons. Genes Dev. 2002;16:1760–5. doi: 10.1101/gad.978002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Ino H. Immunohistochemical characterization of the orphan nuclear receptor ROR alpha in the mouse nervous system. J Histochem Cytochem. 2004;52:311–23. doi: 10.1177/002215540405200302. [DOI] [PubMed] [Google Scholar]
- 43.Nakagawa Y, O’Leary DD. Dynamic patterned expression of orphan nuclear receptor genes RORalpha and RORbeta in developing mouse forebrain. Dev Neurosci. 2003;25:234–44. doi: 10.1159/000072271. [DOI] [PubMed] [Google Scholar]
- 44.Hisaoka T, Nakamura Y, Senba E, Morikawa Y. The forkhead transcription factors, Foxp1 and Foxp2, identify different subpopulations of projection neurons in the mouse cerebral cortex. Neuroscience. 2010;166:551–63. doi: 10.1016/j.neuroscience.2009.12.055. [DOI] [PubMed] [Google Scholar]
- 45.Zhou C, Tsai SY, Tsai MJ. COUP-TFI: an intrinsic factor for early regionalization of the neocortex. Genes Dev. 2001;15:2054–9. doi: 10.1101/gad.913601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Bulchand S, Subramanian L, Tole S. Dynamic spatiotemporal expression of LIM genes and cofactors in the embryonic and postnatal cerebral cortex. Dev Dyn. 2003;226:460–9. doi: 10.1002/dvdy.10235. [DOI] [PubMed] [Google Scholar]
- 47.Neuman T, Keen A, Zuber MX, Kristjansson GI, Gruss P, Nornes HO. Neuronal expression of regulatory helix-loop-helix factor Id2 gene in mouse. Dev Biol. 1993;160:186–95. doi: 10.1006/dbio.1993.1297. [DOI] [PubMed] [Google Scholar]
- 48.Rubenstein JL, Anderson S, Shi L, Miyashita-Lin E, Bulfone A, Hevner R. Genetic control of cortical regionalization and connectivity. Cereb Cortex. 1999;9:524–32. doi: 10.1093/cercor/9.6.524. [DOI] [PubMed] [Google Scholar]
- 49.Gotz M, Huttner WB. The cell biology of neurogenesis. Nat Rev Mol Cell Biol. 2005;6:777–88. doi: 10.1038/nrm1739. [DOI] [PubMed] [Google Scholar]
- 50.Liu Q, Dwyer ND, O’Leary DD. Differential expression of COUP-TFI, CHL1, and two novel genes in developing neocortex identified by differential display PCR. J Neurosci. 2000;20:7682–90. doi: 10.1523/JNEUROSCI.20-20-07682.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Faedo A, Tomassy GS, Ruan Y, Teichmann H, Krauss S, Pleasure SJ, et al. COUP-TFI coordinates cortical patterning, neurogenesis, and laminar fate and modulates MAPK/ERK, AKT, and beta-catenin signaling. Cereb Cortex. 2008;18:2117–31. doi: 10.1093/cercor/bhm238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Qiu Y, Cooney AJ, Kuratani S, DeMayo FJ, Tsai SY, Tsai MJ. Spatiotemporal expression patterns of chicken ovalbumin upstream promoter-transcription factors in the developing mouse central nervous system: evidence for a role in segmental patterning of the diencephalon. Proc Natl Acad Sci U S A. 1994;91:4451–5. doi: 10.1073/pnas.91.10.4451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Salas R, Petit FG, Pipaon C, Tsai MJ, Tsai SY. Induction of chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) gene expression is mediated by ETS factor binding sites. Eur J Biochem. 2002;269:317–25. doi: 10.1046/j.0014-2956.2001.02655.x. [DOI] [PubMed] [Google Scholar]
- 54.Naka H, Nakamura S, Shimazaki T, Okano H. Requirement for COUP-TFI and II in the temporal specification of neural stem cells in CNS development. Nat Neurosci. 2008;11:1014–23. doi: 10.1038/nn.2168. [DOI] [PubMed] [Google Scholar]
- 55.Tomassy GS, De Leonibus E, Jabaudon D, Lodato S, Alfano C, Mele A, et al. Area-specific temporal control of corticospinal motor neuron differentiation by COUP-TFI. Proc Natl Acad Sci U S A. 2010;107:3576–81. doi: 10.1073/pnas.0911792107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Kumamoto T, Toma K, Gunadi, McKenna WL, Kasukawa T, Katzman S, et al. Foxg1 coordinates the switch from nonradially to radially migrating glutamatergic subtypes in the neocortex through spatiotemporal repression. Cell Rep. 2013;3:931–45. doi: 10.1016/j.celrep.2013.02.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Wang H, Ge G, Uchida Y, Luu B, Ahn S. Gli3 is required for maintenance and fate specification of cortical progenitors. J Neurosci. 2011;31:6440–8. doi: 10.1523/JNEUROSCI.4892-10.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Dominguez MH, Ayoub AE, Rakic P. POU-III transcription factors (Brn1, Brn2, and Oct6) influence neurogenesis, molecular identity, and migratory destination of upper-layer cells of the cerebral cortex. Cereb Cortex. 2013;23:2632–43. doi: 10.1093/cercor/bhs252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Nagao M, Ogata T, Sawada Y, Gotoh Y. Zbtb20 promotes astrocytogenesis during neocortical development. Nat Commun. 2016;7:11102. doi: 10.1038/ncomms11102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Tuoc TC, Stoykova A. Trim11 modulates the function of neurogenic transcription factor Pax6 through ubiquitin-proteosome system. Genes Dev. 2008;22:1972–86. doi: 10.1101/gad.471708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, Biella G, et al. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol. 2005;3(9):e283. doi: 10.1371/journal.pbio.0030283. [DOI] [PMC free article] [PubMed] [Google Scholar]