Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Apr 29;72(Pt 5):756–759. doi: 10.1107/S2056989016006800

Crystal structure of (+)-N-[(1R,5S,6S,9S)-5-hydroxy­methyl-3,3,9-trimethyl-8-oxo-2,4,7-trioxabi­cyclo­[4.3.0]nonan-9-yl]acetamide

Takeshi Oishi a,*, Shun Tsuzaki b, Tomoya Sugai b, Takaaki Sato b, Noritaka Chida b
PMCID: PMC4908510  PMID: 27308035

In the title compound, the 1,3-dioxane ring is in a chair-like conformation, while the fused oxolane ring adopts an envelope form. In the crystal, classical O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into a sheet structure.

Keywords: crystal structure; bicyclic compound; 1,3-dioxane; oxolane; hydrogen bond; hy­droxy group

Abstract

In the title compound, C12H19NO6, the six-membered 1,3-dioxane ring adopts a chair-like conformation. The seat of this chair, containing two O atoms, is essentially planar, with a maximum deviation of 0.0021 (12) Å. The five-membered oxolane ring cis-fused to the 1,3-dioxane ring adopts an envelope form. The bridgehead C atom at the flap, which is bonded to the tetra­substituted C atom of the oxolane ring, deviates from the mean plane of other ring atoms by 0.539 (4) Å. In the crystal, classical O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into a sheet structure enclosing an R 4 4(24) graph-set motif. Weak inter­molecular C—H⋯O inter­actions support the sheet formation.

Chemical context  

Sphingofungin F [systematic name: (2S,3R,4R,5S,E)-2-amino-3,4,5-trihy­droxy-2-methyl-14-oxoicos-6-enoic acid] was isolated from the fermentation broth of Paecilomyces variotii by Horn et al. (1992). It shows anti­fungal activity by inhibition of the serine palmitoyltransferase to suppress the early step of biosynthesis of the sphingosines (Zweerink et al., 1992). The structure of sphingofungin F features a hydro­philic α,α-disubstituted α-amino acid moiety possessing four contiguous stereocenters, connected to a hydro­phobic carbon chain by E-olefin. The title compound, which is equivalent to the hydro­philic part with correct stereochemistry, was provided in the total synthesis of sphingofungin F (Tsuzaki et al., 2015).graphic file with name e-72-00756-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. The 1,3-dioxane ring (C1/O2/C3/O4/C5/C6) is in a chair-like conformation with puckering parameters of Q = 0.497 (3) Å, θ = 169.6 (3)°, φ = 116.8 (16)°, Q(2) = 0.090 (3) Å and Q(3) = −0.489 (3) Å. The seat of this chair (C1/O2/O4/C5) is essentially planar with a maximum deviation of 0.0021 (12) Å for O4, and atoms C6 and C3, positioned at the headrest and the footrest, respectively, deviate from the mean plane of the seat by 0.524 (4) and −0.646 (3) Å. The equatorially oriented C5—C15 and C3—C17 bonds make angles with the normal of the Cremer & Pople plane being 63.41 (18) and 63.35 (18)°, respectively, while the C1—C9 bond is a little tilted from the ideal equatorial position with an angle of 50.50 (17)° due to the ring-fusion system. The oxolane ring (C1/C6/O7/C8/C9), which is cis-fused to the 1,3-dioxane ring, adopts an envelope form with puckering parameters of Q(2) = 0.345 (3) Å and φ(2) = 254.7 (4)°. The bridgehead atom C1 deviates from the mean plane of the other four ring atoms by 0.539 (4) Å.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. Only H atoms connected to N, O and chiral C atoms are shown for clarity.

Supra­molecular features  

In the crystal, an O—H⋯O hydrogen bond (O16—H16⋯O14i; Table 1) connects the mol­ecules into a chain structure running along the c axis, with a C(10) graph-set motif (Fig. 2). A weak C—H⋯O inter­action (C13—H13B⋯O7iv; Table 1) supports formation of the chain. The chains are linked into a sheet structure parallel to (100) by an N—H⋯O hydrogen bond (N11—H11⋯O16ii; Table 1) which generates a C(8) graph-set motif (Fig. 3). Weak C—H⋯O inter­actions (C5—H5⋯O10iii, C19—H19A⋯O4iii and C13—H13C⋯O14v; Table 1) are also observed between the chains. In this sheet structure, the classical O—H⋯O and N—H⋯O hydrogen bonds enclose an Inline graphic(24) graph-set motif, and the other weak C—H⋯O inter­actions add to the stability of the network (Fig. 4).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O16—H16⋯O14i 0.84 1.91 2.742 (2) 168
N11—H11⋯O16ii 0.88 2.28 2.928 (3) 131
C5—H5⋯O10iii 1.00 2.42 3.289 (3) 145
C19—H19A⋯O4iii 0.98 2.52 3.386 (3) 147
C13—H13B⋯O7iv 0.98 2.55 3.433 (3) 150
C13—H13C⋯O14v 0.98 2.62 3.424 (3) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 2.

Figure 2

A partial packing diagram, viewed down the b axis, showing the chain structure running along the c axis. Yellow lines indicate the inter­molecular O—H⋯O hydrogen bonds. Black dashed lines indicate weak inter­molecular C—H⋯O inter­actions. Only H atoms involved in the hydrogen bonds are shown for clarity. [Symmetry codes: (i) x, y, z + 1; (iv) x, y, z − 1.]

Figure 3.

Figure 3

Another partial packing diagram, viewed down the c axis, showing the sheet structure parallel to (100). Yellow lines indicate the inter­molecular N—H⋯O hydrogen bonds. Black dashed lines indicate weak inter­molecular C—H⋯O inter­actions. Only H atoms involved in the hydrogen bonds are shown for clarity. [Symmetry codes: (ii) −x + 2, y − Inline graphic, −z + 1; (iii) −x + 2, y + Inline graphic, −z + 1; (vi) x, y + 1, z + 1.]

Figure 4.

Figure 4

A packing diagram, viewed down the a axis, showing the hydrogen bonds in the sheet structure parallel to (100). Yellow lines indicate inter­molecular O—H⋯O and N—H⋯O hydrogen bonds. Black dashed lines indicate weak inter­molecular C—H⋯O inter­actions. Only H atoms involved in the hydrogen bonds are shown for clarity.

Database survey  

In the Cambridge Structural Database (CSD, Version 5.37, November 2015; Groom et al., 2016), 18 structures containing a 2,4,7-trioxabi­cyclo­[4.3.0]nonan-8-one skeleton, (a), are registered (Fig. 5). These include five compounds (YISHIR and YISHUD: Han et al., 1994; LAVVIO: Watkin et al., 2005; ZINDEH and ZINDIL: Glawar et al., 2013) with 3,3-dimethyl substituents, (b); one compound (NUIJAS: Henkel et al., 1998) with 5-hy­droxy­methyl substituent, (c); and one compound (QIFFUH: Hotchkiss et al., 2007) possessing a tetra­substituted carbon with nitro­gen at the C-9 position, (d). The conformations of the bicyclic systems in these seven structures are similar to those in the title compound: the 1,3-dioxane rings adopt chair-like forms, and the cis-fused oxolane rings adopt envelope forms with bridgehead C-1 position at the flap.

Figure 5.

Figure 5

The core structures for database survey: (a) 2,4,7-trioxabi­cyclo­[4.3.0]nonan-8-one, and its derivatives with (b) 3,3-dimethyl, (c) 5-hy­droxy­methyl and (d) 9-methyl-9-N-substituents.

Synthesis and crystallization  

The title compound was afforded in the total synthesis of sphingofungin F from a d-ribose derivative (Tsuzaki et al., 2015). Purification was carried out by silica gel column chromatography, and colorless crystals were obtained from an ethyl acetate solution under a hexane-saturated atmosphere, by slow evaporation at ambient temperature. M.p. 497–498 K. [α]28 D + 157.7 (c 1.04, CHCl3). HRMS (ESI) m/z calculated for C12H19NO6Na+ [M + Na]+: 296.1110; found: 296.1104.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were positioned geometrically with C—H = 0.95–1.00 Å, and constrained to ride on their parent atoms with U iso(H) = 1.2U eq(C) or 1.5U eq(methyl C). The hy­droxy H atom was placed guided by difference maps, with O—H = 0.84 Å and with U iso(H) = 1.5U eq(O). The amide H atom was also placed guided by difference maps, with N—H = 0.88 Å and with U iso(H) = 1.2U eq(N).

Table 2. Experimental details.

Crystal data
Chemical formula C12H19NO6
M r 273.28
Crystal system, space group Monoclinic, P21
Temperature (K) 90
a, b, c (Å) 8.2102 (3), 9.9513 (3), 8.7480 (3)
β (°) 108.142 (2)
V3) 679.20 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.91
Crystal size (mm) 0.14 × 0.14 × 0.07
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.88, 0.94
No. of measured, independent and observed [I > 2σ(I)] reflections 8304, 2386, 2235
R int 0.039
(sin θ/λ)max−1) 0.596
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.032, 0.068, 1.00
No. of reflections 2386
No. of parameters 177
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.18
Absolute structure Flack x determined using 941 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.13 (11)

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS2013 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016006800/is5451sup1.cif

e-72-00756-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016006800/is5451Isup2.hkl

e-72-00756-Isup2.hkl (131.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016006800/is5451Isup3.cml

CCDC reference: 1475848

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was partially supported by the Keio Gijuku Fukuzawa Memorial Fund for the Advancement of Education and Research. We also thank Professor S. Ohba (Keio University, Japan) for his valuable advice.

supplementary crystallographic information

Crystal data

C12H19NO6 Dx = 1.336 Mg m3
Mr = 273.28 Melting point = 497–498 K
Monoclinic, P21 Cu Kα radiation, λ = 1.54178 Å
a = 8.2102 (3) Å Cell parameters from 5609 reflections
b = 9.9513 (3) Å θ = 5.3–66.5°
c = 8.7480 (3) Å µ = 0.91 mm1
β = 108.142 (2)° T = 90 K
V = 679.20 (4) Å3 Prism, colorless
Z = 2 0.14 × 0.14 × 0.07 mm
F(000) = 292

Data collection

Bruker D8 Venture diffractometer 2386 independent reflections
Radiation source: fine-focus sealed tube 2235 reflections with I > 2σ(I)
Multilayered confocal mirror monochromator Rint = 0.039
Detector resolution: 10.4167 pixels mm-1 θmax = 66.8°, θmin = 5.3°
φ and ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −11→11
Tmin = 0.88, Tmax = 0.94 l = −10→10
8304 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + 0.324P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
2386 reflections Δρmax = 0.20 e Å3
177 parameters Δρmin = −0.18 e Å3
1 restraint Absolute structure: Flack x determined using 941 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.13 (11)

Special details

Experimental. IR (KBr): 3311, 2967, 2896, 1785, 1658, 1539, 1170, 1117, 1057 cm-1; 1H NMR (500 MHz, CDCl3): δ (p.p.m.) 5.91 (s, 1H; H11), 4.82 (d, J = 2.0 Hz, 1H; H1), 4.37 (dd, J = 2.0, 1.7 Hz, 1H; H6), 4.21 (ddd, J = 7.2, 5.5, 1.7 Hz, 1H; H5), 3.92–3.79 (m, 2H; H15AB), 2.05 (bs, 1H; H16), 2.00 (s, 3H; H14ABC), 1.60 (s, 3H; H19ABC), 1.46 (s, 3H; H18ABC), 1.35 (s, 3H; H17ABC); 13C NMR (125 MHz, CDCl3): δ (p.p.m.) 176.9 (C), 170.1 (C), 98.8 (CH), 71.6 (CH), 71.5 (CH), 68.9 (CH), 62.3 (CH2), 61.6 (C), 29.1 (CH3), 23.5 (CH3), 19.2 (CH3), 18.0 (CH3).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.9761 (3) 0.3025 (3) 0.3147 (3) 0.0188 (6)
H1 0.9423 0.3845 0.2459 0.023*
O2 0.8860 (2) 0.18536 (19) 0.2398 (2) 0.0201 (4)
C3 0.7125 (3) 0.1762 (3) 0.2378 (3) 0.0206 (6)
O4 0.7068 (2) 0.17674 (19) 0.3987 (2) 0.0210 (4)
C5 0.7792 (3) 0.2941 (3) 0.4887 (3) 0.0204 (6)
H5 0.7051 0.3729 0.4412 0.024*
C6 0.9578 (3) 0.3214 (3) 0.4822 (3) 0.0199 (6)
H6 0.9921 0.4151 0.5201 0.024*
O7 1.0816 (2) 0.22653 (18) 0.5827 (2) 0.0209 (4)
C8 1.2000 (3) 0.1928 (3) 0.5118 (3) 0.0197 (6)
C9 1.1663 (3) 0.2685 (3) 0.3525 (3) 0.0188 (6)
O10 1.3137 (2) 0.1152 (2) 0.5716 (2) 0.0250 (5)
N11 1.2014 (3) 0.1803 (2) 0.2341 (2) 0.0189 (5)
H11 1.2597 0.1056 0.2656 0.023*
C12 1.1456 (3) 0.2118 (3) 0.0764 (3) 0.0199 (6)
C13 1.1567 (4) 0.1008 (3) −0.0361 (3) 0.0243 (6)
H13A 1.2479 0.0382 0.0198 0.037*
H13B 1.1822 0.139 −0.1294 0.037*
H13C 1.0471 0.0528 −0.0722 0.037*
O14 1.0868 (2) 0.32336 (19) 0.0272 (2) 0.0232 (4)
C15 0.7705 (4) 0.2708 (3) 0.6581 (3) 0.0223 (6)
H15A 0.6511 0.2505 0.6536 0.027*
H15B 0.8432 0.1931 0.7074 0.027*
O16 0.8286 (2) 0.3877 (2) 0.7522 (2) 0.0251 (4)
H16 0.9172 0.3693 0.8284 0.038*
C17 0.6531 (4) 0.0385 (3) 0.1716 (3) 0.0265 (6)
H17A 0.735 −0.0292 0.2314 0.04*
H17B 0.6455 0.035 0.0577 0.04*
H17C 0.54 0.0202 0.1828 0.04*
C18 0.6035 (4) 0.2878 (3) 0.1367 (3) 0.0248 (6)
H18A 0.646 0.3752 0.1842 0.037*
H18B 0.484 0.2765 0.1339 0.037*
H18C 0.6104 0.2834 0.027 0.037*
C19 1.2807 (3) 0.3934 (3) 0.3836 (3) 0.0225 (6)
H19A 1.2492 0.4528 0.4593 0.034*
H19B 1.2653 0.4411 0.2821 0.034*
H19C 1.4009 0.3663 0.4295 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0219 (13) 0.0169 (14) 0.0158 (12) −0.0014 (11) 0.0034 (10) 0.0009 (11)
O2 0.0200 (9) 0.0209 (10) 0.0178 (8) −0.0027 (8) 0.0033 (7) −0.0019 (8)
C3 0.0201 (13) 0.0240 (14) 0.0163 (12) −0.0004 (12) 0.0036 (10) 0.0020 (13)
O4 0.0253 (10) 0.0196 (10) 0.0165 (9) −0.0042 (8) 0.0044 (7) −0.0005 (8)
C5 0.0235 (14) 0.0174 (14) 0.0190 (13) 0.0008 (11) 0.0049 (10) −0.0018 (12)
C6 0.0247 (15) 0.0149 (14) 0.0179 (13) 0.0023 (11) 0.0035 (11) −0.0008 (11)
O7 0.0227 (10) 0.0232 (11) 0.0155 (9) 0.0015 (8) 0.0038 (7) 0.0010 (8)
C8 0.0202 (13) 0.0199 (14) 0.0162 (12) −0.0041 (11) 0.0016 (10) −0.0031 (12)
C9 0.0217 (14) 0.0185 (14) 0.0150 (12) 0.0001 (10) 0.0039 (10) −0.0021 (11)
O10 0.0265 (11) 0.0251 (11) 0.0199 (10) 0.0042 (9) 0.0021 (8) 0.0016 (9)
N11 0.0204 (11) 0.0182 (11) 0.0168 (11) 0.0034 (9) 0.0040 (8) −0.0010 (10)
C12 0.0160 (12) 0.0230 (15) 0.0196 (13) −0.0034 (11) 0.0043 (10) −0.0029 (12)
C13 0.0298 (16) 0.0242 (15) 0.0185 (13) 0.0026 (12) 0.0069 (11) −0.0003 (12)
O14 0.0292 (10) 0.0189 (11) 0.0190 (9) 0.0018 (8) 0.0040 (8) 0.0024 (8)
C15 0.0244 (15) 0.0226 (15) 0.0191 (13) −0.0023 (11) 0.0057 (11) −0.0022 (12)
O16 0.0310 (11) 0.0215 (10) 0.0188 (10) 0.0032 (9) 0.0018 (8) −0.0035 (9)
C17 0.0260 (15) 0.0288 (16) 0.0223 (14) −0.0040 (12) 0.0040 (12) −0.0041 (13)
C18 0.0223 (14) 0.0299 (17) 0.0195 (13) −0.0006 (12) 0.0028 (11) 0.0035 (13)
C19 0.0229 (14) 0.0216 (14) 0.0219 (14) −0.0021 (11) 0.0053 (11) −0.0020 (13)

Geometric parameters (Å, º)

C1—O2 1.426 (3) N11—H11 0.88
C1—C6 1.530 (4) C12—O14 1.233 (3)
C1—C9 1.530 (4) C12—C13 1.501 (4)
C1—H1 1.0 C13—H13A 0.98
O2—C3 1.422 (3) C13—H13B 0.98
C3—O4 1.423 (3) C13—H13C 0.98
C3—C17 1.509 (4) C15—O16 1.419 (3)
C3—C18 1.525 (4) C15—H15A 0.99
O4—C5 1.431 (3) C15—H15B 0.99
C5—C6 1.510 (4) O16—H16 0.84
C5—C15 1.523 (4) C17—H17A 0.98
C5—H5 1.0 C17—H17B 0.98
C6—O7 1.463 (3) C17—H17C 0.98
C6—H6 1.0 C18—H18A 0.98
O7—C8 1.349 (3) C18—H18B 0.98
C8—O10 1.199 (3) C18—H18C 0.98
C8—C9 1.532 (4) C19—H19A 0.98
C9—N11 1.453 (3) C19—H19B 0.98
C9—C19 1.530 (4) C19—H19C 0.98
N11—C12 1.348 (3)
O2—C1—C6 110.4 (2) C12—N11—H11 119.7
O2—C1—C9 105.5 (2) C9—N11—H11 119.7
C6—C1—C9 102.6 (2) O14—C12—N11 122.6 (3)
O2—C1—H1 112.6 O14—C12—C13 122.0 (2)
C6—C1—H1 112.6 N11—C12—C13 115.4 (2)
C9—C1—H1 112.6 C12—C13—H13A 109.5
C3—O2—C1 115.6 (2) C12—C13—H13B 109.5
O2—C3—O4 109.22 (18) H13A—C13—H13B 109.5
O2—C3—C17 105.4 (2) C12—C13—H13C 109.5
O4—C3—C17 106.1 (2) H13A—C13—H13C 109.5
O2—C3—C18 111.4 (2) H13B—C13—H13C 109.5
O4—C3—C18 112.1 (2) O16—C15—C5 109.3 (2)
C17—C3—C18 112.2 (2) O16—C15—H15A 109.8
C3—O4—C5 114.3 (2) C5—C15—H15A 109.8
O4—C5—C6 111.6 (2) O16—C15—H15B 109.8
O4—C5—C15 105.8 (2) C5—C15—H15B 109.8
C6—C5—C15 113.9 (2) H15A—C15—H15B 108.3
O4—C5—H5 108.5 C15—O16—H16 109.5
C6—C5—H5 108.5 C3—C17—H17A 109.5
C15—C5—H5 108.5 C3—C17—H17B 109.5
O7—C6—C5 111.2 (2) H17A—C17—H17B 109.5
O7—C6—C1 103.9 (2) C3—C17—H17C 109.5
C5—C6—C1 113.6 (2) H17A—C17—H17C 109.5
O7—C6—H6 109.3 H17B—C17—H17C 109.5
C5—C6—H6 109.3 C3—C18—H18A 109.5
C1—C6—H6 109.3 C3—C18—H18B 109.5
C8—O7—C6 110.5 (2) H18A—C18—H18B 109.5
O10—C8—O7 122.3 (2) C3—C18—H18C 109.5
O10—C8—C9 127.5 (2) H18A—C18—H18C 109.5
O7—C8—C9 110.1 (2) H18B—C18—H18C 109.5
N11—C9—C19 111.8 (2) C9—C19—H19A 109.5
N11—C9—C1 113.3 (2) C9—C19—H19B 109.5
C19—C9—C1 112.8 (2) H19A—C19—H19B 109.5
N11—C9—C8 109.3 (2) C9—C19—H19C 109.5
C19—C9—C8 108.1 (2) H19A—C19—H19C 109.5
C1—C9—C8 100.9 (2) H19B—C19—H19C 109.5
C12—N11—C9 120.6 (2)
C6—C1—O2—C3 51.4 (3) C6—O7—C8—C9 1.5 (3)
C9—C1—O2—C3 161.5 (2) O2—C1—C9—N11 33.6 (3)
C1—O2—C3—O4 −59.9 (3) C6—C1—C9—N11 149.3 (2)
C1—O2—C3—C17 −173.5 (2) O2—C1—C9—C19 161.8 (2)
C1—O2—C3—C18 64.6 (3) C6—C1—C9—C19 −82.5 (3)
O2—C3—O4—C5 59.4 (3) O2—C1—C9—C8 −83.1 (2)
C17—C3—O4—C5 172.6 (2) C6—C1—C9—C8 32.6 (3)
C18—C3—O4—C5 −64.6 (3) O10—C8—C9—N11 39.2 (4)
C3—O4—C5—C6 −52.2 (3) O7—C8—C9—N11 −141.7 (2)
C3—O4—C5—C15 −176.5 (2) O10—C8—C9—C19 −82.7 (3)
O4—C5—C6—O7 −74.1 (3) O7—C8—C9—C19 96.4 (2)
C15—C5—C6—O7 45.7 (3) O10—C8—C9—C1 158.7 (3)
O4—C5—C6—C1 42.7 (3) O7—C8—C9—C1 −22.2 (3)
C15—C5—C6—C1 162.4 (2) C19—C9—N11—C12 −75.4 (3)
O2—C1—C6—O7 79.1 (2) C1—C9—N11—C12 53.3 (3)
C9—C1—C6—O7 −32.9 (2) C8—C9—N11—C12 164.9 (2)
O2—C1—C6—C5 −41.8 (3) C9—N11—C12—O14 11.3 (4)
C9—C1—C6—C5 −153.9 (2) C9—N11—C12—C13 −167.6 (2)
C5—C6—O7—C8 142.6 (2) O4—C5—C15—O16 −175.7 (2)
C1—C6—O7—C8 20.1 (3) C6—C5—C15—O16 61.4 (3)
C6—O7—C8—O10 −179.4 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O16—H16···O14i 0.84 1.91 2.742 (2) 168
N11—H11···O16ii 0.88 2.28 2.928 (3) 131
C5—H5···O10iii 1.00 2.42 3.289 (3) 145
C19—H19A···O4iii 0.98 2.52 3.386 (3) 147
C13—H13B···O7iv 0.98 2.55 3.433 (3) 150
C13—H13C···O14v 0.98 2.62 3.424 (3) 140

Symmetry codes: (i) x, y, z+1; (ii) −x+2, y−1/2, −z+1; (iii) −x+2, y+1/2, −z+1; (iv) x, y, z−1; (v) −x+2, y−1/2, −z.

References

  1. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Glawar, A. F. G., Jenkinson, S. F., Newberry, S. J., Thompson, A. L., Nakagawa, S., Yoshihara, A., Akimitsu, K., Izumori, K., Butters, T. D., Kato, A. & Fleet, G. W. J. (2013). Org. Biomol. Chem. 11, 6886–6899. [DOI] [PubMed]
  3. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst B72, 171–179. [DOI] [PMC free article] [PubMed]
  4. Han, S.-Y., Joullié, M. M., Fokin, V. V. & Petasis, N. A. (1994). Tetrahedron Asymmetry, 5, 2535–2562.
  5. Henkel, S., Frey, W., Remen, L., Gracza, T. & Jäger, V. (1998). Z. Kristallogr. New Cryst. Struct. 213, 71–72.
  6. Horn, W. A., Smith, J. L., Bills, G. F., Raghoobar, S. L., Helms, G. L., Kurtz, M. B., Marrinan, J. A., Frommer, B. R., Thornton, R. A. & Mandala, S. M. (1992). J. Antibiot. 45, 1692–1696. [DOI] [PubMed]
  7. Hotchkiss, D. J., Jenkinson, S. F., Booth, K. V., Fleet, G. W. J. & Watkin, D. J. (2007). Acta Cryst. E63, o2168–o2170.
  8. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  9. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Tsuzaki, S., Usui, S., Oishi, H., Yasushima, D., Fukuyasu, T., Oishi, T., Sato, T. & Chida, N. (2015). Org. Lett. 17, 1704–1707. [DOI] [PubMed]
  14. Watkin, D. J., Parry, L. L., Hotchkiss, D. J., Eastwick-Field, V. & Fleet, G. W. J. (2005). Acta Cryst. E61, o3302–o3303.
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  16. Zweerink, M. M., Edison, A. M., Wells, G. B., Pinto, W. & Lester, R. L. (1992). J. Biol. Chem. 267, 25032–25038. [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016006800/is5451sup1.cif

e-72-00756-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016006800/is5451Isup2.hkl

e-72-00756-Isup2.hkl (131.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016006800/is5451Isup3.cml

CCDC reference: 1475848

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES