Skip to main content
Journal of Research of the National Institute of Standards and Technology logoLink to Journal of Research of the National Institute of Standards and Technology
. 1993 Jul-Aug;98(4):469–516. doi: 10.6028/jres.098.034

Phase Equilibria and Crystal Chemistry in Portions of the System SrO-CaO-Bi2O3-CuO, Part IV— The System CaO-Bi2O3-CuO

B P Burton 1, C J Rawn 1, R S Roth 1, N M Hwang 2
PMCID: PMC4907701  PMID: 28053484

Abstract

New data are presented on the phase equilibria and crystal chemistry of the binary systems CaO-Bi2O3 and CaO-CuO and the ternary CaO-Bi2O3-CuO. Symmetry data and unit cell dimensions based on single crystal and powder x-ray diffraction measurements are reported for several of the binary CaO-Bi2O3 phases, including corrected compositions for Ca4Bi6O13 and Ca2Bi2O5. The ternary system contains no new ternary phases which can be formed in air at ~700–900 °C.

Keywords: calcium bismuth copper oxide, crystal chemistry, experimental phase relations, phase equilibria

1. Introduction

The discovery of superconductivity in cuprates by Bednorz and Müller [1], and its confirmation by Takagi et al. [2] as being due to the phase La2−xBaxCuO4, led to a world-wide search for other compounds with higher Tc’s. Identification of the superconducting phase Ba2YCu3O6+x [3], with a critical temperature Tc ~90 K [4], has resulted in hundreds of published reports on the properties of this and related phases.

Phases with still higher Tc’s were found in the systems SrO-CaO-Bi2O3-CuO and BaO-CaO-Tl2O3-CuO [5,6]. These phases belong mostly to a homologous series A2Can−1B2CunO2n+4 (A=Sr, Ba; B = Bi, Tl). In the Bi+3 containing systems a phase with n =2 and Tc ~80 K is easily prepared. The exact single-phase region of this phase is not well known, and a structure determination has not been completed because of very strong incommensurate diffraction that is apparently due to a modulation of the Bi positions. Higher n (and higher Tc) phases have not been prepared as single-phase bulk specimens (without PbO). We undertook a comprehensive study of phase equilibria and crystal chemistry in the four component system SrO-CaO-Bi2O3-CuO in the hope that such a study will define the optimum processing parameters for reproducible synthesis of samples with useful properties.

A prerequisite to understanding the phase equilibria in the four component system is adequate definition of the phase relations in the boundary binary and ternary systems. The ternary system SrO-CaO-CuO was the first to be investigated [7,8], followed by the ternary system SrO-Bi2O3-CuO and its binary subsystems [9,10,11,12]. Preliminary versions have been published of the systems CaO-Bi2O3-CuO and SrO-CaO-Bi2O3 [13], and the details of the system SrO-CaO-Bi2O3 will appear in the near future [14]. The experimental details, phase relations, and crystal chemistry of the binary CaO-Bi2O3 and the ternary system CaO-Bi2O3-CuO are the subject of this publication.

In the following discussion of phase equilibria and crystal chemistry, the oxides under consideration will always be given in the order of decreasing ionic radius, largest first, e.g., CaO:1/2Bi2O3:CuO. The notation 1/2Bi2O3 is used so as to keep the metal ratios the same as the oxide ratios. The “shorthand” notation is used to designate the phases with C = CaO, B = 1/2Bi2O3 and Cu=CuO. Thus compositions may be listed simply by numerical ratio e.g., the formula Ca4Bi6O13 can be written as C2B3 or simply 2:3.

2. Experimental Procedures

In general, about 3.5 g specimens of various compositions in binary and ternary combinations were prepared from CaCO3, Bi2O3 and CuO. Neutron activation analyses of the starting materials indicated that the following impurities (in μg/g) were present: in CuO-3.9Cr, 2.8Ba, 28Fe, 410Zn, 0.09Co, 1.9Ag, 0.03Eu, 14Sb; in Bi2O3-2.1Cr, 0.0002SC, 26Fe, 21Zn, 0.6Co, 0.5Ag, 0.0008Eu, 0.2Sb; in CaCO3-1.1Cr, 6Ba, 160Sr, 0.0001Sc, 5Fe, 14Zn, 0.14Co, 0.01Ag, 0.0005Eu, 0.02Sb. The constituent chemicals were weighed on an analytical balance to the nearest 0.0001 g and mixed either dry or with acetone in an agate mortar and pestle. The weighed specimen was pressed into a loose pellet in a stainless steel dye and fired on an MgO single crystal plate, or on Au foil, or on a small sacrificial pellet of its own composition. The pellets were then calcined several times at various temperatures from ~600 to 850 °C, with grinding and repelletizing between each heat treatment. Duration of each heat treatment was generally about 16–20 h. For the final examination a small portion of the calcined specimen was refired at the desired temperature (1–8 times), generally overnight, either as a small pellet or in a small 3 mm diameter Au tube, either sealed or unsealed. Too many heat treatments in the Au tube generally resulted in noticeable loss of Cu and/or Bi.

When phase relations involving partial melting were investigated, specimens were contained in 3 mm diameter Au or Pt tubes and heated in a vertical quench furnace. This furnace was heated by six MoSi2 hairpin heating elements with a vertical 4 in diameter ZrO2 tube and a 1 in diameter Al2O3 tube acting as insulators. The temperature was measured separately from the controller at a point within approximately 1 cm of the specimen by a Pt/90Pt10Rh thermocouple, calibrated against the melting points of NaCl (800.5 °C) and Au (1063 °C). After the appropriate heat treatment, the specimen was quenched by being dropped into a Ni crucible, which was cooled by He flowing through a copper tube immersed in liquid N2.

In order to approach equilibrium phase boundaries by different synthesis routes, many specimens were prepared from pre-made compounds or two phase mixtures as well as from end members. These were weighed, mixed, and ground in the same way as for the previously described specimens. Also, some specimens were: 1) annealed at temperature (T1) and analyzed by x-ray powder diffraction; 2) annealed at a higher or lower temperature (T2) where a different assemblage of phases was observed; 3) returned to T1 to demonstrate reversal of the reaction(s) between T1 and T2. All experimental details are given in Tables 1a and 1b. Phase identification was made by x-ray powder diffraction using a high angle diffractometer with the specimen packed into a cavity 0.127 or 0.254 mm deep in a glass slide. The diffractometer, equipped with a theta compensator slit and a graphite diffracted beam monochromator, was run at 1/4° 2 θ/min with Cu radiation at 40 KV and 35 MA. The radiation was detected by a scintillation counter and solid state amplifier and recorded on a chart with 1°/2 θ = 1 in. For purposes of illustration and publication, the diffraction patterns of selected specimens were collected on a computer-controlled, step scanning goniometer and the results plotted in the form presented.

Table 1a.

Experimental data for the system CaO-Bi2O3-CuO

Spec. no. Composition mole percent Heat treatmentb temp °C Phys. obser.c Results of x-ray diffractiond
CaO 1/2Bi2O3 CuO Initial final Time h
100 0 0
500 CaCO3
600 CaO+CaCO3
600×2 CaO
66.7 0 33.3
700
850
1000×3 C2Cu
60 0 40
nitrates 500 CaO+CuO
750 48 CaO+CuO+C1−xCu
700800} 2412} CuO+CaO+C2Cu
750×2
900 C2Cu+CuO
745 2.0−O2 C2Cu+CuO
800875×2} C2Cu+CuO
950 C2Cu+CuO
980 16 C2Cu+CuO
990 0.66 C2Cu+CuO+CCu2
990 14.0 C2Cu+CCu2
1000 C2Cu+CCu2
1000×2 C2Cu+CCu2
10000×3 C2Cu+CCu2
1007 0.16
1011 1.0 C2Cu+Cu2O+CCu2
1014 0.5 C2Cu+Cu2O
50 0 50
#1 ppt. hydrox-carb. 450
740 6.0 C1−xCu+CaO+CuOtr
740 15.0 C1−x, Cu+CaO
740 C1−xCu+CaO
800 16.0 C2Cu + CuO
#2 ppt. hydrox-carb. 500 CuO+C1−xCu
550 CuO+C1−xCu + CaO
600 C1−xCu+CaO+ CuO
650 C1−xCu+CuO+CaO
700 C1−xCu+CuO+Ca(OH)2
740 C1−xCu+CaO+CuO
740 62.5 C1−xCu+CaO+C2Cutr
760 C1−xCu+CaO+CuO
780 C1−xCu+CaO+CuO
800 C1−xCu+CaO+CuOtr
#3 600 CuO+CaO+CaCO3+C1−xCu
600×2 CuO+CaO+CaCO3+C1−xCu
600×3 CuO+CaO+CaCO3+C1−xCu
600×4 CuO+CaO+CaCO3+C1−xCu
675 CuO+CaO+C1−xCu
675×5 C1−xCu+CaO+CuO
675×11 C1−xCu+CaO+CuO
675×16 C1−xCu+CaO+CuO
675×21 C1−xCu+CaO+CuO
675×26 C1−xCu+CaO+CuO
675×31 C1−xCu+CaO+CuO
675×36 C1−xCu+CaO+CuO
750×2 CaO+CuO+C2Cu
850 CaO+CuO+C2Cu
900 C2Cu+CuO+CaO
600
750
900 C2Cu+CuO+CaO
675 70 C2Cu+CuO+CaO
675×4 C2Cu+CuO+CaO
#4 nitrates 500
600
995 1.0 C2Cu+CuO+CCu2
1007 10.0 C2Cu+CCu2+Cu2O
1011 1.0 C2Cu+Cu2O+CCu2
1013 1.0 C2Cu+Cu2O+CCu2tr
1007
1013
1024} C2Cu+Cu2O+CuO+CCu2tr
1014 0.5 C2Cu+Cu2O+CuO+CCu2tr
1018 0.5 C2Cu+Cu2O+CuO+CCu2tr
1022 0.5 n.m. C2Cu+Cu2O+CuO+CCu2tr
1028 0.5 p.m. C2Cu+Cu2O+CCu2tr
1032 0.5 p.m. C2Cu+Cu2O+CCu2tr
1036 0.5 p.m. CaO+C2Cu+Cu2O+CCu2tr
1040 0.5 p.m. CaO+C2Cu+Cu2O+CCu2tr
#5 citrates 700 22 C1−xCu+CaO
700 18−O2 C1−xCu+CaO
47.37 0 52.63
(9:10)
citrates 700 18 C1−xCu+CaO
700 78−O2 C1−xCu+CaO
45.45 0 54.54
(5:6)
citrates 700 18 C1−xCu
700 21−O2 C1−xCu+CaO
700 39−O2 C1−xCu+CaO
700 78−O2 C1−xCu+CaO
45.33 0 54.67
citrates 700 86−O2 C1−xCu
45.20 0 54.80
citrates 700 16
700 24−O2 C1−xCu
44.95 0 55.05
citrates 700 16
700 24−O2 C1−xCu+CuOtr
44.70 0 55.30
titrates 700 16
700 24−O2 C1−xxCu+CuO
40 0 60
citrates 700 60 C1−xCu+CuO
700 18−O2 C1−xCu+CuO
800
33.3 0 66.7
800
875×2 C2Cu+CuO
965 25.0 C2Cu+CuO
1000 19.0 CCu2+C2Cu+CuO
1000×2 CCu2+C2Cu+CuO
30 0 70
#1 nitrates 500 CuO+CaO
750 CuO+CaO
770 CuO+CaO
750×2 CuO+CaO+C2Cu
990 CuO+C2Cu
500
980 16.0 CuO+C2Cu
990 22.0 CCu2+CuO+C2Cu
1000 16.0 CCu2+Cu2Otr+C2Cutr
1010 0.5 CCu2+Cu2O+C2Cutr
1014 0.5 Cu2O+C2Cu+CCu2
1016 24.0 Cu2O+C2Cu+CCu2tr
#2 citrates 700 86−O2
25 0 75
#1 600
750
950 CuO+C2Cu
975 CuO+C2Cu
1000 CCu2+CuO+Cu2O+C2Cu
1025 Cu2O+C2Cu+CuO
#2 nitrates 450
500
600 CuO+CaO
750 72−O2 CuO+C1−xCu
770 48−O2 CuO+C1−xCu
780 68−O2 CuO+C1−xCu
790 30−O2 CuO+C1−xCu+CaOtr
800 36−O2 CuO+C1−xCu
820 42−O2 CuO+C1−xCu
830 72−O2 CuO+C1−xCu+C2Cutr
840 36-O2 CuO+C1−xCu+C2Cu
880 36−O2 CuO+C2Cu
750 54 CuO+CaO+C1−xCu
760 120 CuO+C2Cu
780 120 CuO+C2Cu
800 20 CuO+C2Cu+CaO
840 64 CuO+C2Cu
1012 1.0 p.m. Cu2O+C2Cu+CCu2
1020 0.5 p.m. Cu2O+C2Cu+CCu2+CaO
20 0 80
nitrates 500
600
1007 1.0 CuO+CCu2+Cu2Otr
1011 1.0 CCu2+Cu2O+CuO
1014 0.16 p.m. CCu2+Cu2O+CuO
1016 0.5 p.m. Cu2O+C2Cu+CuO+CCu2
1020 0.5 c.m. Cu2O+C2Cu+CuO+CCu2
15 0 85
nitrates 500
600 1016 0.16 p.m. CuO+Cu2O+CCu2
1020 0.33 c.m. Cu2O+CuO+CCu2
10 0 90
nitrates 500
600 1020 0.16 p.m. Cu2O+CCu2+CuO
5 0 95
nitrates 500
600 1016 0.16 p.m. CuO+Cu2O+CCu2
1020 0.16 p.m. CuO+Cu2O+CCu2
10 90 0
700
750 rhomb+fcc′
850 0.33 s.m. rhomb+fcc′+fcc″
860 0.33 p.m.
870 0.33 c.m. fcc′+rhombtr
20 80 0
700
750 rhomb
650 rhomb
835 0.33 rhomb+fcc′
875 0.33 s.m. rhomb+fcc′
875 0.66 s.m. rhomb+fee′
890 0.33 c.m. rhomb+fcc′
700875875650} at 3°/h rhomb+C5B14
750870870845} at 1°/h rhomb
23 77 0
700 rhomb+C2B3
800 rhomb+C2B3
840 0.5 fcc′
870 0.33 n.m. fcc′
880 0.33 n.m. fcc′+rhomb
880 0.33 n.m. fcc′
890 0.33 cm. fcc′
850
750×2 rhomb
25 75 0
700
750 rhomb+CB2+C5B14
650 16 rhomb+C5B14
750 1 rhomb
780 0.5 rhomb
800 1 rhomb
950 1.2 c.m fcc′
850 rhomb
750×2 rhomb
26 74 0
700
750 rhomb+C2B3
820 0.33 n.m. fcc′+rhombtr
880 0.33 p.m. fcc′+bcctr
890 0.33 cm. fcc′
26.32 73.68
(5:14)
0
#1 750
650 C5B14+rhomb+C2B3
750 16 rhomb+C2B3+C5B14
1000 1.75 c.m. fcc′+bcctr
650 C5B14
#2 650×2 rhomb+C2B3+CB2
650×5 rhomb+CB2+C5B14
750×3 rhomb+C5B14+CB2tr
#3 750 rhomb+C2B3
750×2
925 0.33 c.m. fcc′
750×3 rhomb+CB2+C5B14
925 0.33 c.m. fcc′
1000 1.0 c.m.
650 16 C5B14
650 336 C5B14
750×5 rhomb+CB2+C5B14
700 100 MPa rhomb
27.27 72.72
(3:8)
0
750
650 rhomb+CB2+C2B3+C5B14
750×5 CB2+C5B14+rhomb
750 16.0 CB2+rhomb+ C5B14
850
750×2 C5B14+CB2+rhombtr
28 72 0
700
750
860 0.33 fcc′
870 0.33 n.m. fcc′
880 0.33 p.m. fcc′
900 0.66 c.m. fcc′
30 70 0
750
650 CB2+C5B14+C2B3+rhomb
750×5 CB2+C5B14+rhomb
750 1.33 CB2+C5B14+rhomb
850
750×2 CB2+C5B14+rhomb
33.33
(1:2)
66.67 0
#1 800
1000 0.166 c.m.
750 C2B3+C5B14+CB2
750 16.0 C2B3+C5B14+rhomb
#2 700
750 CB2+C5B14+C2B3+rhomb
65 96 CB2+C5B14+C2B3
850 16 fcc′+bcctr
800 fcc′+C2B3
850
750×2 CB2+rhomb+C5B14
1000 1.75 c.m. fcc′+bcctr
650 16 CB2+C2B3tr
#3 750×5 CB2+rhomb+C2B3tr
750 1.33 CB2+rhomb
925700} 0.13
312
c.m. CB2+C2B3†
1000650} 1.0
17
c.m. CB2+C5B14+C2B3
650×4
650×5 CB2+C2B3tr+C5B14tr
700 CB2+C5B14+C2B3tr
750×3 CB2
750 C2B3+rhomb
750×3 CB2+C2B3tr
750×5 CB2+C2B3tr
650 100 MPa CB2+C2B3
#5 lactate 450
650×3 CB2+C5B14
650×4 CB2+C5B14
700 CB2+C5B14
750 CB2+C2B3+rhomb+C5B14tr
35 65 0 750 C2B3+rhomb+fcc
770 60 C2B3+rhomb+fcc′
780 0.33 C2B3+rhomb+fcc
790 0.66 C2B3+fcc′+rhombtr
820 0.33 C2B3+fcc′
830 0.33 C2B3+fcc′
830 8.0 C2B3+fcc′+bcctr
840 0.33 C2B3+fcc′+bcctr
840 13.0 bcc
850 0.33 bcc+fcc′+unknown
850 1.0 bcc
920 0.16 p.m. bcc+fcc′
37.5 62.5
(3:5)
0
750
650 C2B3+CB2+C5B14
750×5 C2B3+CB2
40 60
(2:3)
0
#1 750
650 C2B3+CB2+C5B14+CB+CaO
750×5 C2B3
#2 750
650
750×5 C2B3
800 C2B3
850 C2B3
900 1.0 bcc
#3 700
700×5 C2B3
850 C2B3
900 bcc+C-mon+unknown
750 C2B3
#4 700
800
900×2 C2B3+unknown
750 C2B3
700 240 C2B3
875 16 bcc
1000700} 1.0
240
C2B3
#5 700
850
900×2
825 C2B3
#6 700
750
860 0.33 bcc
935 0.33 n.m. bcc
950 0.33 p.m. bcc
41.18 58.82
(7:10)
0
750
650 C2B3+CB2+CB+CaO
825 17 C2B3+CB
900 20 bcc+C-mon+fcc′
750×5 C2B3+CB
42.86 57.14
(3:4)
0
700
750
850 C2B3+CB
45 55 0
700
750 C2B3+CB+CB2+CaO
650 96 C2B3+CB+CaO
850 16 C2B3+CB+CaO
870 0.66 bcc+CB
890 0.33 bcc+C-mon+CB
900 0.33 bcc+C-mon+CBtr
900 1.00 bcc+C-mon
940 1.00 bcc+CB+C-mon
880 1.00
950 0.33 p.m. bcc+C-montr
1000 1.75 c.m. bcc
48 52 0
700
800
900 CB+bcc
955 0.33 C-mon+bcc+CaO
960 0.33 bcc+C-mon+CaO
940 0.33
970 0.33 p.m. bcc+CaO
50 50 0
#1 700
750 CB+C2B3+CaO
650 96 CB+C2B3+CaO
850 16 CB+C2B3
900 1.0 CB
900
940 1.0
940820} 2.0
15
C-mon
CB+Czmon
1000 1.0 c.m. bcc+CaO
#2 750 C2B3+CB+CaO
860 10.0 CB
880 1.0 CB+unknown+CaO
940 0.33 C-mon
940 2.0 C-mon
950 0.25 C-mon
960 0.5 n.m. C-mon+bcc+CaO
970 0.33 p.m. bcc+CaO
940 2.0 C-mon
850 3.0 C-mon
880 11.0 CB
1000940} 0.16
24.0
bcc+CaO
#3 700
800
900 CB
825 CB
940 CB
940 CB
#4 700
750×4
850 CB
900 CB
53.85 46.15
(7:6)
0
#1 750
650 C2B3+rhomb+CB+CaO
750×5 CB+CaO
#2 750
650
900 CB+CaO
#3 700
800
900 CB+CaO
825 CB+CaO
940 16.0 CB+CaO
54 46 0
750
650
930 2.0 n.m. C-Mon+CaO
940 2.0
920 2.0 C-Mon+CaO
57.14 42.86
(4:3)
0
750
850 CB+CaO+C2B3tr
900 CB+CaO
60 40 0
#1 900 CB+CaO
900×2 CB+CaO
#2 750
650 CB+C2B3+CaO
750×5 CB+CaO
66.67 33.33 0
750×2 CB+CaO
920 0.33 n.m. CB+CaO
930 0.33 n.m. C-Mon+CaO
940 0.33 n.m. C-Mon+CaO
950 0.33 n.m. C-Mon+CaO
960 0.33 n.m. bcc+CaO
71.43 28.57
(5:2)
0
750×5 CB+CaO
11.11 44.44 44.44
700
750 rhomb+CuO+B2Cu
750×5 rhomb+CuO+B2Cu
20 40 40
700
750 CuO+rhomb+CB2
750×5 CuO+CB2+rhomb
33.33 33.33 33.33
700
750 CB+C2B3+CuO
750×5 CB+C2B3+CuO
44.02 7.14 48.84
Ca4Bi6O13+Ca2Bi2O5+C1−xCuO2
1:1:10 C1−xCu+C2B3+CB
700 C1−xCu+CB+C2B3
700×2 C1−xCu+CB+C2B3tr
700×3 C1−xCu+CB
700×4 C1−xCu+CB
44.44 22.22 33.33
Ca2CuO3+Bi2CuO4
2:1 C2Cu+B2Cu
700 C2Cu+C2B3+B2Cu+CuO
700×2 C2Cu+C2B3+B2Cu+CuO+CB
700×3 C2Cu+C2B3+CuO+CB+B2Cue
45 45 10
700
750
920 0.33 p.m. bcc+C-mon+CaO
940 0.33 c.m. bcc+CaO+C-montr
49 49 2
700
750
900 0.33 CB
910 0.33 CB
915 16.0 p.m. CB
930 0.33 p.m. bcc+CaO
50 25 25
700
750 CB+CuO+CaO
800 CB+CuO+CaO
750×5 CB+CuO+CaO
54 23 23
700
750×6 CB+CaO+CuO+C1−xCu
54.95 14.63 30.41
Ca4Bi6O13+Ca2CuO3+C1−xCuO2
1:7:3 C2B3+C2Cu+C1−xCu
700 C2B3+C2Cu+C1−xCu+CB
700×2 C2Cu+C1−xCu+CB+C2B3
700×3 C2Cu+C1−xCu+CB+C2B3
56 24 20
Ca4Bi6O13+Ca2CuO3
1:5 C2Cu+C2B3
#1 700 C2Cu+C2B3+CB
700×2 C2Cu+C2B3+CB+CuO
700×3 C2Cu+CB+C2B3+CuO
700 O2 C2Cu+CB+C2B3+CuO
750 C2Cu+CB+C2B3+CuOtr
#2 750×2 C2Cu+CB+C2B3+CuOtr
750×2
700 336 C2Cu+CB+CuOtr
#3 +C1−xCutr CB+C2Cu+C2B3
#4 +C1−xCu(more) CB+C2Cu+C2B3+C1−xCu
700 CB+C2Cu+C2B3+C1−xCu
700×2
700×3f
700×4f
700×5f
57.14 9.52 33.33
Ca2CuO3+Bi2CuO4
6:1 C2Cu+B2Cu
700 C2Cu+B2Cu+C2B3+CuO
700×2 C2Cu+C2B3+B2Cu+CuO
700×3 C2Cu+CB+C2B3+CuO
60 20 20
700
750 CB+CaO+CuO
750×5 CB+CaO+Ca1−xCu+CuO
750×9 CB+CaO+Ca1−xCu+CuO
61.29 19.35 19.35
Ca2CuO3+Ca7B6O16
6:1 750×2 CB+C2Cu+CaO
700 336 CB+C2Cu+CaOtr
70 15 15
700
750×5 CaO+CB+Ca1−xCu+CuO
800 CaO+CB+Ca1−xCu+CuO
850 CaO+CB+C2Cu
900 CaO+C-mon+C2Cu
900
750 CaO+CB+C2Cu
900750} CaO+Czmon+C2Cu
900×7,126
a

Starting materials CaCO3, Bi2O3, CuO except when listed in italics. Compositions given in italics were formulated from the listed pre-reacted compounds or compositions.

b

Specimens were given all previous heat treatments listed in the initial column, sequentially, and held at temperature 16–24 h, with grinding in between, for the number of times shown and then reheated at the final temperature for the indicated number of hours. (if hours are not specified heat treatment was overnight). O2=heat treatment in one atmosphere of purified oxygen.

c

p.m. = partially melted, c.m. = completely melted, n.m. = no melting, s.m. = slightly melted.

d

Compounds are listed in order of estimated amounts, most prevalent first.

tr=trace, just barely discernable.

C2Cu = Ca2CuO3

C1−xCu = Ca1−xCuO2

CCu2=CaCu2O3

rhomb=rhombohedral solid solution

fcc=face centered cubic solid solution; symmetry often distorted and generally with superstructure

fcc′-very slight rhombohedral distortion of cubic symmetry, with incommensurate superstructure perpendicular to the hexagonal c* (corresponding to α′, of [20].

fcc″-metastablephase with larger rhombohedral distortion of cubic symmetry, with superstructure equal to 42 and faint incommensurate superstructure perpendicular to the hexagonal [hOl] plane.

bcc=body centered cubic solid solution; symmetry often distorted and generally with superstructure.

C5B14 = Ca5Bi14O26

CB2=CaBi2O4

C2B3 = Ca4Bi6O13

CB = Ca2Bi2O5(triclimic)

C-mon = metastable C-centered monochnic phase near Ca6Bi7O16.5.

e

Although Ca4Bi6O13 has formed during first 700 °C heat treatment, further heating and grinding resulted in formation of Ca2Bi3O5, which increased with the third heat treatment, indicating that the 2:3 phase was formed metastably but the 1:1 compound is the stable phase.

f

Amount of 2:3 decreasing and amount of Ca1−xCuO2 may be increasing very slightly.

Table 1(b).

Experimental conditions for crystal growth experiments

Charge Flux Container Temperature cycle Results
CaO:1/2Bi2O3
1:6
(KNa)Cl Small dia Au sealed 700 °C 595 h biaxial xtals Rhomb (Orth)
90 wt% 10 wt%

CaO:1/2Bi2O3
1:4
Small dia Au sealed 700→875 °C @ 10 °C/h
875→650 °C @ 3 °C/h

CaO:1/2Bi2O3
5:14
(KNa)Cl Large dia Pt sealed 750 °C→645 °C @ 1 °C/h
645 °C 64 h
20 wt% 80 wt%
CaO:1/2Bi2O3
5:14
(KNa)Cl large dia Pt 750 °C→645 °C @ 1 °C/h
20 wt% 80 wt% 645 °C 64 h
CaO:1/2Bi2O3
5:14
10μLH2O Small dia Au sealed Hydrothermal unit 700 °C 100 MPa
CaO:1/2Bi2O3
5:14
(KNa)Cl Large dia Au sealed 650 °C→750 °C @ 10 °C/h
80 wt% 20 wt% 750 °C→640 @ 1 °C/h
CaO:1/2Bi2O3
5:14
None Small dia Au open 900 °C, 20 min. quenched (liq N2 cooled He cup) crushed
Small dia Au open 780 °C 67.5 h quenched (liq N2 cooled He cup) fcc′
CaO:1/2B2O3
5:14
None Small dia Au sealed 925 °C→850 °C @ 3 °C/h
850 °C 24 h quenched (liq N2 cooled He cup)
Ca5Bi14O26
Small dia Au open 650 °C 2 weeks
CaO:1/2Bi2O3
5:14
None Small dia Au sealed 925 °C→850 °C @ 3 °C/h
Small dia Au open 650 °C 16 h

CaO:1/2Bi2O3
3:8
None Small dia Au open 900 °C 22 h quenched (liq N2 cooled He cup) crushed
Small dia Au open −800 °C 3 d quenched (liq N2 cooled He cup)
−760 °C 15 min pulled from furnace
−800 °C 1 h quenched (liq N2 cooled He cup)
−760 °C 10 min quenched (liq N2 cooled He cup) fcc″
CaO:1/2Bi2O3
33:67
(KNa)Cl Small dia Au sealed 775 °C (18h)→645 °C @ 1 °C/h
80 wt% 20 wt%
CaO:1/2Bi2O3
33:67
(KNa)Cl Small dia Au sealed 775 °C(18h)→645 °C @ 1 °C/h CaBi2O4
20 wt% 80 wt%
CaO:1/2Bi2O3
33:67
(KNa)Cl Small dia Au sealed 775 °C(18h)→645 °C @ 1 °C/h CaBi2O4
50 wt% 50 wt%

CaO:1/2Bi2O3
1:2
(KNa)Cl Large dia Ft sealed 750 °C→645 °C @ 1 °C/h 645 °C 64 h
20 wt% 80 wt%
CaO:1/2Bi2O3
1:2
(KNa)Cl Large dia Pt 750 °C→645 °C @ 1 °C/h 645 °C 64 h
20 wt% 80 wt%
CaO:1/2Bi2O3
1:2
(KNa)Cl vycor cruc. 675 °C 144 h
20 wt% 80 wt%
CaO:1/2Bi2O3
1:2
None Small dia Au sealed 925 °C→850 °C @ 3 °C/h
850 °C 24 h quenched (liq N2 cooled He cup) crushed
Small dia Au open 500 °C→700 °C @ 3 °C/h
700 °C 168 h
CaO:1/2Bi2O3
1:2
None Small dia Au sealed 925 °C→850 °C @ 3 °C/h
Small dia Au open 650 °C 16 h
CaO:1/2Bi2O3
1:2
(KNa)Cl Large dia Au sealed 650 °C→750 °C @ 10 °C/h
80 wt% 20 wt% 750 °C→640 °C @ 1 °C/h
CaO:1/2Bi2O3
1:2
10μL H2O Small dia Au sealed Hydrothcrnal unit 700 °C 100 MPa
CaO:1/2Bi2O3
1:2
None Large dia Au sealed 750 °C→875 °C @ 25 °C/h
875 °C→845 °C @ 1 °C/h
CaO:1/2Bi2O3
1:2
None Small dia Au sealed 925 °C 10 min quenched (liq N2 cooled He cup) crushed to a fine powder
Small dia Au open 500 °C→700 °C @ 3 °C/h
CaO:1/2Bi2O3
2:3
None Small dia Au sealed 1000 °C→900 °C @ 1°C/h crushed
Small dia Au sealed 825 °C 190 h furnace cooled
CaO:1/2Bi2O3
2:3
None Small dia Au sealed 1000 °C 1 h quenched (liq N2 cooled He cup) Ca4Bi6O13
875 °C 260 h
CaO:1/2Bi2O3
2:3
(KNa)Cl Large dia Au sealed 840 °C→640 °C @ 1 °C/h
98 wt% 2 wt%
CaO:1/2Bi2O3
2:3
(KNa)Cl Large dia Au sealed 840 °C→640 °C @ 1 °C/h
80 wt% 20 wt%
CaO:1/2Bi2O3
2:3
(KNa)Cl Large dia Au sealed 840 °C→640 °C @ 1 °C/h
50 wt% 50 wt%
CaO:1/2Bi2O3
2:3
(KNa)Cl Large dia Au sealed 840 °C→640 °C @ 1 °C/h
20 w% 80 wt%

CaO:1/2Bi2O3
7:10
(KNa)Cl Large dia Pt sealed 750 °C→645 °C @ 1 °C/h
645 °C 64 h
Ca4Bi6O13
20 wt% 80 wt%
CaO:1/2Bi2O3
7:10
(KNa)Cl Large dia Pt 750 °C→645 °C @ 1 °C/h
20 wt% 80 wt%

CaO:1/2Bi2O3
6:7
CaCl2 Large dia Au open 900 °C 20 h
80 wt% 20 wt%

CaO:1/2Bi2O3
1:1
(KNa)Cl Small dia Au sealed 650 °C→950 °C @ 100 °C/h
950 °C→900 °C @ 1 °C/h
80 wt% 20 wt%
CaO:1/2Bi2O3
1:1
(KNa)Cl Small dia Au sealed 650 °C→950 °C @ 100 °C/h
950 °C→900 °C @ 1 °C/h
50 wt% 50 wt%
CaO:1/2Bi2O3
1:1
(KNa)Cl Small dia Au sealed 650 °C→950 °C @ 100 °C/h
950 °C→900 °C @ 1 °C/h
20 wt% 80 wt%

CaO:1/2Bi2O3
7:6
(KNa)Cl Large dia Pt sealed 750 °C→645 °C@ 1 °C/h
645 °C 64 h
Ca2Bi2O5
20 wt% 80 wt%
CaO:1/2Bi2O3
7:6
(KNa)Cl Large dia Pt 750 °C→645 °C @ 1 °C/h
20 wt% 80 wt%
CaO:1/2Bi2O3
7:6
(KNa)Cl Large dia Au sealed 900 °C 19.5 h
80 wt% 20 wt%

Equilibrium in this system has proven to be so difficult to obtain that a few specimens were prepared by utilizing lactic acid in an organic precursor route to obtain more intimate mixing at low temperatures [9]. This procedure yielded an essentially single phase amorphous precursor for the composition that contains 66.7 mol % Bi2O3. At higher Bi contents, pure Bi metal was formed by carbothermic reduction under even the lowest temperature drying procedures in air.

Specimens for solidus and liquidus determinations in the CaO-CuO system were prepared by dissolving mixtures of cupric nitrate and calcium nitrate in distilled water and then drying. The specimens were calcined two or three times between 500 and 700 °C with intermittent grinding. Samples of Ca1−xCuO2 were heated in a horizontal tube furnace for 36 to 120 h in air or in oxygen. In determining the exact stoichiometry of the compound previously reported as “CaCuO2” [7], however, a citrate synthesis route was used [15]. Dried anhydrous calcium carbonate and basic cupric carbonate (Cu(OH)2:CuCO3) were dissolved in dilute nitric acid and complexed with excess citric acid monohydrate. After drying, the resulting friable, low-density material was calcined at 700 °C either in air or in a flowing oxygen atmosphere until x-ray diffraction revealed the presence of fewer than three phases. It took 18 to 84 h for these synthesis reactions to reach completion.

3. Experimental Results and Discussion

Most of the experiments performed on the binary and ternary mixtures of CaO-Bi2O3-CuO are reported in Table 1a. Additional experiments specifically designed in an attempt to obtain crystals large enough for x-ray single crystal studies are detailed in Table 1b. Crystallographic data for various phases are reported in Table 2.

Table 2.

Crystal structure data

Chemical formula Symmetry phase (T °C) a (Å) b (Å) c (Å) α degrees β degrees γ degrees
Ca1−x,CuO2
x =0.172
Fmmma
T ~700 °C
2.8047b
(7)
6.321
(2)
10.573
(2)
CaO:1/2Bi2O3
1:6
R3¯
T ~750 °C
3.9448
(8)
27.8400
(8)
Cmmm
T ⩽735 °C
6.8188
(3)
3.9531
(2)
27.830
(1)
CaO:1/2Bi2O3
3:8
R3¯
α′ (T ~780 °C)
7.7427
(9)
9.465
(1)
B2/m
α″(T ~760 °C)
15.5819
(3)
3.8077
(1)
10.8955
(3)
91.829
(2)
Ca5Bi12O41 P1¯ 9.934
(1)
15.034
(2)
15.008
(2)
82.65
(1)
85.27
(1)
CaBi2O4 C2/c 16.6295
(8)
11.5966
(5)
14.0055
(6)
134.036
(3)
Ca4Bi6O13 C2mm 17.3795
(5)
5.9419
(2)
7.2306
(2)
CaO:1/2Bi2O3
9:10
“bcc”
T ~1000 °C
4.2458
(1)
Ca2Bi2O5 P1¯ 10.1222
(7)
10.146
(6)
10.4833
(7)
116.912
(5)
107.135
(6)
92.939
(6)
Ca6+xSr6−xBi14O33
x→6
C-centered monoclinic 21.295
(4)
4.3863
(8)
12.671
(2)
102.74
(1)
a

Indicates a subcell.

b

Numbers in parentheses indicate uncertainties in final digits.

3.1 The System Bi2O3-CuO

A phase diagram for this system was already published [16], and was redrawn as Fig. 6392 in Phase Diagrams for Ceramists (PDFC) [17]. It apparently contains only one compound Bi2CuO4, (B2Cu). No attempt was made to reinvestigate the melting relations of this system because it does not have any great effect on the phase equilibria of the ternary system with CaO.

3.2 The System CaO-CuO

Although a revised phase diagram for this system was previously reported [7], further experimental evidence (Table 1a) was accumulated in this study and the diagram was revised again [18] as shown in Fig. 1. The CaCu2O3 compound, which was reported to be stable only above 950 °C [19], was found to be stable between 985 and 1018 °C. Previously determined temperatures, 1020 and 1013 °C [20,7] for the decomposition of CaCu2O3(CCu2) and for eutectic melting, respectively, are within experimental error of the new values, 1018 ± 2 °C and 1012 ± 2 °C.

Fig. 1.

Fig. 1

CaO-CuO phase diagram.

3.2.1 Ca2CuO3

The Ca2CuO3(C2Cu) compound decomposes into CaO plus liquid above 1034 ± 2 °C, which is slightly above the previous estimate of 1030 °C [20,7]. The composition of the eutectic reaction is 20CaO−80CuO±5%, as determined from the presence or absence of the Ca2CuO3 phase in samples of varying compositions that were quenched from 1020 °C.

3.2.2 Ca1−xCuO2

Samples prepared with an original Ca:Cu ratio of 45.33:54.67 contained no detectable CaO or CuO after heating in oxygen at 700 °C, as demonstrated by x-ray diffraction (Fig. 2 and Table 3). Compositions with original Ca:Cu ratios of 45.20:54.80 and 45.45:54.54 (≈5:6) yielded x-ray patterns which indicated the presence of excess CuO and excess CaO, respectively. Therefore, the Ca:Cu ratio for this compound is 0.453:0.547 or Ca1−xCuO2 with the composition Ca0.828CuO2 (x = 0.172) at 700 °C in oxygen. The single phase region for this phase probably varies with temperature and partial pressure of oxygen. The composition and structural analyses of this phase have been recently reported [15]. The x-ray powder diffraction pattern for Ca1−xCuO2 is shown in Fig. 2 and the indexed data is given in Table 3. This compound decomposes into Ca2CuO3 plus CuO above 755 °C in air and 835 °C in oxygen. In Fig. 1, the experiments conducted in air and those conducted in an oxygen atmosphere are indicated by the dashed line and the crosses, respectively. At 675 °C, Ca1−xCuO2 can be synthesized from CaCO3 plus CuO but the run product never fully equilibrates to a single- or two-phase assemblage. Rather, the metastable three-phase assemblage Ca1−xCuO2+CaO+CuO persists: after five cycles of heating with intermittent grinding the relative proportions of phases were Ca1−xxCuO2>CaO> CuO and they remained that way for an additional overnight heat treatments. Because of its greattional 31 overnight heat treatments. Because of its great persistence, Ca1−xCuO2 is interpreted as being an equilibrium phase, but it should be noted that reversal of its decomposition (synthesis from CuO+Ca2CuO3) was not successfully demonstrated.

Fig. 2.

Fig. 2

Ca1−xCuO2 x-ray diffraction powder pattern (CaO:CuO 45.328:54.672).

Table 3.

x-ray powder diffraction data for the compound Ca1−xCuO2

d obs(Å) Rel I (%) 2θ obs 2θ calca hkl
5.273   13 16.80 16.76 002
3.1554   21 28.26 28.21 002
3.0994  1   28.78b
2.8914  6 30.90 30.91 1−8δ,1,1−δc
2.8245  3 31.65 31.66 1−8δ,1,1+δc
2.7106 100 33.02 32.99 022
2.6407   22 33.92 33.89 004
2.4887   23 36.06 36.02 111
2.3218  6 38.75 38.77 1−δa,1,3−δc
2.2207  7 40.59 40.60 1−δa,1,3+δc
2.0720   61 43.65 43.62 113
1.7666  4 51.70 51.72 1−δa,3,1−δc
1.7613  6 51.87 51.84 600
1.7571  6 52.00 51.95 1−δa,1,5−δc
1.7527  8 52.14 52.21 1−δa,3,1+δc
1.6840  2 54.44 54.39 1−δa,1,5+δc
1.6632   10 55.18 55.16 131
1.6306   29 56.38 56.36 115
1.6088  2 57.21 57.23 1−δa,3,3−δc
1.5802   12 58.35 58.34 040
1.5397   18 60.04 60.06 026
1.5200   16 60.90 60.90 133
1.4811  1   62.67b
1.4545  1   63.95b
1.4467  1   64.34b
1.4129  1   66.07b
1.4025  6 66.63 66.64 200
1.3702  1 68.41 68.42 1−δa,1,7−δc
1.3565   12 69.20 69.21 044
1.3471  2   69.75b
1.3208   13 71.35 71.33 1−δa,1,7+δc
1.3186   15 71.49 71.55 135
1.3018  5 72.56 72.59 117
1.2819  5 73.87 73.87 220
a

Calculated on the basis of an orthorhombic subcell, Fmmm, a =2.8047 (7), b =6.321 (2), and c = 10.573 (2) Å.

b

Superstructure probably not accounted for by δ-vectors.

3.2.3 Cu2O in the Binary System

Cu2O, which is known to be stable in air only above 1026 °C, was found in this system above 1012 °C. Therefore, Cu+ and Cu2+ must have coexisted in the samples that were quenched in air from temperatures between 1012 and 1026 °C. The Cu2O observed in samples that were quenched from below 1026 °C is probably formed during solidification of the liquid phase; i.e., an oxygen deficiency in the liquid may result in the solidification of Cu2O as well as CuO.

3.3 The System CaO-Bi2O3

The phase equilibria diagram for the system CaO-Bi2O3 was reported in [21] and redrawn as Fig. 6380 in PDFC [17]. It is reproduced here as Fig. 3 with the scale changed to l/2Bi2O3-CaO instead of Bi2O3-CaO, to maintain consistency with the other phase diagrams in this report. An interpretation of the experimental results recorded in Table 1 was published in [19] and it is shown in Fig. 4 (cf. Fig. 3). The major differences between our new diagram and the one presented in [21] are: 1) the composition of “Ca7Bi10O22” [21,22] is revised to Ca4Bi6O13 (2:3) and its crystal structure is reported in [23]; 2) the composition of “Ca7Bi6O16” [21,22] is now reported as Ca2Bi2O5, and its crystal structure is given in [24]; 3) a metastable phase ~Ca6Bi7O16.5 was formed at about 925 °C on the CaO-rich side of Ca2Bi2O5, but at about 885 °C on the CaO-poor side; 4) melting relations have been determined in the region of 20–50 mol % CaO.

Fig. 3.

Fig. 3

CaO-1/2Bi2O3 phase diagram as changed from PDFC 6380-Conflant et al.

Fig. 4.

Fig. 4

CaO-1/2Bi2O3—present phase diagram.

3.3.1. Rhombohedral Solid Solution (Sillen Phase-Rhomb)

The rhombohedral solid solution was first reported by Sillen [25]. Phase relations in the CaO-rich region of the Sillen phase field were previously [20] represented as exhibiting a congruent transition to the fcc solid solution, and the present experiments indicate such a point at (~22 mol % CaO, ~835 °C). Conflant et al. [21] reported a phase transition from one rhombohedral phase to another at about 735–740 °C. Differential thermal analysis of a 1:6 ratio CaO:1/2Bi2O3 specimen confirms the presence of a reversible transition at about 735 °C. Samples quenched from ~750 °C are clearly rhombohedral as previously reported [21,22], but x-ray patterns (Figs. 5a, 5b; Tables 4, 5, 6) from samples that were quenched from ⩽735 °C exhibit peak splitting and faint superstructure reflections (Fig. 5b). The diffraction patterns for both the high and low temperature forms are much sharper if the specimens are not ground after quenching. Apparently, it is easy to induce mechanical deformation in these samples by grinding. The peak splitting can be indexed with an orthorhombic cell a =6.8188(3), b =3.9531(2), and c =27.830(1) Å, which is most easily observed in the rhombohedral (0,2,13) and (3,0,9) reflections corresponding to (2,2,13)+ (4,0,13) and (3,3,9)+ (6,0,9), respectively, in the orthorhombic indexing (Figs. 5a, 5b, and Tables 5, 6). Dimensionally the unit cell is orthorhombic, but the symmetry cannot be higher than monoclinic because it is the derivative of a rhombohedral (rather than hexagonal) high symmetry phase. Single crystals prepared at 700 °C with a salt eutectic flux (Table 1b) give a biaxial interference figure, in polarized light, parallel to the pseudo-rhombohedral c axis.

Fig. 5a.

Fig. 5a

x-ray powder diffraction pattern CaO:1/2Bi2O3 1:6 quenched from 740 °C.

Fig. 5b.

Fig. 5b

x-ray powder diffraction pattern of CaO:1/2Bi2O3 1:6 quenched from 740 °C (rhombohedral indexing) and 725 °C (orthorhombic indexing).

Table 4.

x-ray powder diffraction data for the high temperature rhombohedral (Sillen phase) indexing of CaO:1/2Bi2O3 1:6

d obs(Å) Rel I(%) 2 θ obs 2 θ calca hkl
9.254  4   9.55   9.52  003
4.633  8 19.14 19.11  006
3.3897   23 26.27 26.26  101
3.3166   31 26.86 26.85  012
3.0922   93 28.85 28.84  009
3.0651 100 29.11 29.09  104
2.9099   56 30.70 30.68  015
2.5896   16 34.61 34.58  107
2.4372   17 36.85 36.84  018
 2   39.90b
2.1578   10 41.83 41.82 1,0,10
 2   43.67b
2.0326   17 44.54 44.52 0,1,11
1.9726   57 45.97 45.98  110
1.9283  1 47.09 47.07  113
1.8554   12 49.06 49.04 0,0,15
1.8149   57 50.23 50.22  116
50.24 1,0,13
1.7188   24 53.25 53.26 0,1,14
1.7043  8 53.74 53.72  021
1.6953   10 54.05 54.05  202
1.6629   72 55.19 55.19  119
1.6333   16 56.28 56.29  205
1.5694  6 58.79 58.79  027
1.5500   10 59.60 59.58 1,0,16
1.5467   18 59.74 59.74 0,0,18
1.5334  6 60.31 60.31  208
1.4770   12 62.87 62.88 0,1,17
1.4561  2 63.88 63.89 0,2,10
1.4157  6 65.93 65.92 2,0,11
1.3516  7 69.49 69.49 1,1,15
1.3355   12 70.45 70.46 0,2,13
1.2956  8 72.96 72.95 2,0,14
1.2891   10 73.39 73.39 0,1,20
1.2856   11 73.62 73.61 122    
1.2693   15 74.73 74.71 214    
1.2579   13 75.52 75.53 125    
1.2280  4 77.70 77.69 217    
1.2171   21 78.53 78.53 1,1,18
1.2105  5 79.04 79.03 128    
1.1868   14 80.94 80.95 1,0,22
1.1823  9 81.31 81.33 2,0,17
1.1712  2 82.25 82.24 2,1,10
1.1598  3 83.24 83.22 0,0,24
1.1503  5 84.08 84.09 1,2,11
1.1407  8 84.95 84.93 0,1,23
1.1386   12 85.15 85.13 300    
1.1122  1 87.67 87.68 0,2,19
1.1059   13 88.30 88.30 306    
88.31 2,1,13
1.0828  7 90.70 90.68 1,2,14
1.0790  2 91.11 91.10 2,0,20
1.0686   10 92.25 92.24 309    
1.0587  2 93.37 93.36 1,0,25
1.0368  2 95.97 95.95 2,1,16
1.0309  7 96.70 96.67 0,0,27
1.0217  8 97.86 97.86 0,1,26
1.0169  8 98.49 98.50 0,2,22
1.0141  9 98.86 98.87 1,2,17
0.9999  3 100.77 100.78 1,1,24
0.9876  3 102.52 102.52 2,0,23
0.9863  4 102.70 102.72 220    
0.9707  1 105.04 105.05 3,0,15
0.9469  4 108.88 108.87 131    
0.9454  4 109.14 109.15 312    
0.9394  8 110.16 110.13 229    
0.9341  4 111.10 111.11 315    
0.9330  3 111.31 111.33 0,2,25
0.9243  2 112.90 112.91 0,1,29
0.9218  3 113.36 113.38 137    
0.9171  7 114.27 114.28 3,0,18
0.9141   10 114.84 114.83 318    
0.9076  3 116.14 116.15 2,2,12
0.9072  3 116.22 116.22 2,0,26
0.9038  7 116.92 116.93 2,1,22
0.8970  1 118.35 118.36 1,3,10
0.8875  2 120.45 120.47 3,1,11
0.8832  3 121.43 121.45 1,2,23
0.8686  6 124.95 124.97 1,0,31
0.8665  7 125.50 125.49 1,3,13
0.8554  4 128.46 128.46 3,1,14
a

Calculated on the basis of a rhombohedral unit cell, R3¯, a =3.9448(8) and c =27.8400(8) Å.

b

Apparently due to an unidentified structure.

Table 5.

x-ray powder diffraction data for the low temperature orthorhombic indexing of CaO:1/2Bi2O3 1:6

d obs(Å) Rel I(%) 2 θ obs 2 θ calca hkl
9.283  1   9.52   9.53 003
4.6405   10 19.11 19.12 006
 1   25.15b
3.3922   17 26.25 26.23 111
3.3190   24 26.84 26.82 112
3.0911 100 28.86 28.85 009
3.0703   84 29.06 29.07 114
2.9127   47 30.67 30.66 115
2.5911   14 34.59 34.57 117
2.4391   13 36.82 36.82 118
2.4359   14 36.87 36.88 208
 1   38.29b
 1   38.90b
 1   40.76b
2.1588  7 41.81 41.81 1,1,10
2.1563  7 41.86 41.87 2,0,10
 1   43.01b
2.0339   15 44.51 44.51 1,1,11
2.0326  1 44.54 44.56 2,0,11
1.9775   25 45.85 45.87 020
1.9726   40 45.97 46.00 021
 1   47.17b
 1   48.20b
1.8550  5 49.07 49.06 0,0,15
1.8152   51 50.22 50.24 1,1,13
1.8142   49 50.25 50.27 316
 1   51.92b
 1   52.07b
 2   52.90b
1.7188   22 53.25 53.26 1,1,14
1.7174   15 53.30 53.30 2,0,14
1.7070  6 53.65 53.66 221
1.7011  5 53.85 53.84 401
1.6976  6 53.97 53.98 222
1.6924  5 54.15 54.16 402
1.6660   34 55.08 55.10 029
1.6618   54 55.23 55.23 319
1.6607   47 55.27 55.28 224
1.6563   28 55.43 55.45 404
1.6343   10 56.24 56.23 225
1.6298  9 56.41 56.41 405
 1   56.98b
 2   58.34b
1.5704  4 58.75 58.73 227
1.5662  4 58.92 58.90 407
1.5464   18 59.75 59.76 0,0,18
1.5348  5 60.25 60.26 2,2,18
1.5309  3 60.42 60.43 408
 1   61.15b
1.4764   10 62.90 62.89 1,1,17
1.4753  9 62.95 62.93 2,0,17
1.4567  1 63.85 63.84 2,2,10
 2   63.90b
1.4532  1 64.02 64.00 4,0,10
1.4164  3 65.89 65.87 2,2,11
1.4139  3 66.02 66.03 4,0,11
1.3526  4 69.43 69.42 0,2,15
1.3506  4 69.55 69.54 3,1,15
1.3362  9 70.41 70.41 2,2,13
1.3335   10 70.57 70.57 4,0,13
 1   71.22b
1.2964  6 72.91 72.91 2,2,14
1.2942  6 73.05 73.06 4,0,14
1.2889  9 73.40 73.40 1,1,20
1.2852  7 73.65 73.64 422
1.2719  6 74.55 74.54 134
1.2694  8 74.72 74.73 424
1.2678  9 74.83 74.84 514
1.2603  6 75.35 75.36 135
1.2575  7 75.55 75.55 425
1.2562  7 75.64 75.66 515
 2   77.45b
1.2263  3 77.83 77.83 517
1.2167   17 78.56 78.58 3,1,18
1.1866   13 80.96 80.97 1,1,22
1.1862   12 80.99 81.01 2,0,22
1.1734  2 82.06 82.08 1,3,10
1.1699  1 82.36 82.37 5,1,10
1.1594  2 83.27 83.25 0,0,24
1.1496  3 84.14 84.12 4,2,11
1.1409  6 84.93 84.95 1,1,23
1.1404  7 84.98 84.99 2,0,23
1.1399  7 85.03 85.02 330
1.1364  5 85.35 85.35 600
 2   85.60b
1.1266  1 86.27 86.25 5,1,12
 1   87.50b
1.1075  4 88.14 88.16 1,3,13
1.1070  5 88.19 88.18 336
1.1054  6 88.35 88.34 4,2,13
1.1045  7 88.44 88.45 5,1,13
1.1039  6 88.50 88.51 606
1.0842  3 90.55 90.53 1,3,14
1.0827  4 90.71 90.71 4,2,14
1.0818  4 90.80 90.82 5,1,14
1.0793  3 91.07 91.07 2,2,20
1.0780  3 91.22 91.22 4,0,20
1.0694  5 92.16 92.14 339
1.0666  6 92.47 92.46 609
1.0586  2 93.38 93.39 1,1,25
1.0356  2 96.11 96.10 5,1,16
1.0306  5 96.74 96.72 0,0,27
1.0216  5 97.88 97.89 1,1,26
1.0170  6 98.48 98.48 2,2,22
1.0157  6 98.65 98.62 4,0,22
a

Calculated on the basis of an orthorhombic unit cell, Cmmm, a = 6.8188(3), b =3.9531(2), and c =27.830(1) Å.

b

Apparently due to an unidentified structure.

Table 6.

x-ray powder diffraction data for the high temperature rhombohcdral (Sillen phase) indexing versus the orthorhombic indexing of CaO:1/2Bi2O3 1:6

2 θ obs Rhombohedral Orthorhombic
hkla hklb 2 θ obs
9.55 003 003   9.52
19.14 006 006 19.11
  25.15b
26.27 101 111 26.25
26.86 012 112 26.84
28.85 009 009 28.86
29.11 104 114 29.06
30.70 015 115 30.67
34.61 107 117 34.59
36.85 018 118 36.82
208 36.87
  38.29b
  38.90b
39.90b
  40.76b
41.83 1,0,10 1,1,10 41.81
2,0,10 41.86
  43.01b
43.67b
44.54 0,1,11 1,1,11 44.51
2,0,11 44.54
020 45.85
45.97 110 021 45.97
47.09 113
  47.17b
  48.20b
49.06 0,0,15 0,0,15 49.07
50.23 116 1,1,13 50.22
1,0,13
316 50.25
  51.92b
  52.07b
  52.90b
53.25 0,1,14 1,1,14 53.25
2,0,14 53.30
221 53.65
53.74 021
401 53.85
222 53.97
54.05 202
402 54.15
029 55.08
55.19 119 319 55.23
224 55.27
404 55.43
56.28 205 225 56.24
405 56.41
  56.98b
  58.34b
58.79 027 227 58.75
407 58.92
59.60 1,0,16
59.74 0,0,18 0,0,18 59.75
2,2,18 60.25
60.31 208
408 60.42
  61.15b
62.87 0,1,17 1,1,17 62.90
2,0,17 62.95
63.88 0,2,10 2,2,10 63.85
  63.90b
4,0,10 64.02
65.93 2,0,11 2,2,11 65.89
4,0,11 66.02
0,2,15 69.43
69.49 1,1,15
3,1,15 69.55
70.45 0,2,13 2,2,13 70.41
4,0,13 70.57
  71.22b
72.96 2,0,14 2,2,14 72.91
4,0,14 73.05
73.39 0,1,20 1,1,10 73.40
73.62 112 422 73.65
134 74.55
74.73 214 424 74.72
514 74.83
135 75.35
75.52 125 425 75.55
515 75.64
  77.45b
77.70 217
517 77.83
78.53 1,1,18 3,1,18 78.56
79.04 128
80.94 1,0,22 1,1,22 80.96
2,0,22 80.99
81.31 2,0,17
1,3,10 82.06
82.25 2,1,10
5,1,10 82.36
83.24 0,0,24 0,0,24 83.27
84.08 1,2,11
4,2,11 84.14
84.95 0,1,23 1,1,23 84.93
330 85.03
85.15 300
600 85.35
  85.60b
5,1,12 86.27
  87.50b
87.67 0,2,19
1,3,13 88.14
336 88.19
88.30 306
2,1,13
4,2,13 88.35
5,1,13 88.44
606 88.50
1,3,14 90.55
90.70 1,2,14
4,2,14 90.71
5,1,14 90.80
91.11 2,0,20 2,2,20 91.07
4,0,20 91.22
92.25 309 339 92.16
609 92.47
93.37 1,0,25 1,1,25 93.38
95.97 2,1,16
5,1,16 96.11
96.70 0,0,27 0,0,27 96.74
97.86 0,1,26 1,1,26 97.88
98.49 0,2,22 2,2,22 98.48
4,0,22 98.65
98.86 1,2,17
a

Calculated on the basis of a rhombohedral unit cell, R3¯, a =3.9448(8) and c =27.8400(8) Å.

b

Calculated on the basis of an orthorhombic unit cell, Cmmm, a =6.8188(3), b =3.9531(2), and c =27.830(1) Å.

c

Apparently due to an unidentified superstructure.

3.3.2. “Face-Centered-Cubic” Solid Solution (“fcc”)

Levin and Roth [26] demonstrated that the solidus temperature of fcc Bi2O3 (α1 in [21]) increases with additions of CaO. Conflant et al. [21] depicted its homogeneity range as extending to temperatures above the rhombohedral Sillen phase, and they did not include a congruent melting point. The present work and [18], however, indicate that there is a congruent melting point between 20 and 23 mol % CaO at about 885 °C. The phase diagram in [21] includes a dashed line which defines a small α1′ region in the CaO-rich, low temperature portion of the fcc field. Present results are essentially in agreement with this finding; i.e., all x-ray diffraction patterns from quenched “fcc” samples that contain at least 20 mol % CaO exhibit the superstructure peaks described in [21] plus a very slight splitting of cubic diffraction maxima that was not described in [21] (Fig. 6, Table 7). The observed splitting of substructure peaks of α1′ fits rhombohedral symmetry with aH=7.7427(9), cH = 9.465(1) Å, c/a = 1.2224. The complete field, extending to about 30 mol % CaO, is labeled “fcc” because neither the data presented here nor that in [20] provides a sound basis for drawing definitive phase boundaries. The minimum shown in Fig. 4 at ~773 °C for the CaO-rich end of this solid solution is in relatively good agreement with the value of 785 °C which can be interpreted from [21] (Fig. 3). When a single-phase specimen of composition near this minimum (5:14-3:8, CaO:1/2Bi2O3) is quenched after 10 min annealing at ~760 °C (~13 °C below the equilibrium minimum), the rhombohedral splitting of cubic maxima was greatly enhanced; this is the α1″ phase of [21] (Fig. 6; Table 8). As with the rhombohedral Sillen-type phases, these rhombohedrally distorted fcc phases are highly susceptible to mechanical damage during routine grinding, therefore the line splitting of α1’ can only be seen if the quenched specimen is not ground. X-ray analysis of this sample yielded aH = 7.616, cH = 9.6477, c/a =1.2668, whereas hexagonal indexing of a truly cubic pattern would give c/a= 1.2247; [1,1,1]c=[0,0,0,3]H and [2,2,0]c=[2,2,44¯,0]H. Thus, the rhombohedrally distorted phase that was quenched from the stable “fcc” region (α1′) had a c/a ratio that was slightly smaller than the cubic value, but the metastable lower-temperature phase (α1″) that was quenched from below the “fcc” region had a c/a ratio that was considerably larger than the cubic value. Single crystal x-ray precession patterns from the α1″ phase (Fig. 7) can be indexed with either a monoclinic or a rhombohedral cell with a =4asub as shown in Table 8.

Fig. 6.

Fig. 6

x-ray powder diffraction pattern of the fcc phase showing splitting and superstructure of α1′ and α1″.

Table 7.

x-ray powder diffraction data for the α1′ phase (CaO:1/2Bi2O3 mol ratio 3:8, 780 °C quench, sample not ground)

d obs(Å) Rel I (%) 2 θ obs 2 θ calca hkl
8.990  2 9.83
4.669  4 18.99
3.5296  7 25.21
3.5050  6 25.39
3.1565 100 28.25 28.26 003
2.9946  2 29.81
2.9492  1 30.28
2.7339   58 32.73 32.71 202
2.3510  4 38.25
2.0031  5 45.23
1.9517  3 46.49
1.9341   54 46.94 46.96 024
1.8882  2 48.15
1.8801  5 48.37
1.7875  1 51.05
1.7752  2 51.43
1.6940  1 54.09
1.6492   51 55.69 55.72 205
1.6184  1 56.84
1.5799  5 58.36 58.35 042
1.5770  5 58.48 58.46 006
1.5666  1 58.90
1.5482  2 59.67
1.4401  1 64.67
1.3906  2 67.27
1.3680  6 68.54 68.55 404
1.3515  1 69.49
1.3078  2 72.17
1.2762  1 74.25
1.2581  1 75.50
1.2558  8 75.67 75.66 241
1.2537  8 75.82 75.80 027
1.2231  8 78.07 78.09 226
1.2089  1 79.16
1.1828  1 81.27
1.1796  1 81.53
1.1528  1 83.85
1.1174  5 87.16 87.15 600
1.1155  4 87.35 87.33 208
1.0533  5 94.00 94.03 425
1.0245  7 97.50
1.0077  7 99.70
a

Calculated on the basis of a rhombohedral unit cell, R3¯, a =7.7427(9) and c =9.465(1) Å.

Table 8.

x-ray powder diffraction data for the α1 phase (CaO:1/2Bi2O3 mol ratio 3:8, 760 °C quench, not ground)

d obs (Å) Rel I (%) 2 θ obs 2 θ calca hkla 2 θ calcb hklb
8.812   <2   10.03   10.05 300   10.05 101
4.631  1   19.15   19.16 051   19.16 301
  <1   21.41   2:3   2:3
3.5618   15   24.98   24.99 502   24.99 103¯
3.5120   11   25.34   25.35 701   25.35 111¯
3.2156   27   27.72   27.72 003   27.72 402¯
3.1208 100   28.58   28.58 081   28.58 402¯
 2   29.38   2:3   2:3
3.0225  7   29.53   29.55 303   29.55 303¯
 1  30.80c
  <1  31.09c
 1  32.27c
2.7226   55   32.87   32.87 802   32.87 004
  <1  34.39c
  <1  34.57c
2.5817   <1   34.72   34.73 381   34.73 113
2.3417  4   38.41   38.41 832   38.41 511
2.3265  3   38.67   38.65 0,11,1   38.66 503
2.3231  3   38.73   38.73 850   38.74 313
2.1934  2   41.12   41.12 054   41.12 701
2.1707   <1   41.57   41.56 244    d
2.1485  1   42.02   42.00 514   42.04 105
2.0322  8   44.55   44.57 704   44.56 513¯
1.9866  4   45.63   45.64 13,0,1   45.65 305
1.9466   28   46.62   46.62 084   46.62 800
1.9039   34   47.73   47.73 880   47.73 020
8.812   <2   10.03   10.05 300   10.05 101
4.631  1   19.15   19.16 051   19.16 301
  <1   21.41   2:3   2:3
1.9866  4   45.63   45.64 13,0,1   45.65 305
1.9466   28   46.62   46.62 084   46.62 800
1.9039   34   47.73   47.73 800   47.73 020
1.8828  9   48.30   48.29 853   48.30 115
  48.30 711
1.8382   <1   49.55   49.54 235 d
1.8125  4   50.30   50.31 505   51.31 505
1.7929  3   50.89   50.90 384   50.90 315¯
1.7613   <1   51.87   51.88 13,3,1   51.89 315
  51.89 321¯
1.7176  4   53.29   53.29 075   53.29 713
1.7008  1   53.86   53.86 0,11,4   53.87 901
1.6786  4   54.63   54.62 3,13,2   54.62 123¯
1.6652   12   55.11   55.10 805   55.10 406¯
1.6384   34   56.09   56.09 883   56.09 422
1.6253   20   56.58   56.58 16,0,1   56.58 406
1.6102  4   57.16   57.14 11,5,3   57.14 323¯
  57.15 521¯
1.6079  4   57.25   57.25 006   57.25 804¯
1.5821  4   58.27   58.29 306   58.28 705¯
  58.29 903¯
1.5650  4   58.97   58.94 835   58.95 911¯
1.5602   13   59.17   59.17 0,16,2   59.17 024
  59.17 804
1.5526  4   59.49   59.48 13,0,4   59.48 107¯
1.5490  2   59.64   59.63 295 d
1.5033  1   61.65   61.64 11,0,5   61.64 307¯
  <1  62.58c    *
1.4738   <1   63.02   63.03 16,3,1   63.03 523
1.4382  1   64.77   64.78 13,3,4   64.78 117¯
  64.79 721¯
1.4303  1   65.17   65.18 16,1,3   65.18 913
1.4218  1   65.61   65.63 8,13,1   65.63 715
1.3773  3   68.01   68.01 13,8,2   68.01 317
1.3743  3   68.18   68.18 19,0,1   68.18 325
1.3614  6   68.92   68.93 16,0,4   68.93 008
  68.93 820
1.3338  1   70.55   70.56 18,0,3   70.57 11,0,3¯
1.3221  4   71.27   71.27 856   71.27 517¯
  71.27 11,1,1¯
1.3127  2   71.86   71.86 3,13,5   71.86 525¯
1.2942  2   73.05   73.04 707   73.03 707¯
  73.04 915
1.2717  2   74.56   74.55 11,11,3   74.56 12,0,2¯
  74.57 087   74.57 816¯
1.2687  2   74.77   74.79 16,3,4   74.80 921
1.2536  4   75.83   75.83 0,16,5   75.84 12,0,2
1.2360   11   77.10   77.09 8,16,1   77.09 426
1.2285  4   77.66   77.66 886   77.66 824¯
1.2256  4   77.88   77.89 387   77.88 717¯
1.2168  3   78.55   78.56 11,5,6   78.56 923¯
1.2065  8   79.35   79.33 16,8,2   79.34 824
1.2011  2   79.78   79.78 10,15,1   79.79 10,0,6¯
  79.79 208
1.1798  1   81.52   81.51 3,16,5   81.51 327¯
1.1703  1   82.33   82.34 21,0,3   82.34 309
1.1526  2   83.87   83.88 13,8,5   83.87 119¯
1.1489  2   84.21   84.23 078   84.23 11,1,5¯
1.1402  1   85.00   84.99 18,6,3   85.00 234¯
  85.00 13,0,7   85.00 509¯
  85.00 630
  85.00 13,1,1¯
1.1331  2   85.66   85.67 16,1,6   85.66 319¯
  85.67 527¯
1.1272  1   86.22   86.23 0,19,5   86.24 11,2,1
  86.24 13,0,3
1.1226  1   86.66   86.69 11,13,4   86.69 533¯
1.1074  5   88.15   88.16 8,16,4   88.16 028
  88.16 434¯
  88.16 12,1,4
1.0990  4   88.96   88.97 24,0,0   88.98 808
1.0922  2   89.70   89.69 16,10,3   88.69 228
  89.70 13,3,7   89.69 519¯
  89.69 10,2,4
  89.70 11,2,3
1.0768  1   91.35   91.38 5,19,4   91.38 335¯
1.0641  1   92.75   92.76 309   92.75 11,0,7¯
  92.75 13,0,5¯
1.0575  1   93.51   93.51 16,0,7   93.50 4,0,10¯
  93.51 12,2,2
1.0468  3   94.76   94.74 16,8,5   94.74 832
  94.74 12,2,2
1.0402  4   95.55   95.56 24,0,3   95.56 4,0,10
  95.57 7,12,7   95.56 12,0,6
1.0343  1   96.28   96.27 2,12,8 d
1.0212   <1   97.93   97.93 4,15,7 d
1.0203   <1   98.05   98.06 639 d
1.0115  1   99.20   99.22 21,8,1   99.22 719
1.0002  1 100.73 100.72 3,13,8 100.72 15,1,1¯
0.9968  1 101.21 101.19 16,13,3 101.19 329
101.20 11,2,5
0.9946  1 101.52 101.50 8,13,7 101.50 15,1,1
0.9898  1 102.20 102.20 26,1,1 102.18 15,0,3
0.9781  1 103.92 103.90 19,0,7 103.90 529¯
0.9733  2 104.64 104.64 859 104.64 15,1,3¯
0.9622  1 106.37 106.37 0,2,10 106.36 14,0,6¯
0.9520  2 108.03 108.02 16,16,0 108.03 828
108.04 040
0.9432  1 109.51 109.52 5,25,1 109.54 16,1,0
0.9371  1 110.57 110.58 21,8,4 110.58 3,1,11
0.9332  1 111.26 111.27 26,2,3 111.29 935¯
0.9289  1 112.05 112.05 11,5,9 112.05 11,2,7¯
0.9258  1 112.61 112.60 0,25,5 112.62 15,0,5
0.9242  1 112.91 112.91 2,7,10 112.92 2,3,
112.92 2,24,5
0.9127  2 115.13 115.11 3,20,7 115.11 12,2,6
0.9104  5 115.58 115.56 0,19,8 115.57 15,2,1
115.57 17,0,1
0.9074  3 116.19 116.17 24,0,6 116.18 12,3,0
116.21 9,13,8 116.18 16,0,4
0.8984  2 118.05 118.06 20,4,7 118.07 12,3,2¯
0.8939  1 119.02 119.00 29,0,2 119.01 7,0,11
0.8780  1 122.64 122.66 29,2,0 d
0.8755  1 123.25 123.23 5,24,5 123.23 1,2,11
124.24 139
0.8738  1 123.66 123.66 13,11,8 123.66 11,3,5¯
0.8732  1 123.80 123.81 21,13,2 123.79 139
123.80 741¯
0.8710  1 124.35 124.37 5,18,8 d
0.8665  1 125.49 125.49 27,6,0 d
a

Calculated on the basis of a rhombohedral unit cell, R3¯, a =30.4640(5) and c =9.6477(2) Å.

b

Calculated on the basis of a monoclinic unit cell, B2/m, a = 15.5819(3), b = 3.8077(1), c = 10.8955(3) Å, and β =91.829(2)°.

c

Apparently due to an unidentified superstructure.

d

Not indexable by the monoclinic all.

Fig. 7.

Fig. 7

x-ray precession photograph of the fcc α1 phase (Mo radiation).

3.3.3. The “Body-Centered-Cubic” Solid Solution (“bcc”)

The phase referred to as body-centered-cubic (“bcc”) solid solution was reported as a high temperature phase in [21]. In the present study this phase was found to extend from about 35 to 45 mol % CaO. The exact boundaries of the two-phase “fcc-bcc” region were not determined because the compositions of coexisting phases were not consistently reproduced. Just as with the “fcc” phase the “bcc” phase also exhibits line splitting and superstructure. Distortions from cubic symmetry (Fig. 8, Table 9), seem to be greatest in samples that are quenched from the region near the decomposition point of the 2:3 phase, (Fig. 9, Table 10). Single crystal x-ray diffraction precession data (Fig. 10) confirm the distortion recorded in Fig. 9 and Table 10 and indicate the nature of the superstructure. CaO-rich phase boundaries of the “bcc” field have not been precisely determined in part because of complications arising from the presence in many experiments of a metastable phase (see “C-mon” below). This bcc-type phase was found to be stable down to a minimum temperature of 825 ± 5 °C (Fig. 4) which is in good agreement with the value of 819 °C interpreted from [20] (see Fig. 3).

Fig. 8.

Fig. 8

x-ray powder diffraction pattern for the bcc phase.

Table 9.

x-ray powder diffraction data for the body centered cubic phase (CaO:1/2Bi2O3 mol ratio 9:10, 1000 °C quench)

d obs (Å) Rel I (%) 2 θ obs 2 θ calca hkl
3.0006 100   29.75 29.73 110
2.1239   34   42.53 42.52 200
1.7330   51   52.78 52.77 211
1.5011   14   61.75 61.75 220
1.3430   12   70.00 70.02 310
1.2255  3   77.89 77.88 222
1.1346   10   85.52 85.51 321
1.0617  1   93.03 93.06 400
1.0008  3 100.65 100.66 330
0.9494  2 108.45 108.46 420
0.9052  1 116.64 116.63 332
0.8667  1 125.43 125.45 422
0.8326  2 135.39 135.37 510
a

Calculated on the basis of a body centered cubic cell with a = 4.2458(1) Å.

Fig. 9.

Fig. 9

x-ray powder diffraction pattern for the distorted bcc phase with line splitting and superstructure (CaO:1/2Bi2O3 2:3 860 °C).

Table 10.

x-ray powder diffraction data for the distorted body centered cubic phase with line splitting and superstructure (CaO:1/2Bi2O3 mol ratio 2:3, 860 °C)

d obs (Å) Rel I (%) 2 θ obs 2 θ calca hkl
8.699  1 10.16
7.950  1 11.12
7.783  1 11.36
4.828  3 18.36
4.635  1 19.13
4.460  1 19.89
4.2267  2 21.00
4.1698  1 21.29
4.0826  1 21.75
3.9849  1 22.29
3.8868  1 22.86
3.5379  1 25.15
3.4714  3 25.64
3.3997  2 26.19
3.3164  1 26.86
3.2291  1 27.60
3.1410  1 28.39
3.0972  3 28.80
3.0015 100 29.74 29.73 110
2.8841  4 30.98
2.8245  2 31.65
2.7801  1 32.17
2.7526  1 32.50
2.7184  1 32.92
2.5924  1 34.57
2.5467  1 35.21
2.5300  1 35.45
2.4859  1 36.10
2.4609  1 36.48
2.4143  1 37.21
2.3901  1 37.60
2.3218  1 38.75
2.3012  1 39.11
2.2861  2 39.38
2.2800  2 39.49
2.1621  4 41.74
2.1233   23 42.54 42.52 200
2.0531  2 44.07
2.0187  1 44.86
1.9815  2 45.75
1.9746  2 45.92
1.9270  1 47.12
1.8897  1 48.11
1.8440  2 49.38
1.8253  1 49.92
1.8111  1 50.34
1.7908  1 50.95
1.7720  4 51.53
1.7524  7 52.15
1.7335   49 52.76 52.77 211
1.6990  3 53.92
1.6871  2 54.33
1.6673  3 55.03
1.6626  3 55.20
1.6502  1 55.65
1.6252  1 56.28
1.6078  1 57.25
1.5278  1 60.55
1.5111  3 61.29
1.5025  9 61.68 61.75 220
1.4951  3 62.02
1.3651  2 68.70
1.3532  1 69.39
1.3481   10 69.69 70.02 310
1.3356  2 70.44
1.3235  1 71.18
a

Calculated on the basis of a body centered cubic cell with a =4.2458 (1) Å.

Fig. 10.

Fig. 10

x-ray precession photograph of the bcc distorted phase (Mo radiation).

3.3.4. “Ca5Bi14O26” (C5B14-5:14)

A compound with the composition Ca5Bi14O26 was previously reported [21,22] as stable up to at least 650 °C. We have no contrary evidence and indeed an apparently single phase x-ray diffraction pattern can be obtained for the 5:14 ratio (26.32% CaO; Fig. 11, Table 11) by annealing a quenched liquid of this composition overnight at 650 °C. The exact composition should be regarded as provisional, however, pending a crystal structure determination. The x-ray pattern in Table 11 corresponds well with that published in [22] except for a small but consistent shift in observed d amounting to ~1/4° 2θ for CuKα radiation. Apparently the earlier work had an unrecognized deviation in calibration of the diffraction data. The diffraction pattern has not yet been indexed even with the aid of some single crystal data (Fig. 12). The complexity of the pattern and consideration of the single crystal data suggests tri-clinic symmetry.

Fig. 11.

Fig. 11

X-ray powder diffraction pattern for the Ca5Bi14O26 compound.

Table 11.

X-ray powder diffraction data for the compound Ca5Bi14O41

d obs (Å) Rel I(%) 2 θ obs 2 θ calea hkl
9.840  3   8.98   8.96 011
8.972  4   9.85   9.83 110
8.316  1 10.63 10.62 101
8.133  1 10.87 10.85 111
7.419  1 11.92 11.90 002
7.279  1 12.15 12.14 020
6.932  1 12.76 12.74 012
6.632  1 13.34 13.33 1¯11
6.549  1 13.51 13.49 1¯11
6.334  1 13.97 13.97 012
6.307  1 14.03 14.03 12¯1
5.690  1 15.56 15.55 121
5.521  1 16.04 16.04 022
4.849  1 18.28 18.26 030
4.800  1 18.47 18.46 211
4.782  1 18.54 18.56 031
4.593  2 19.31 19.29 122
4.537  7 19.55 19.54 013¯
19.55 21¯1
4.467  1 19.86 19.85 031
4.3143  3 20.57 20.58 1¯03
4.2429  1 20.92 20.94 123
4.2150  1 21.06 21.08 122
4.1298  1 21.50 21.49 113¯
4.0736  2 21.80 21.81 222
3.9277  2 22.62 22.60 212¯
3.8620  2 23.01 22.99 230
3.7652  2 23.61 23.63 21¯2
3.6838   13 24.14 24.11 141
24.16 220¯
3.6525  5 24.35 24.33 222¯
3.5576   11 25.01 24.99 203
3.5534  9 25.04 25.06 223
3.4903   16 25.50 25.51 142
3.4308  8 25.95 25.97 13¯2
3.4063   13 26.14 26.15 104¯
3.3336  2 26.72 26.71 213¯
3.3178  4 26.85 26.85 2¯22
3.2997  8 27.00 27.00 310
3.2877  8 27.10 27.11 033
3.2293   75 27.60 27.61 13¯3
3.1347 100 28.45 28.47 04¯2
3.1272   72 28.52 28.53 034
3.1112   97 28.67 28.69 214
3.0744   94 29.02 29.02 321¯
3.0539  8 29.22 29.24 124¯
3.0195  9 29.56 29.55 14¯2
2.9743  7 30.02 30.01 2¯23
2.9361  2 30.42 30.41 31¯1
2.9323  2 30.46 30.44 22¯3
30.48 115
2.9285  2 30.50 30.51 312¯
2.9053  4 30.75 30.74 2¯32
2.8662  2 31.18 31.17 025
2.8422  1 31.45 31.47 21¯4
2.8212  1 31.69 31.69 31¯2
2.7997  2 31.94 31.94 051¯
2.7777  2 32.20 32.19 143¯
17718  2 3127 3125 303
2.7250   96 32.84 32.84 115¯
32.86 252
2.6971   50 33.19 33.21 321¯
2.6369  2 33.97 33.99 3¯03
2.5976  2 34.50 34.52 22¯4
2.5766  2 34.79 34.79 253
2.5426  1 35.27 35.27 3¯13
2.5371  1 35.35 35.36 2¯42
2.4861  1 36.10 36.10 154
2.4584  2 36.52 36.54 420
2.4391  2 36.82 36.81 061
2.4276  3 37.00 36.99 2¯34
37.01 060
2.4057  6 37.35 37.34 261
2.4001  5 37.44 37.41 422
2.3964  4 37.50 37.48 01¯6
37.51 05¯3
2.3523  3 38.23 38.24 225¯
2.3185  4 38.81 38.78 33¯2
2.3088  4 38.98 39.00 431¯
2.3008  3 39.12 39.11 216
2.2952  6 39.22 39.20 22¯5
2.2929  6 29.26 39.29 41¯1
2.2896  3 39.32 39.32 1¯26
39.32 423
2.2868  5 39.37 39.38 253¯
a

Calculated on the basis of a triclinic cell, P1¯, a =9.934(1), b = 15.034(2), c = 15.008(2) Å, α = 82.65(1), β =85.27(1), and γ = 77.17(1)°.

Fig. 12.

Fig. 12

X-ray precession photographs of Ca5Bi14O26 (Mo radiation) (a) (hOl) unfiltered μ = 10°, (b) (hOl) Zr filter (c) alternate plane, unfiltered.

At 732 ± 7°C the 5:14 phase decomposes to a mixture of the rhombohedral phase plus CaBi2O4 (1:2). This equilibrium was demonstrated by both the breakdown of single phase material after heating above this range, and by nucleation of 5:14 in a two phase mixture of rhombohedral + 1:2 below it. This is considerably lower than the value of 772 °C which may be interpreted from [21] (Fig. 3).

3.3.5. CaBi2O4 (CB2-1:2)

The compound CaBi2O4 was synthesized at 650 °C [22] and reported as stable up to about 800 °C [21] where it was shown (Fig. 3) to decompose to fcc plus 2:3. Apparently inconsistent data in our own work required us to determine the decomposition temperature by simultaneous quenching of single phase 1:2, originally prepared by annealing at 650 °C, and reheating a sample of quenched liquid from which fcc plus 2:3 was synthesized. These experiments suggest that the 1:2 phase is not stable above 778 ± 5 °C. This may be compared with the value of 799 °C which can be interpreted from [21] (Fig. 3). The 1:2 phase often occurs along with other phases in samples that are air quenched from temperatures greater than about 800 °C. The x-ray powder diffraction pattern of the 1:2 phase Fig. 13, Table 12, corresponds well with that reported in [22] except for the observed shift in 2 θ mentioned in section 3.3.4. Several attempts were made to synthesize single crystals of the 1:2 phase (see Table 1b), but the only procedure that succeeded was to anneal single phase 1:2 + a 50/50 NaCl/KCl flux (50/50 flux/charge) at 775 °C and then cool at 1 °C/h to 645 °C. The single crystal x-ray diffraction precession data are shown in Fig. 14. The x-ray powder diffraction pattern was indexed on the C-centered monoclinic cell C2/c obtained from the single-crystal precession data. The lattice parameters refined by least-squares analysis with the aid of calculated structure factors and the calculated powder pattern based on single crystal structure determination are a = 16.6295(8), b = 11.5966(5), c = 14.0055(6) Å, and β = 134.036(3)°.

Flg. 13.

Flg. 13

X-ray powder diffraction pattern of the CaBi2O4 compound.

Table 12.

X-ray powder diffraction data for the compound CaBi2O4 (CaO:l/2Bi2O3 33:67)

d obs (Å) Rel I(%) 2 θ obs 2 θ calea hkl |F| cale
8.847  4   9.99   9.98 111¯ 35
8.324  2 10.62 10.62 110 27
5.977  7 14.81 14.81 200 79
5.802  2 15.26 15.27 020 32
5.282  2 16.77 16.77 111 32
5.029  5 17.62 17.60 002 15
5.018  5 17.66 17.64 021 46
4.957  1 17.88 17.85 312¯ 14
4.7413  6 18.70 18.70 221¯ 56
4.4316  6 20.02 20.03 222¯ 57
 21.442:3
3.8179   20 23.28 23.27 113¯ 78
3.8018   31 23.38 23.38 022 130
3.7700   11 23.58 23.59 310 19
3.6808 24.16 24.18 130
3.6029  2 24.69 24.68 112 31
3.4308  5 25.95 25.95 404¯ 79
3.3546  9 26.55 26.53 422¯ 58
3.3385   14 26.68 26.67 314¯ 81
3.3312   15 26.74 26.77 132¯ 78
3.3190  8 26.84 26.83 221 42
3.2723   42 27.23 27.24 204¯ 247
3.2374  8 27.53 27.52 131 72
3.1941   22 27.91 27.89 513¯ 117
3.1631 100 28.19 28.21 332¯ 276
3.0859   12 28.91 28.92 331¯ 78
3.0817   12 28.95 28.96 421¯ 59
 29.332:3
2.9879   48 29.88 29.87 400 289
2.9503   16 30.27 30.25 333¯ 87
30.28 311 74
2.9053  2 30.75 30.76 023 14
2.8970  1 30.84 30.82 040 5
2.8502  2 31.36 31.67 224¯ 43
2.8178  5 31.73 31.75 114¯ 65
2.7853   14 32.11 32.10 041 16
2.7769   17 32.21 32.24 330 22
2.7470   30 32.57 32.57 604¯ 234
2.7058   44 33.08 33.07 132 209
2.6705  5 33.53 33.53 242¯ 46
33.53 515¯ 38
2.6559  2 33.72 33.71 420 31
2.6559  6 33.90 33.92 222 17
2.6422  5 33.96 33.97 315¯ 18
2.6086  1 34.35 34.35 240 24
2.5882  1 34.63 34.61 334¯ 18
2.5567  1 35.07 35.04 602¯ 23
2.5198   18 35.60 35.58 425¯ 106
2.5185   15 35.62 35.64 004 135
2.4821  1 36.16 36.15 624¯ 22
2.4552  1 36.57 36.56 532¯ 15
2.4494  1 36.66 36.63 243¯ 19
2.4359  3 36.87 36.89 534¯ 49
2.3933  1 37.55 37.53 331 41
2.3708  2 37.92 37.93 442¯ 43
2.3618  2 38.07 38.06 312 28
2.3571  3 38.15 38.14 241 42
2.3411  6 38.42 38.42 622¯ 77
2.3271  5 38.66 38.67 714¯ 59
2.3014  1 39.11 39.11 225¯ 23
2.2957  1 39.21 39.23 406¯ 40
2.2857  2 39.39 39.67 151¯ 32
2.2762  2 39.56 39.55 150 42
2.2669  2 39.73 39.73 441¯ 46
2.2500  5 40.04 40.02 133 68
2.2377  6 40.27 40.27 535¯ 91
2.2177  3 40.65 40.64 335¯ 58
2.1934  2 41.12 41.11 043 50
2.1598  3 41.79 41.78 151 59
2.1393  5 42.21 42.21 114 75
2.1339  7 42.32 42.32 426¯ 67
2.1272   10 42.46 42.46 626¯ 104
2.1225  6 42.56 42.58 621¯ 53
2.1130  5 42.76 42.77 351¯ 81
2.0693  8 43.71 43.73 353¯ 98
2.0466  9 44.22 44.21 332 118
 44.672:3
2.0236  2 44.75 44.75 734¯ 26
2.0137  7 44.98 44.97 445¯ 80
2.0112  6 45.04 45.02 153¯ 63
2.0061  9 45.16 45.17 806¯ 49
2.0049   12 45.19 45.20 350 90
1.9986   28 45.34 45.35 536¯ 173
1.9936   17 45.46 45.49 600 134
1.9767  3 45.87 45.88 733¯ 57
1.9526  8 46.47 46.46 825¯ 98
1.9330   24 46.97 46.98 060 170
46.98 717¯ 126
1.9119   12 47.52 47.52 422 104
1.9100   13 47.57 47.58 226¯ 100
1.8987   24 47.87 47.85 336¯ 117
47.89 061 117
1.8953   19 47.96 47.95 204 176
1.8650   33 48.79 48.79 732¯ 231
1.8611   24 48.90 48.93 262¯ 77
1.8459  1 49.33 49.32 351 29
1.8244  2 49.95 49.93 116¯ 42
1.8217  2 50.03 50.00 915¯ 35
1.8200  2 50.08 50.06 427¯ 40
1.8105  2 50.36 50.36 243 52
 50.442:3
1.8038  5 50.56 50.54 062 66
1.7991   10 50.70 50.69 446¯ 123
1.7805  8 51.27 51.25 263¯ 109
1.7785  7 51.33 51.35 153 91
1.7610  3 51.88 51.89 333 54
1.7438  6 52.43 52.43 608¯ 118
1.7282  6 52.94 52.94 718¯ 103
1.7156  6 53.36 53.37 808¯ 143
1.7067  5 53.66 53.66 461¯ 102
1.6869   12 54.34 54.32 913¯ 110
54.34 845¯ 109
1.6784  4 54.64 54.64 844¯ 66
54.65 006 48
1.6744  4 54.78 54.76 063 63
1.6640   11 55.15 55.15 264¯ 116
1.6544   16 55.50 55.48 936¯ 164
1.6503   15 55.65 55.62 314 108
55.68 846¯ 95
1.6413  4 55.98 55.95 640 70
1.6357  5 56.19 56.18 408 71
56.20 918¯ 60
1.6335  5 56.27 56.29 753¯ 66
1.6319  6 56.33 56.35 934¯ 66
1.6227   10 56.68 56.67 460 146
1.6118  5 57.10 57.09 026 110
1.6023  1 57.47 57.46 937¯ 38
1.5959  3 57.72 57.73 171 57
1.5874   18 58.06 58.06 532 139
58.07 154 82
1.5834   12 58.22 58.21 756¯ 43
1.5807   12 58.33 58.33 664¯ 130
58.35 663¯ 87
1.5704  2 58.75 58.77 912¯ 37
1.5595  1 59.20 59.20 538¯ 30
1.5573  1 59.29 59.28 373¯ 42
1.5425  6 59.92 59.93 662¯ 95
1.5343  7 60.27 60.25 318¯ 117
1.5330  8 60.33 60.33 064 82
1.5311  6 60.41 60.43 265¯ 73
1.5188  2 60.95 60.94 938¯ 58
1.5150  4 61.12 61.12 461 84
1.5055  3 61.55 61.58 353 81
1.4969  5 61.94 61.93 757¯ 85
1.4941  8 62.07 62.06 800 134
62.08  11,1, 7¯ 131
1.4851  4 62.49 62.52      263 75
1.4836  4 6256 62.58      404 153
1.4793  8 62.76 62.76       629¯ 89
1.4753  8 62.95 62.97      622 93
1.4715  5 63.13 63.12       519¯ 65
1.4692  4 63.24 63.24       572¯ 66
1.4649  4 63.45 63.46       574¯ 78
1.4606  4 63.66 63.65       247¯ 51
63.68  11,1, 8¯ 61
1.4520  6 64.08 64.06      046 110
64.10       208¯ 136
1.4414  3 64.61 64.60       739¯ 42
1.4374  5 64.81 64.83       841¯ 78
1.4346  6 64.95 64.94      081 116
1.4299  8 65.19 65.18  10,2, 9¯ 103
1.4295  8 65.21 65.24       357¯ 105
1.4216  3 65.62 65.61       954¯ 80
1.4170  6 65.86 65.88      136 130
1.4090  1 66.28 66.28       864¯ 28
66.29      533 25
1.4027  1 66.62 66.61  10,0, 2¯ 37
66.63       957¯ 39
1.4010  2 66.72 66.71  11,1, 9¯ 67
1.3984  2 66.85 66.86      462 58
1.3977  3 66.89 66.91       266¯ 57
1.3942  3 67.08 67.07      065 65
1.3923  3 67.18 67.21       866¯ 91
1.3820  1 67.75 67.73       283¯ 49
1.3802  1 67.85 67.85  11,3, 5¯ 42
1.3750  5 68.14 68.13      750 84
1.3736  6 68.22 68.23       558¯ 73
68.23  12,0, 8¯ 138
1.3657  2 68.67 68.67      372 63
1.3631  2 68.82 68.80  10,2, 2¯ 63
1.3614  3 68.92 68.92       467¯ 43
68.92       931¯ 37
1.3610  3 68.94 68.95  8,2, 10¯ 56
1.3540  5 69.35 69.34      354 82
69.38      264 78
1.3465  4 69.79 69.79       481¯ 69
1.3457  5 69.84 69.83       867¯ 68
69.85       958¯ 67
a

Calculated on the basis of a monoclinic unit cell, space group C2/c, a = 16.6295(8), b = 11.5966(5), c = 14.0055(6) Å, and β = 134.036(3)°.

Fig. 14.

Fig. 14

X-ray precession photographs of CaBi2O4 (Mo radiation) (a) (h0l), (b) (hll).

3.3.6. Ca4Bi6O13 (C2B3-2:3)

The compound “Ca7Bi10O22”, (41.176 mol % CaO) was reported in [22] and [21], and the phase diagram shown in [21] can be interpreted as indicating that it decomposes at about 848 °C. (Fig. 3 in [20]). Experiments performed in the present work (Table 1) indicate that the composition of this phase is really 2:3 (40 mol % CaO) rather than 7:10, but the decomposition temperature (Table 1 and Fig. 4) of 855 ±5 °C is in good agreement with [21]. The x-ray powder diffraction pattern of this phase is shown in Fig. 15 and recorded in Table 13. These results agree well with those in [22] (except for the shift in 2 θ previously mentioned). Single crystals of Ca4Bi6O13 were grown both by utilizing a 50/50 NaCl/KCl flux and by reannealing a quenched liquid. The compound is orthorhombic a =17.3795(5), b =5.9419(2), c =7.2306(2) Å, with a C-centered space group, as determined from single crystal x-ray precession photographs Fig. 16) and x-ray diffraction datarefined by least squares. A complete crystal structure determination [23] including single crystal x-ray analysis, neutron diffraction Rietveld analyses, and measurements of second harmonic generation, proved that the true space group is the non-centrosymetric C2mm. The crystal structure was reported in [23] from data collected on crystals prepared in this study. A complete discussion of the indexing of this phase with comparison to the calculated powder pattern is given in [27]. The crystal structure determination [23] reveals that Bi+3 occurs in two coordination types with 2/3 of the Bi+3 ions five-coordinate and 1/3 of the Bi+3 ions only three-coordinate, by oxygen. Determinations of the crystal structures of more of these phases will perhaps result in a better understanding of the role played by Bi3+ coordination in 3- and 4-component superconductors.

Fig. 15.

Fig. 15

X-ray powder diffraction pattern of the Ca4Bi6O13 compound.

Table 13.

X-ray powder diffraction data for the compound Ca4Bi6O13

d obs (Å) Rel I (%) 2 θ obs 2 θ calea hkl |F| calc
8.708   13   10.15   10.17 200 250
5.629  4   15.73   15.75 110 136
4.434  1   20.01   19.99 111 45
4.346  5   20.42   20.42 400 217
4.145   47   21.42   21.40 310 571
3.614   52   24.61   24.60 002 138
3.338   52   26.68   26.69 202 118
3.0386 100   29.37   29.35 112 748
2.9987   68   29.77   29.75 510 893
2.9694   31   30.07   30.05 020 829
2.8117  8   31.80   31.81 220 306
2.7794   44   32.18   32.18 402 766
2.7250  2   32.84   32.84 312 93
2.4519  2   36.62   36.61 420 187
2.4107  1   37.27   37.28 003 103
2.3225  1   38.74   38.74 203 116
  38.74 421 45
2.3088  3   38.98   38.98 512 158
2.2952  5   39.22   39.22 022 263
2.2918  3   39.28   39.90 710 185
2.2609   12   39.84   39.85 602 501
2.2187  3   40.63   40.62 222 165
2.1717   13   41.55   41.54 800 667
2.0847  1   43.37   43.39 313 85
2.0815  1   43.44   43.46 801 35
2.0733  1   43.62   43.61 620 64
2.0291   53   44.62   44.61 422 846
1.9686  1   46.07   46.09 130 159
1.9357  4   46.90   46.92 712 227
1.8744  7   48.53   48.54 330 437
1.8625  1   48.86   48.87 802 182
1.8368  2   49.59   49.60 910 189
1.8288  1   49.82   49.79 223 81
1.8078   14   50.44   50.44 004 917
1.7991   12   50.70   50.71 622 466
1.7699  2   51.60   51.60 204 195
1.7537   11   52.11   52.11 820 602
1.7376  9   52.63   52.62 10,0,0 679
1.7285   23   52.93   52.93 132 607
1.7206   18   53.19   53.18 114 141
  53.18 530 769
1.6688  1   54.98   54.97 404 197
1.6640  2   55.15   55.16 332 149
1.6574   10   55.39   55.40 314 423
1.6373   31   56.13   56.13 912 804
1.5782  1   58.43   58.45 822 170
1.5670  1   58.89   58.92 10,0,2 93
1.5533  2   59.46   59.44 532 183
1.5486   21   59.66   59.67 514 696
  59.67 730 142
1.5446   10   59.83   59.84 024 675
1.5265  1   60.61   60.59 11,1,0 141
1.5206  3   60.87   60.88 224 232
1.5004  7   61.78   61.79 10,2,0 599
1.4857  5   62.46   62.47 040 682
1.4645  2   63.47   63.48 240 332
1.4552  1   63.92   63.93 424 185
1.4462  1   64.37   64.37 005 112
1.4262  1   65.38   65.37 205 120
1.4233  3   65.53   65.53 732 321
1.4064  2   66.42   66.41 11,1,2 221
1.4060  2   66.44   66.46 440 235
1.3896  6   67.33   67.33 804 528
1.3831  1   67.69   67.71 930 197
1.3738  1 68.21   68.20 042 210
1.3574  1   69.15   69.16 242 168
1.3445  3   69.91   69.91 12,0,2 406
1.3314  1   70.70   70.71 134 150
1.3102   10   72.02   72.03 442 593
1.3041  6   72.41   72.40 13,1,0 618
1.3008  9   72.62   72.61 334 355
1.2914  9   73.24   73.24 932 615
1.2739  1   74.41   74.43 10,2,3 67
1.2588  5   75.46   75.47 824 490
1.2530  3   75.87   75.88 10,0,4 545
1.2466  9   76.33   76.34 534 619
1.2418  4   76.68   76.71 642 375
1.2354  1   77.15   77.17 11,3,0 142
1.2261  4   77.84   77.83 840 506
1.2249  3   77.93   77.94 12,2,2 344
1.1856  1   81.04   81.04 150 162
1.1783  5   81.65   81.64 116 472
1.1740  4   82.01   82.00 14,0,2 615
1.1690  2   82.44   82.46 11,3,2 239
1.1643  2   82.84   82.86 350 411
1.1614  3   83.10   83.11 406 527
  83.11 842 176
1.1544  4   83.71   83.71 10,2,4 494
1.1476  3   84.32   84.32 044 565
1.1378  3   85.22   85.22 244 260
1.1374  3   85.26   85.28 15,1,0 386
1.1291  2   86.04   86.03 10,4,0 466
1.1265  4   86.28   86.28 152 455
1.1243  2   86.49   86.48 550 501
1.1168  1   87.22   87.23 026 213
1.1126  1   87.63   87.63 606 323
1.1082  3   88.07   88.08 13,3,0 566
  88.08 352 149
1.0983  1   89.07   89.08 934 191
1.0918  6   89.74   89.73 14,2,2 579
1.0863  1   90.32   90.33 16,0,0 167
1.0817  5   90.82   90.83 426 551
1.0736  1   91.70   91.68 552 220
1.0578  4   93.47   93.48 13,1,4 520
1.0420  1   95.34   95.34 626 303
1.0370  1   95.94   95.95 12,4,0 154
1.0277  6   97.10   97.10 136 415
1.0200  1   98.08   98.06 16,2,0 245
1.0148  3   98.77   98.77 844 426
1.0074  4   99.75   99.73 916 556
1.0001  1 100.75 100.75 15,3,0 332
0.9968  2 101.21 101.21 12,4,2 353
0.9903  1 102.13 102.13 060 478
0.9841  1 103.03 103.05 260 254
0.9787  2 103.82 103.82 354 342
0.9745  6 104.45 104.44 952 496
0.9704  3 105.08 105.06 17,1,2 405
0.9655  2 105.85 105.84 18,0,0 557
0.9627  2 106.28 106.31 15,1,4 322
0.9576  2 107.10 107.09 10,4,4 396
0.9549  3 107.55 107.56 554 431
0.9446  3 109.27 109.25 13,3,4 484
0.9327  3 111.35 111.33 462 420
0.9263  1 112.52 112.51 12,0,6 275
0.9210  3 113.52 113.50 14,4,2 473
0.9182  3 114.05 114.04 18,2,0 516
0.9148  3 114.71 114.70 446 433
a

Calculated on the basis of an orthorhombic unit cell, space group C2rara, a = 17.3795(5), b =5.9419(2), and c =7.2306(2) Å.

Fig. 16.

Fig. 16

X-ray precession photographs of Ca4Bi6O13 (Mo radiation), (a) (hk0), (b) (0ld).

3.3.7. Ca2Bi2O5 (C2B2-1:1)

The compound “Ca7Bi6O16”, (53.846 mol % CaO) was reported in [22] and [21], and the phase diagram in [21] (redrawn as Fig. 3) can be interpreted as indicating that it decomposes at about 929 °C. Experiments performed in the present work (Table 1) combined with a structure determination performed on crystals prepared in this study [24] indicate that the composition of this phase is really 1:1 (50 mol % CaO) rather than 7:6. The x-ray powder diffraction pattern of the phase shown in Fig. 17 and Table 14 agrees well with that reported in [22] (except for the shift in 2 θ noted above). Single crystal x-ray diffraction precession photographs (Fig. 18) indicate that the 1:1 compound is triclinic, and powder x-ray diffraction data [27] yield least squared values of a = 10.1222(7), b = 10.146(6), c = 10.4833(7) Å, α = 116.912(5), β = 107.135(6), γ = 92.939(6)°. The indexing of this pattern out to high angles in 2 θ could only be accomplished with the aid of calculated structure factors and the calculated powder pattern based on the single crystal structure determination reported in [24]. The structure determination reveals a unique Bi+3 coordination of U-shaped Bi3O11 groups with one five-fold coordinated Bi+3 bridging two four-fold “saw-horse” shaped polyhedra [24].

Fig. 17.

Fig. 17

X-ray powder diffraction pattern of the Ca2Bi2O5 compound.

Table 14.

X-ray powder diffraction data for the compound Ca2Bi2O5

d obs (Å) Rel I (%) 2 θ obs 2 θ calea hkl |F| cale
9.461  4   9.34   9.36 100 59
8.717  7 10.14 10.12 001 56
10.16 01¯1 63
8.001   11 11.05 11.07 1¯01 109
7.303  4 12.11 12.14 1¯10 66
6.916  4 12.79 12.81 111¯ 70
5.069  4 17.48 17.49 112¯ 40
17.49 02¯1 71
5.013  2 17.68 17.69 01¯2 56
4.965  1 17.85 17.87 2¯01 31
4.721  4 18.78 18.78 200 98
4.648   16 19.08 19.09 1¯02 191
4.421  6 20.07 20.09 020 93
4.352  3 20.39 20.41 02¯2 79
4.237  8 20.95 20.97 2¯11 141
4.182   19 21.23 21.23 122¯ 206
3.9940   10 22.24 22.24 2¯02 146
3.9746  7 22.35 23.33 11¯2 104
22.42   111b 120
3.9209  7 22.66 22.65 21¯1 130
3.8341   11 23.18 23.19 210 169
3.7480  1 23.72 23.69 12¯2 38
3.7065  4 23.99 24.00 120 103
3.5243  3 25.25 25.23 22¯1 81
3.5120  3 25.34 25.33 102 82
3.4957  6 25.46 25.48 1¯21 127
3.4530  2 25.78 25.79 222¯ 65
3.3834  2 26.32 26.31 221¯ 37
3.3696  3 26.43 26.43 3¯01 98
3.3571  3 26.53 26.52 123¯ 76
3.3361   14 26.70 26.69 021 197
3.3226  8 26.81 26.80 2¯12 88
26.83 012 115
3.3045   11 26.96 26.96 03¯2 192
3.2806  6 27.16 27.13 01¯3 135
27.18 023 60
3.2501  5 27.42 27.41 13¯1 133
3.2179  4 27.70 27.70 2¯21 117
3.1456  8 28.35 28.33 300 127
28.35 132¯ 102
3.1059   54 28.72 28.74 311¯ 471
3.0600  3 29.12 29.15 223¯ 97
3.0006 100 29.75 29.73 2¯03 427
29.74 1¯30 410
29.77 211 116
2.9938   57 29.82 29.82 22¯   469
2.9099  5 30.70 30.69 003 132
2.8989  9 30.82 30.82 03¯3 111
2.8897   36 30.92 30.93 12¯3 83
30.93 133¯ 380
31.09    3¯20b 122
2.8361   36 31.52 31.49 3¯12 228
31.53 112 391
31.55 31¯1 82
2.7828  7 32.14 32.13 2¯30 172
32.17 310 99
2.7519  2 32.51 32.50 202 81
2.7234  5 32.86 32.84 32¯1 155
2.6620  3 33.64 33.63 3¯03 101
2.6049  1 34.40 34.38 323¯ 68
2.5510   12 35.15 35.14 114¯ 259
2.5336  4 35.40 35.40 224¯ 91
35.41 04¯2 95
2.5171  2 35.64 35.64 214¯ 68
35.65 4¯01 72
2.5055  1 35.81 35.83 02¯4 86
2.4761  2 36.25 36.24 2¯31 117
2.4500  1 36.65 36.63 14¯1 73
2.4333  2 36.91 36.92 013 106
2.4182  2 37.15 37.13 412¯ 84
2.4132  3 37.23 37.24 01¯4 122
2.3921  5 37.57 37.55 32¯2 177
2.3805  1 37.76 37.75 3¯13 79
2.3594  4 38.11 38.09 400 144
2.3271  2 38.66 38.64 314¯ 93
2.3116  6 38.93 38.95 332¯ 107
2.3071   10 39.01 38.99 324¯ 138
39.02 24¯1 245
2.3003  9 39.13 39.14 413¯ 139
39.15 4¯20 133
2.2896   12 39.32 39.31 141¯ 259
2.2857   11 39.39 39.39 230 158
2.2757   13 39.57 39.56 2¯21 348
2.2658  4 39.75 39.76 12¯4 163
2.2484  1 40.07 40.06 33¯2 55
2.2192  1 40.62 40.61 13¯4 69
2.2083  4 40.83 40.83 243¯ 116
2.1722  2 41.54 41.55 331¯ 94
2.1578  3 41.83 41.84 203 146
2.1311  3 42.38 42.40 1¯23 146
2.1055  2 42.92 42.95 24¯3 85
2.0765  1 43.55 43.55 34¯1 96
2.0558   24 44.01 44.00 241¯ 400
44.01 14¯4 207
2.0536   24 44.06 44.06 140 140
2.0326  3 44.54 44.54 235¯ 149
44.54 43¯1 198
2.0206  4 44.82 44.81    1¯141 39
2.0167  7 44.91 44.90 05¯2 159
2.0154  5 44.94 44.95 502 149
44.95 3¯32 137
2.0087  2 45.10 45.10 321 123
1.9911   18 45.52 45.50 02¯5 396
1.9841  4 45.69 45.72 325¯ 180
1.9763  4 45.88 45.87 343¯ 168
1.9722  6 45.98 45.96 433¯ 202
46.11    5¯12b 117
1.9490  2 46.56 46.54 330 103
1.9322  3 46.99 46.98 41¯2 123
1.9287  4 47.08 47.05 5¯03 104
47.10 041 158
47.12 512¯3b 109
1.9081  3 47.62 47.64 5¯21 164
1.9043  3 47.72 47.74 434¯ 95
1.8946  3 47.98 47.99 154¯ 124
1.8850  1 48.24 48.26 3¯41 124
1.8462  5 49.32 49.34 4¯14 204
49.82    3¯05b 102
1.8261  7 49.90 49.90 425¯ 266
1.8112  6 50.34 50.36 514¯ 270
1.7939   13 50.86 50.87 51¯1 396
1.7743   16 51.46 51.46 2¯24 368
51.47 5¯30 266
1.7660  6 51.72 51.73 35¯2 280
1.7569  3 52.01 52.01 3¯33 176
1.7459  3 52.36 52.36 521¯ 156
1.7418  2 52.49 52.47 443¯ 107
1.7388  4 52.59 52.58 05¯5 100
1.7349  8 52.72 52.73 1¯42 261
1.7306  3 52.86 52.88 4¯05 127
1.7267  7 52.99 53.01 444¯ 300
1.7200  4 53.21 53.23 25¯4 177
53.26   322b 109
53.38    43¯3b 145
1.7135  4 53.43 53.45 255¯ 223
1.7017   12 53.83 53.84 421 377
54.12    35¯3b 104
54.12    353¯b 118
1.6883  9 54.29 54.27 336¯ 250
54.28 06¯3 248
1.6846  4 54.42 54.40 2¯15 108
54.41 146¯ 128
54.62   232b 113
54.66    41¯3b 151
1.6738  7 54.80 54.78 16¯3 269
54.95    16¯2b 142
1.6682   16 55.00 54.98 15¯5 305
54.99 042 242
54.99 6¯11 117
55.06    216¯b 213
55.07   412b 128
1.6643   15 55.14 55.13 4¯33 183
55.14 31¯4 386
1.6596  3 55.31 55.32 223 128
1.6530  5 55.55 55.55 6¯03 260
1.6503  5 55.65 55.63 1¯15 217
55.95    612¯b 101
56.06    04¯6b 147
1.6370  4 56.14 56.14 116¯ 105
1.6357  5 56.19 56.18 1¯51 231
1.6248  1 56.60 56.58 26¯2 110
56.71    45¯1b 119
1.6201  2 56.78 56.77 16¯4 106
1.6172  2 56.89 56.89 105 161
1.6092  7 57.20 57.21 4¯42 313
1.5997  4 57.57 57.56 45¯2 242
1.5919  2 57.88 57.87 535¯ 154
1.5884  2 58.02 58.00 611¯ 150
1.5846  2 58.17 58.16 26¯1 152
1.5797  2 58.37 58.35 133 266
58.74    531¯b 111
1.5694  1 58.79 58.81 136¯ 129
1.5672  2 58.88 58.88 165¯ 145
1.5621  1 59.09 59.11 25¯5 133
1.5523  6 59.50 59.51 622¯ 300
1.5453  2 59.80 59.82 124 159
a

Calculated on the basis of a triclinic unit cell, space group P1¯, a = 10.1222(7), b = 10.1466(6), c = 10.4833(7) Å, α = 116.912(5), β = 107.135(6), and γ = 92.939(6)°.

b

Calculated |F| greater than 100 but cannot be distinguished from nearby peaks.

Fig. 18.

Fig. 18

X-ray precession photographs of Ca2Bi2O5 (Mo radiation) (a) (hk0), (b) (h0l).

3.3.8 “C-mon” MetastablePhase ~Ca6+xSr6_xBi14O33 (x → 6)

When the 1:1 phase is heated between 885 and 925 °C for 20 min to 3 h a metastable C-centered monoclinic phase is formed which may be nearly single phase [a = 21.295(4), b =4.3863(8), c =12.671(2) Å, and β = 102.74(1)°]. After overnight heat treatments, however, this phase decomposes to a “bcc” plus CaO assemblage. Comparison of the X-ray powder diffraction patterns (Fig. 19, Table 15) for this phase and for Ca6+xSr6−xBi14O33 (x ~ 4.8) indicates that it is the metastable end member extension of the stable ternary solid solution.

Fig. 19.

Fig. 19

X-ray powder diffraction pattern comparing the “C-mon” metastable phase ~ Ca6+xSr6−xBi14O33 x → 6 to the ternary x → 0.

Table 15.

X-ray powder diffraction data for the “C-mon” Metastable Phase

d obs (Å) Rel I (%) 2 θ obs 2 θ calea hkl
12.405  2   7.12   7.15 001
10.419  3   8.48   8.51 200
9.009  6   9.81   9.83 201¯
7.219  1 12.25 12.27 201
5.221  4 16.97 16.99 401¯
4.865   11 18.22 18.24 202
4.489   27 19.76 19.74 402¯
4.447  4 19.95 19.94 401
 1   20.62b
4.109  2 21.61 21.59 111¯
3.7049  4 24.00 24.00 310
 5   24.07b
3.6718  8 24.22 24.23 311¯
3.6044   11 24,68 24.69 402
24.69 112¯
3.5730  6 24.90 24.93 203
3.4491   22 25.81 25.79 112
3.4360   23 25.91 25.88 311
3.3583   11 26.52 26.53 312¯
3.3521   11 26.57 26.57 602¯
3.1576  2 28.24 28.24 601
3.1565  2 28.25 28.24 204¯
3.0922  3 28.85 28.87 004
3.0457   74 29.30 29.31 511¯
3.0406   88 29.35 29.34 113¯
3.0265   97 29.49 29.51 312
3.0056 100 29.70 29.59 510
29.60 603¯
2.9267   69 30.52 30.50 403
2.8299  2 31.59 31.61 511
2.7989   11 31.95 31.96 204
 4    32.17CaO
2.6605  6 33.66 33.64 801¯
2.6101  2 34.33 34.35 604¯
2.6042  1 34.41 34.38 313
2.5976  1 34.50 34.52 800
2.5336  5 35.40 35.40 205¯
2.4715  6 36.32 36.31 005
2.4359  9 36.87 36.88 801
 9    37.34CaO
2.3541  2 38.20 38.19 514¯
2.3036  1 39.07 39.07 713¯
2.2463  2 40.11 40.10 804¯
40.11 314
2.2234  3 40.54 40.51 802
2.1919   25 41.15 41.13 020
2.1593  5 41.80 41.80 021
2.1534  6 41.92 41.93 712
2.1470  5 42.05 42.08 220
2.1225  7 42.56 42.58 114¯
2.1102   29 42.82 42.80 206¯
2.0783   25 43.51 43.51 406¯
2.0760   27 43.56 43.54 10,0,0
2.0630   17 43.85   43.86 405
2.0223  3 44.78 44.79 421¯
a

Calculated on the basis of a monoclinic unit cell, C2/m, a =21.295(4), b =4.3863(8), c = 12.671(2) Å, and β = 102.74(1)°.

3.4 The System CaO-Bi2O3-CuO

Ternary phase relations of the system CaO-l/2Bi2O3-CuO have been studied at temperatures between 700 and 900 °C. No ternary compounds were discovered, but new data on the CaO-l/2Bi2O3 and CaO-CuO binaries have been incorporated. The ternary phase relations at 700–750 and 750–800 °C are shown in Figs. 20 and 21 respectively. There remains some uncertainty about the equilibrium phase relations involving Ca1−xCuO2.

Fig. 20.

Fig. 20

CaO-Bi2O3-CuO 700–750 °C phase diagram.

Fig. 21.

Fig. 21

CaO-Bi2O3-CuO 750–800 °C phase diagram.

To verify that the three-phase equilibria inferred from synthesis runs (products of a synthesis from CaCO3, Bi2O3, and CuO) reflected equilibrium phase assemblages, various three phase mixtures of pre-made binary compounds were reacted isothermally. For example, such experiments demonstrate that a mechanical mixture of Ca4Bi6O13+7Ca2CuO3+3Ca4.533Cu5.467O10 (bulk composition 51.80: 9.84: 38.36) is metastable with respect to a mixture of Ca2Bi2O5+Ca2CuO3+Ca4.533Cu5.467O10 at 700 °C. Because the nucleation (or increase in volume fraction) of Ca1−xxCuO2 from binary compounds was never demonstrated at 700 °C (see Sec. 3.2.2) the possibilities of three phase equilibria including Ca2CuO3 (and/or Ca1−xCuO2) plus Bi6Ca4O13 can not be ruled out. For example, the mechanical mixture 5Ca2CuO3+Ca4Bi6O13 which has a bulk composition of 56:24:20 shows no convincing evidence of Ca1−xCuO2 even after six heating/grinding treatments at 700 °C.

4. Summary

A new phase diagram is presented for the system CaO-CuO with the composition of the phase Ca1−xCuO2 corresponding to a Ca:Cu ratio of 45.33: 54.67. This compound decomposes at ~ 755 °C in air and 835 °C in O2. The phases previously reported as “Ca7Bi10O20” and “Ca7Bi6O16” [21,22] are really Ca4Bi6O13 and Ca2Bi2O5 respectively. X-ray powder and single crystal data are reported for almost all of the binary phases encountered. No ternary phases were found in the system CaO-l/2Bi2O3-CuO. Above 775 °C CuO is in equilibrium with all of the binary CaO-Bi2O3 phases, and this is probably true below 775 °C as well.

Acknowledgments

Phase diagrams were computer drafted by T. Green, American Ceramic Society Associate of the Phase Diagrams for Ceramists, Data Center as NIST. Sibel P. Bayracki, under the guidance of J. J. Ritter, determined the stoichiometry of Ca1−xCuO2 using the citrate route.

Biography

About the authors: Benjamin P. Burton is a Physical Scientist in the Ceramics Division of the NIST Materials Science and Engineering Laboratory. Claudia J. Rawn is currently a graduate student at the university of Arizona, and was formerly in the Ceramics Division of the NIST Materials Science and Engineering Laboratory. Robert S. Roth is currently under contract at NIST, and was formerly in the Ceramics Division of the NIST Materials Science and Engineering Laboratory. N M. Hwang is with the Korea Science and Engineering Foundation, Daejeon Chunynam, Korea, and was a Guest Scientist at NIST. The National Institute of Standards and Technology is an agency of the Technology Administration, U.S. Department of Commerce.

5. References

  • 1.Bednorz JG, Müller KA. Z Phys B-Condensed Matter. 1986;64:189. [Google Scholar]
  • 2.Takagi H, Uchida S, Kitazawa K, Tanaka T. Japn J Appl Phys Lett. 1987;26:L123. [Google Scholar]
  • 3.Cava RJ, Batlog B, VanDover RB, Murphy DW, Sunshine SA, Siegrist T, Rcmeika JR, Rietman EA, Zahurak A, Espinosa GP. Phys Rev Lett. 1987;58:1676. doi: 10.1103/PhysRevLett.58.1676. [DOI] [PubMed] [Google Scholar]
  • 4.Wu MK, Jr, Asburn JR, Torng CJ, Hor PH, Meng RL, Gao L, Huang ZJ, Wang YQ, Chu CW. Phys Rev Lett. 1987;58:908. doi: 10.1103/PhysRevLett.58.908. [DOI] [PubMed] [Google Scholar]
  • 5.Maeda H, Tanaka Y, Fukutomi A, Asano T. Japn J Appl Phys. 1988;27:L209–10. [Google Scholar]
  • 6.Sheng ZZ, Hermann AM. Nature. 1988;332:55–57. [Google Scholar]
  • 7.Roth RS, Rawn CJ, Ritter JJ, Burton BP. J Am Cerm Soc. 1989;72:1545. [Google Scholar]
  • 8.Siegrist T, Zahurak SM, Murphy DW, Roth RS. Nature. 1988;334:231–232. [Google Scholar]
  • 9.Roth RS, Rawn CJ, Burton BP, Beech F. J Res Natl Inst Stand Technol. 1990;95:291. doi: 10.6028/jres.095.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Roth RS, Rawn CJ, Whitler JD, Chiang CK, Wong-Ng WK. J Am Ceram Soc. 1989;72(3):395–99. [Google Scholar]
  • 11.Siegrist T, Schneemeyer LF, Sunshine SA, Waszczak JV, Roth RS. Mat Res Bull. 1988;23:1429–1438. [Google Scholar]
  • 12.Roth RS, Rawn CJ, Bendersky LA. J Mater Res. 1990;5:46. [Google Scholar]
  • 13.Roth RS, Burton BP, Rawn CJ. in Superconductivity and Ceramic Superconductors. In: Nair KM, Giess EA, editors. Ceram Trans. Vol. 13. 1990. p. 23. [Google Scholar]
  • 14.Rawn CJ, Roth RS, Burton BP, Hill MD. J Am Ceram Soc. to be published. [Google Scholar]
  • 15.Siegrist T, Roth RS, Rawn CJ, Ritter JJ. Chem Mat. 1990;2:192. [Google Scholar]
  • 16.Kakhan BG, Lazarev VB, Shaplygin IS. Zh Neorg Khim. 1979;24(6):1663–68. [Google Scholar]; Russ J Inorg Chem (Engl Transi) 1979;24(6):922–925. [Google Scholar]
  • 17.Roth RS, Dennis JR, McMurdie HF, editors. Am Ceram Soc. Vol. 6. Westervillc, OH: 1987. Phase Diagrams for Ceramists. [Google Scholar]
  • 18.Roth RS, Hwang NH, Rawn CJ, Burton BP, Ritter JJ. J Am Ceram Soc. 1991;74(9):2148. [Google Scholar]
  • 19.Powder Diffraction File, Card No. 34-284. Joint Committee on Powder Diffraction Standards. Swarthmore, PA: 1984. [Google Scholar]
  • 20.Galla AMM, White J. Trans Br Ceram Soc. 1966;65:181. [Google Scholar]
  • 21.Confiant P, Boivin JC, Thomas DJ. Solid State Chem. 1976;18:133. [Google Scholar]
  • 22.Confiant P, Boivin JC, Tridot G. C R Acad Sei Paris. 1974;279:457. [Google Scholar]
  • 23.Parise JB, Torardi CC, Whangbo HN, Rawn CJ, Roth RS, Burton BP. Chem Mater. 1990;2:454. [Google Scholar]
  • 24.Parise JB, Torardi CC, Rawn CJ, Roth RS, Burton BP, Santoro A. J Solid State Chem. 1993;102:132. [Google Scholar]
  • 25.Sillen LG, Aurivillius BZ. Krist. 1943;101:483. [Google Scholar]
  • 26.Levin EM, Roth RS. Natl Bur Stands (US), J Res Phys Chem. 1964;68:197. doi: 10.6028/jres.068A.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Rawn CJ, Roth RS, McMurdie HF. Powder Diffraction. 1993;7(2):109. [Google Scholar]

Articles from Journal of Research of the National Institute of Standards and Technology are provided here courtesy of National Institute of Standards and Technology

RESOURCES