Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 May 15;89(10):4314–4318. doi: 10.1073/pnas.89.10.4314

Development of antibodies against the rat brain somatostatin receptor.

M Theveniau 1, S Rens-Domiano 1, S F Law 1, G Rougon 1, T Reisine 1
PMCID: PMC49072  PMID: 1350089

Abstract

Somatostatin (SRIF) is a neurotransmitter in the brain involved in the regulation of motor activity and cognition. It induces its physiological actions by interacting with receptors. We have developed antibodies against the receptor to investigate its structural properties. Rabbit polyclonal antibodies were generated against the rat brain SRIF receptor. These antibodies (F4) were able to immunoprecipitate solubilized SRIF receptors from rat brain and the cell line AtT-20. The specificity of the interaction of these antibodies with SRIF receptors was further demonstrated by immunoblotting. F4 detected SRIF receptors of 60 kDa from rat brain and adrenal cortex and the cell lines AtT-20, GH3, and NG-108, which express high densities of SRIF receptors. They did not detect immunoreactive material from rat liver or COS-1, HEPG, or CRL cells, which do not express functional SRIF receptors. In rat brain, 60-kDa immunoreactivity was detected by F4 in the hippocampus, cerebral cortex, and striatum, which have high densities of SRIF receptors. However, F4 did not interact with proteins from cerebellum and brain stem, which express few SRIF receptors. Immunoreactive material cannot be detected in rat pancreas or pituitary, which have been reported to express a 90-kDa SRIF receptor subtype. The selective detection of 60-kDa SRIF receptors by F4 indicates that the 60- and 90-kDa SRIF receptor subtypes are immunologically distinct. The availability of antibodies that selectively detect native and denatured brain SRIF receptors provides us with a feasible approach to clone the brain SRIF receptor gene(s).

Full text

PDF
4314

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brazeau P., Vale W., Burgus R., Ling N., Butcher M., Rivier J., Guillemin R. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science. 1973 Jan 5;179(4068):77–79. doi: 10.1126/science.179.4068.77. [DOI] [PubMed] [Google Scholar]
  2. Brown P. J., Lee A. B., Norman M. G., Presky D. H., Schonbrunn A. Identification of somatostatin receptors by covalent labeling with a novel photoreactive somatostatin analog. J Biol Chem. 1990 Oct 15;265(29):17995–18004. [PubMed] [Google Scholar]
  3. Brownstein M., Arimura A., Sato H., Schally A. V., Kizer J. S. The regional distribution of somatostatin in the rat brain. Endocrinology. 1975 Jun;96(6):1456–1461. doi: 10.1210/endo-96-6-1456. [DOI] [PubMed] [Google Scholar]
  4. DeNoble V. J., Hepler D. J., Barto R. A. Cysteamine-induced depletion of somatostatin produces differential cognitive deficits in rats. Brain Res. 1989 Mar 13;482(1):42–48. doi: 10.1016/0006-8993(89)90540-4. [DOI] [PubMed] [Google Scholar]
  5. Epelbaum J. Somatostatin in the central nervous system: physiology and pathological modifications. Prog Neurobiol. 1986;27(1):63–100. doi: 10.1016/0301-0082(86)90012-2. [DOI] [PubMed] [Google Scholar]
  6. Gennarini G., Rougon G., Deagostini-Bazin H., Hirn M., Goridis C. Studies on the transmembrane disposition of the neural cell adhesion molecule N-CAM. A monoclonal antibody recognizing a cytoplasmic domain and evidence for the presence of phosphoserine residues. Eur J Biochem. 1984 Jul 2;142(1):57–64. doi: 10.1111/j.1432-1033.1984.tb08250.x. [DOI] [PubMed] [Google Scholar]
  7. He H. T., Johnson K., Thermos K., Reisine T. Purification of a putative brain somatostatin receptor. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1480–1484. doi: 10.1073/pnas.86.5.1480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. He H. T., Rens-Domiano S., Martin J. M., Law S. F., Borislow S., Woolkalis M., Manning D., Reisine T. Solubilization of active somatostatin receptors from rat brain. Mol Pharmacol. 1990 May;37(5):614–621. [PubMed] [Google Scholar]
  9. Law S. F., Manning D., Reisine T. Identification of the subunits of GTP-binding proteins coupled to somatostatin receptors. J Biol Chem. 1991 Sep 25;266(27):17885–17897. [PubMed] [Google Scholar]
  10. Lewin M. J., Reyl-Desmars F. Molecular characterization of a purified human gastric somatostatin receptor. Metabolism. 1990 Sep;39(9 Suppl 2):74–77. doi: 10.1016/0026-0495(90)90216-y. [DOI] [PubMed] [Google Scholar]
  11. Lewis L. D., Williams J. A. Structural characterization of the somatostatin receptor in rat anterior pituitary membranes. Endocrinology. 1987 Aug;121(2):486–492. doi: 10.1210/endo-121-2-486. [DOI] [PubMed] [Google Scholar]
  12. Martin J. L., Chesselet M. F., Raynor K., Gonzales C., Reisine T. Differential distribution of somatostatin receptor subtypes in rat brain revealed by newly developed somatostatin analogs. Neuroscience. 1991;41(2-3):581–593. doi: 10.1016/0306-4522(91)90351-n. [DOI] [PubMed] [Google Scholar]
  13. Patel Y. C., Murthy K. K., Escher E. E., Banville D., Spiess J., Srikant C. B. Mechanism of action of somatostatin: an overview of receptor function and studies of the molecular characterization and purification of somatostatin receptor proteins. Metabolism. 1990 Sep;39(9 Suppl 2):63–69. doi: 10.1016/0026-0495(90)90214-w. [DOI] [PubMed] [Google Scholar]
  14. Raynor K., Reisine T. Analogs of somatostatin selectively label distinct subtypes of somatostatin receptors in rat brain. J Pharmacol Exp Ther. 1989 Nov;251(2):510–517. [PubMed] [Google Scholar]
  15. Raynor K., Wang H. L., Dichter M., Reisine T. Subtypes of brain somatostatin receptors couple to multiple cellular effector systems. Mol Pharmacol. 1991 Aug;40(2):248–253. [PubMed] [Google Scholar]
  16. Rens-Domiano S., Reisine T. Structural analysis and functional role of the carbohydrate component of somatostatin receptors. J Biol Chem. 1991 Oct 25;266(30):20094–20102. [PubMed] [Google Scholar]
  17. Reyl-Desmars F., Le Roux S., Linard C., Benkouka F., Lewin M. J. Solubilization and immunopurification of a somatostatin receptor from the human gastric tumoral cell line HGT-1. J Biol Chem. 1989 Nov 5;264(31):18789–18795. [PubMed] [Google Scholar]
  18. Susini C., Bailey A., Szecowka J., Williams J. A. Characterization of covalently cross-linked pancreatic somatostatin receptors. J Biol Chem. 1986 Dec 15;261(35):16738–16743. [PubMed] [Google Scholar]
  19. Thermos K., He H. T., Wang H. L., Margolis N., Reisine T. Biochemical properties of brain somatostatin receptors. Neuroscience. 1989;31(1):131–141. doi: 10.1016/0306-4522(89)90035-3. [DOI] [PubMed] [Google Scholar]
  20. Thermos K., Reisine T. Somatostatin receptor subtypes in the clonal anterior pituitary cell lines AtT-20 and GH3. Mol Pharmacol. 1988 Apr;33(4):370–377. [PubMed] [Google Scholar]
  21. Théveniau M. A., Raymond J. R., Rougon G. N. Antipeptide antibodies to the beta 2-adrenergic receptor confirm the extracellular orientation of the amino-terminus and the putative first extracellular loop. J Membr Biol. 1989 Oct;111(2):141–153. doi: 10.1007/BF01871778. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES