Abstract
Experimental autoimmune myasthenia gravis (EAMG) is an appropriate model for studying the molecular origin, immunological mechanism and regulation of myasthenia gravis. Several approaches are being utilised for the regulation of the immune response to AChR and for immunosuppression of EAMG: Corticosteriods and azathioprine can suppress EAMG concomitantly with suppression of immune responses to AChR. High dose cyclophosphamide treatment in mice facilitates the onset of EAMG and results in a selective suppression of the humoral response to AChR whereas the cellular response is enhanced. Specific immunosuppression of EAMG is achieved by using a nonmyasthenic, denatured AChR preparation which cross reacts with the intact receptor. Various degradations and modifications of AChR are being performed in order to identify the smallest molecular entity responsible for the myasthenic activity of AChR. Studies on specific monoclonal antibodies, anti-idiotypes, and on the effect of measles virus on EAMG are being described and their possible significance in regulating myasthenia are being discussed.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abramsky O., Aharonov A., Teitelbaum D., Fuchs S. Myasthenia gravis and acetylcholine receptor. Effect of steroids in clinical course and cellular immune response to acetylcholine receptor. Arch Neurol. 1975 Oct;32(10):684–687. doi: 10.1001/archneur.1975.00490520054008. [DOI] [PubMed] [Google Scholar]
- Abramsky O., Tarrab-Hazdai R., Aharonov A., Fuchs S. Immunosuppression of experimental autoimmune myasthenia gravis by hydrocortisone and azathioprine. J Immunol. 1976 Jul;117(1):225–228. [PubMed] [Google Scholar]
- Bartfeld D., Fuchs S. Active acetylcholine receptor fragment obtained by tryptic digestion of acetylcholine receptor from Torpedo californica. Biochem Biophys Res Commun. 1979 Jul 27;89(2):512–519. doi: 10.1016/0006-291x(79)90659-4. [DOI] [PubMed] [Google Scholar]
- Bartfeld D., Fuchs S. Fractionation of antibodies to acetylcholine receptor according to antigenic specificity. FEBS Lett. 1979 Sep 15;105(2):303–306. doi: 10.1016/0014-5793(79)80635-3. [DOI] [PubMed] [Google Scholar]
- Bartfeld D., Fuchs S. Immunological characterization of an irreversibly denatured acetylcholine receptor. FEBS Lett. 1977 May 15;77(2):214–218. doi: 10.1016/0014-5793(77)80237-8. [DOI] [PubMed] [Google Scholar]
- Bartfeld D., Fuchs S. Specific immunosuppression of experimental autoimmune myasthenia gravis by denatured acetylcholine receptor. Proc Natl Acad Sci U S A. 1978 Aug;75(8):4006–4010. doi: 10.1073/pnas.75.8.4006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown P., Cathala F., Gajdusek D. C., Gibbs C. J., Jr Measles antibodies in the cerebrospinal fluid of patients with multiple sclerosis. Proc Soc Exp Biol Med. 1971 Jul;137(3):956–961. doi: 10.3181/00379727-137-35704. [DOI] [PubMed] [Google Scholar]
- Datta S. K., Schwartz R. S. Editorial: Infectious (?) myasthenia. N Engl J Med. 1974 Dec 12;291(24):1304–1305. doi: 10.1056/NEJM197412122912411. [DOI] [PubMed] [Google Scholar]
- Easmon C. S., Glynn A. A. Effect of cyclophosphamide on delayed hypersensitivity to Staphylococcus aureus in mice. Immunology. 1977 Nov;33(5):767–776. [PMC free article] [PubMed] [Google Scholar]
- Fuchs S., Gurari D., Silman I. Chemical modification of electric eel acetylcholinesterase by tetranitromethane. Arch Biochem Biophys. 1974 Nov;165(1):90–97. doi: 10.1016/0003-9861(74)90145-3. [DOI] [PubMed] [Google Scholar]
- Fuchs S. Immunochemical analysis of acetylcholine receptor and its relevance to specific treatment of experimental autoimmune myasthenia gravis. Adv Cytopharmacol. 1979;3:279–285. [PubMed] [Google Scholar]
- Fuchs S. Immunology of the nicotinic acetylcholine receptor. Curr Top Microbiol Immunol. 1979;85:1–29. doi: 10.1007/978-3-642-67322-1_1. [DOI] [PubMed] [Google Scholar]
- Fuchs S., Nevo D., Tarrab-Hazdai R., Yaar I. Strain differences in the autoimmune response of mice to acetylcholine receptors. Nature. 1976 Sep 23;263(5575):329–330. doi: 10.1038/263329a0. [DOI] [PubMed] [Google Scholar]
- Horta-Barbosa L., Fuccillo D. A., Sever J. L., Zeman W. Subacute sclerosing panencephalitis: isolation of measles virus from a brain biopsy. Nature. 1969 Mar 8;221(5184):974–974. doi: 10.1038/221974a0. [DOI] [PubMed] [Google Scholar]
- Jenkins R. B. Treatment of myasthenia gravis with prednisone. Lancet. 1972 Apr 8;1(7754):765–767. doi: 10.1016/s0140-6736(72)90520-x. [DOI] [PubMed] [Google Scholar]
- Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
- L'age-Stehr J., Diamanstein T. Induction of autoreactive T lymphocytes and their suppressor cells by cyclophosphamide. Nature. 1978 Feb 16;271(5646):663–665. doi: 10.1038/271663a0. [DOI] [PubMed] [Google Scholar]
- Lindstrom J. M., Engel A. G., Seybold M. E., Lennon V. A., Lambert E. H. Pathological mechanisms in experimental autoimmune myasthenia gravis. II. Passive transfer of experimental autoimmune myasthenia gravis in rats with anti-acetylcholine recepotr antibodies. J Exp Med. 1976 Sep 1;144(3):739–753. doi: 10.1084/jem.144.3.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matell G., Bergström K., Franksson C., Hammarström L., Lefvert A. K., Möller E., von Reis G., Smith E. Effects of some immunosuppressive procedures on myasthenia gravis. Ann N Y Acad Sci. 1976;274:659–676. doi: 10.1111/j.1749-6632.1976.tb47724.x. [DOI] [PubMed] [Google Scholar]
- Moshly-Rosen D., Fuchs S., Eshhar Z. Monoclonal antibodies against defined determinants of acetylcholine receptor. FEBS Lett. 1979 Oct 15;106(2):389–392. doi: 10.1016/0014-5793(79)80538-4. [DOI] [PubMed] [Google Scholar]
- NASTUK W. L., PLESCIA O. J., OSSERMAN K. E. Changes in serum complement activity in patients with myasthenia gravis. Proc Soc Exp Biol Med. 1960 Oct;105:177–184. doi: 10.3181/00379727-105-26050. [DOI] [PubMed] [Google Scholar]
- Otterness I. G., Chang Y. H. Comparative study of cyclophosphamide, 6-mercaptopurine, azathiopurine and methotrexate. Relative effects on the humoral and the cellular immune response in the mouse. Clin Exp Immunol. 1976 Nov;26(2):346–354. [PMC free article] [PubMed] [Google Scholar]
- Parker D., Turk J. L. The effect of cyclophosphamide pretreatment on B-cell stimulation: dissociation of action on homocytotropic antibody and other B-cell functions. Immunology. 1978 Jan;34(1):115–121. [PMC free article] [PubMed] [Google Scholar]
- Schwartz M., Lancet D., Tarrab-Hazdai R., Fuchs S. Effect of azathioprine on the affinity of antibodies against acetylcholine receptor: analysis with purified antibodies. Mol Immunol. 1979 Jul;16(7):483–487. doi: 10.1016/0161-5890(79)90074-9. [DOI] [PubMed] [Google Scholar]
- Schwartz M., Novick D., Givol D., Fuchs S. Induction of anti-idiotypic antibodies by immunisation with syngeneic spleen cells educated with acetylcholine receptor. Nature. 1978 Jun 15;273(5663):543–545. doi: 10.1038/273543a0. [DOI] [PubMed] [Google Scholar]
- Seybold M. E., Drachman D. B. Gradually increasing doses of prednisone in myasthenia gravis. Reducing the hazards of treatment. N Engl J Med. 1974 Jan 10;290(2):81–84. doi: 10.1056/NEJM197401102900204. [DOI] [PubMed] [Google Scholar]
- Sokolovsky M., Riordan J. F., Vallee B. L. Tetranitromethane. A reagent for the nitration of tyrosyl residues in proteins. Biochemistry. 1966 Nov;5(11):3582–3589. doi: 10.1021/bi00875a029. [DOI] [PubMed] [Google Scholar]
- Stockman G. D., Heim L. R., South M. A., Trentin J. J. Differential effects of cyclophosphamide on the B and T cell compartments of adult mice. J Immunol. 1973 Jan;110(1):277–282. [PubMed] [Google Scholar]
- Tarrab-Hazdai R., Abramsky O., Fuchs S. Immunosuppression of experimental autoimmune myasthenia gravis by azathioprine. II. Evaluation of immunological mechanism. J Immunol. 1977 Aug;119(2):702–706. [PubMed] [Google Scholar]
- Tindall R. S., Cloud R., Luby J., Rosenberg R. N. Serum antibodies to cytomegalovirus in myasthenia gravis: effects of thymectomy and steroids. Neurology. 1978 Mar;28(3):273–277. doi: 10.1212/wnl.28.3.273. [DOI] [PubMed] [Google Scholar]
- Toyka K. V., Drachman D. B., Griffin D. E., Pestronk A., Winkelstein J. A., Fishbeck K. H., Kao I. Myasthenia gravis. Study of humoral immune mechanisms by passive transfer to mice. N Engl J Med. 1977 Jan 20;296(3):125–131. doi: 10.1056/NEJM197701202960301. [DOI] [PubMed] [Google Scholar]
- Vadas M. A., Miller J. F., Gamble J., Whitelaw A. A radioisotopic method to measure delayed type hypersensitivity in the mouse. I. Studies in sensitized and normal mice. Int Arch Allergy Appl Immunol. 1975;49(5):670–692. doi: 10.1159/000231449. [DOI] [PubMed] [Google Scholar]
- Warmolts J. R., Engel W. K. Benefit from alternate-day prednisone in myasthenia gravis. N Engl J Med. 1972 Jan 6;286(1):17–20. doi: 10.1056/NEJM197201062860104. [DOI] [PubMed] [Google Scholar]
- Werblin T. P., Siskind G. W. Distribution of antibody affinities: technique of measurement. Immunochemistry. 1972 Oct;9(10):987–1011. doi: 10.1016/0019-2791(72)90110-3. [DOI] [PubMed] [Google Scholar]

