Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Apr 22;72(Pt 5):716–719. doi: 10.1107/S2056989016006526

Crystal structure and Hirshfeld surface analysis of (E)-3-(2-chloro-6-fluoro­phen­yl)-1-(3-fluoro-4-meth­oxy­phen­yl)prop-2-en-1-one

Nur Hafiq Hanif Hassan a, Amzar Ahlami Abdullah a, Suhana Arshad a,, Nuridayanti Che Khalib a, Ibrahim Abdul Razak a,*,§
PMCID: PMC4908511  PMID: 27308026

In the title chalcone derivative, mol­ecules are linked into a three-dimensional network by C—H⋯O hydrogen bonds and aromatic π–π stacking inter­actions are also observed. The inter­molecular inter­actions in the crystal structure were qu­anti­fied and analysed using Hirshfeld surface analysis.

Keywords: crystal structure, chalcone, hydrogen bonding, Hirshfeld surface analysis

Abstract

In the title chalcone derivative, C16H11ClF2O2, the enone group adopts an E conformation. The dihedral angle between the benzene rings is 0.47 (9)° and an intra­molecular C—H⋯F hydrogen bond closes an S(6) ring. In the crystal, mol­ecules are linked into a three-dimensional network by C—H⋯O hydrogen bonds and aromatic π–π stacking inter­actions are also observed [centroid–centroid separation = 3.5629 (18) Å]. The inter­molecular inter­actions in the crystal structure were qu­anti­fied and analysed using Hirshfeld surface analysis.

Chemical context  

Chalcone derivatives possess a wide range of biological properties such as anti­bacterial (Jarag et al., 2011), anti-inflammatory (Mukherjee et al., 2001) and anti-oxidant (Arty et al., 2000) activities. As part of our ongoing studies on chalcone derivatives, we hereby report the synthesis and crystal structure of the title compound, (I).graphic file with name e-72-00716-scheme1.jpg

Structural commentary  

The mol­ecular structure of (I) is shown in Fig. 1. The enone moiety (O1/C7–C9) adopts an E-conformation with respect to C7=C8 bond. The mol­ecule is slightly twisted at the C9—-C10 bond with a C8—C9—C10—C15 torsion angle of −2.2 (4)° and a maximum deviation of 0.193 (16) Å for atom O1. The dihedral angle between the terminal benzene rings (C1–C6 and C10–C15) is 0.47 (9)°. The least-squares plane through the enone moiety (O1/C7–C9) makes dihedral angles of 2.87 (14) and 3.33 (14)° with the C1–C6 and C10–C15 benzene rings, respectively. An intra­molecular C8—H8A⋯F1 hydrogen bond (Table 1) is observed, generating an S(6) ring motif. The bond lengths and angles are comparable with the equivalent data for previously reported structures; (Razak et al., 2009; Harrison et al., 2006a ).

Figure 1.

Figure 1

The structure of the title compound, showing 50% probability displacement ellipsoids. The intra­molecular C—H⋯F hydrogen bond is shown as a dashed line.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1i 0.93 2.50 3.391 (4) 162
C3—H3A⋯O2ii 0.93 2.52 3.441 (4) 171
C8—H8A⋯F1 0.93 2.21 2.842 (4) 124

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

In the crystal, mol­ecules are linked into a three-dimensional network via C2—H2A⋯O1 (x − Inline graphic, −y + Inline graphic, z + Inline graphic) and C3—H3A⋯O2 (x − Inline graphic, y + Inline graphic, z) hydrogen bonds (Table 1), as shown in Fig. 2. The crystal structure also features π–π inter­actions [Cg1⋯Cg2 (−1 + x, y, z), centroid-to-centroid distance = 3.5629 (18) Å, where Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 rings, respectively].

Figure 2.

Figure 2

The packing in (I) showing C—H⋯O and π–π inter­actions as dashed lines.

Analysis of the Hirshfeld Surfaces  

Crystal Explorer 3.1(Wolff et al., 2012) was used to analyse the close contacts in the crystal of (I), which can be summarized with fingerprint plots mapped over d norm, electrostatic potential, shape index and curvedness. The electrostatic potentials were calculated using TONTO (Spackman et al., 2008; Jayatilaka et al., 2005) integrated within Crystal Explorer. The electrostatic potentials were mapped on Hirshfeld surfaces using the STO-3G basis set at Hartree–Fock level theory over a range ±0.03 au.

The strong C—H⋯O inter­actions are visualized as bright-red spots between the respective donor and acceptor atoms on the Hirshfeld surfaces mapped over d norm (Fig. 3 a) with neighbouring mol­ecules connected by C2—H2A⋯O1 and C3—H3A⋯O2 hydrogen bonds. This finding is corroborated by Hirshfeld surfaces mapped over the electrostatic potential (Fig. 3 b) showing the negative potential around the oxygen atoms as light-red clouds and the positive potential around hydrogen atoms as light-blue clouds.

Figure 3.

Figure 3

(a) d norm mapped on Hirshfeld surfaces for visualizing the inter­molecular inter­actions of the title chalcone compound. (b) Hirshfeld surfaces mapped over the electrostatic potential. Dotted lines (green) represent hydrogen bonds.

Significant inter­molecular inter­actions are plotted in Fig. 4: the H⋯H inter­actions appear as the largest region of the fingerprint plot with a high concentration in the middle region, shown in light blue, at de = di ∼1.4 Å (Fig. 4 a) with overall Hirshfeld surfaces of 27.5%. The contribution from the O⋯H/H⋯O contacts, corresponding to C—H⋯O inter­actions, is represented by a pair of sharp spikes characteristic of a strong hydrogen-bond inter­action having almost the same de + di ∼2.3 Å (Fig. 4 b).

Figure 4.

Figure 4

Fingerprint plots for the title chalcone compound, broken down into contributions from specific pairs of atom types. For each plot, the grey shadow is an outline of the complete fingerprint plot. Surfaces to the right highlight the relevant surface patches associated with the specific contacts, with d norm mapped in the same manner as Fig. 3 a.

The C⋯C contacts, which refer to π–·π stacking inter­actions, contribute 13.7% of the Hirshfeld surfaces. This appears as a distinct triangle at around de = di ∼1.8 Å (Fig. 4 c). The presence of the π–π stacking inter­actions is also indicated by the appearance of red and blue triangles on the shape-indexed surfaces, identified with black arrows in Fig. 5, and in the flat regions on the Hirshfeld surfaces mapped over curvedness in Fig. 6.

Figure 5.

Figure 5

Hirshfeld surfaces mapped over the shape index of the title chalcone compound.

Figure 6.

Figure 6

Hirshfeld surfaces mapped over curvedness of the title chalcone compound.

Synthesis and crystallization  

A mixture of 3-fluoro-4-meth­oxy­aceto­phenone (0.1 mol, 0.08 g) and 2-chloro-6-fluoro­benzaldehyde (0.1 mol, 0.08 g) was dissolved in methanol (20 ml). A catalytic amount of NaOH (5 ml, 20%) was added to the solution dropwise with vigorous stirring. The reaction mixture was stirred for about 5–6 h at room temperature. After stirring, the contents of the flask were poured into ice-cold water (50 ml) and the resulting crude solid was collected by filtration. Brownish blocks of (I) were grown from an acetone solution by slow evaporation.

Refinement details  

Crystal data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model with U iso(H) = 1.2U eq(C). In the final refinement, the most disagreeable reflection (020) was omitted.

Table 2. Experimental details.

Crystal data
Chemical formula C16H11ClF2O2
M r 308.70
Crystal system, space group Monoclinic, C c
Temperature (K) 294
a, b, c (Å) 9.0832 (13), 11.1072 (13), 13.9564 (17)
β (°) 102.027 (3)
V3) 1377.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.30
Crystal size (mm) 0.45 × 0.17 × 0.13
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009)
T min, T max 0.791, 0.889
No. of measured, independent and observed [I > 2σ(I)] reflections 14473, 4003, 3111
R int 0.031
(sin θ/λ)max−1) 0.705
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.116, 1.05
No. of reflections 4003
No. of parameters 191
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.27
Absolute structure Flack x determined using 1298 quotients [(I +)−(I )]/[(I +)+(I )] Parsons et al. (2013)
Absolute structure parameter 0.08 (2)

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS97 and SHELXTL (Sheldrick 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016006526/hb7578sup1.cif

e-72-00716-sup1.cif (502.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016006526/hb7578Isup2.hkl

e-72-00716-Isup2.hkl (319.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016006526/hb7578Isup3.cml

CCDC reference: 1474605

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and Research University Grant No. 1001/PFIZIK/811238 to conduct this work. NCK thanks Malaysian Government for a MyBrain15 (MyPhD) scholarship.

supplementary crystallographic information

Crystal data

C16H11ClF2O2 F(000) = 632
Mr = 308.70 Dx = 1.489 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
a = 9.0832 (13) Å Cell parameters from 4692 reflections
b = 11.1072 (13) Å θ = 2.9–28.9°
c = 13.9564 (17) Å µ = 0.30 mm1
β = 102.027 (3)° T = 294 K
V = 1377.1 (3) Å3 Block, brown
Z = 4 0.45 × 0.17 × 0.13 mm

Data collection

Bruker SMART APEXII CCD diffractometer 4003 independent reflections
Radiation source: fine-focus sealed tube 3111 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
φ and ω scans θmax = 30.1°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −12→12
Tmin = 0.791, Tmax = 0.889 k = −15→15
14473 measured reflections l = −19→19

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0664P)2 + 0.0639P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116 (Δ/σ)max < 0.001
S = 1.05 Δρmax = 0.20 e Å3
4003 reflections Δρmin = −0.27 e Å3
191 parameters Absolute structure: Flack x determined using 1298 quotients [(I+)-(I-)]/[(I+)+(I-)] Parsons et al. (2013)
2 restraints Absolute structure parameter: 0.08 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.01382 (11) 0.90043 (10) 0.28908 (7) 0.0766 (3)
F1 0.2567 (2) 0.7732 (2) 0.63725 (14) 0.0679 (6)
F2 1.0123 (2) 0.5464 (2) 0.42338 (15) 0.0676 (5)
O1 0.5069 (4) 0.7363 (3) 0.3366 (2) 0.0864 (9)
O2 1.0692 (2) 0.5000 (2) 0.61111 (18) 0.0654 (6)
C1 0.1380 (3) 0.8232 (3) 0.5705 (2) 0.0473 (6)
C2 0.0177 (4) 0.8618 (3) 0.6081 (2) 0.0558 (7)
H2A 0.0181 0.8538 0.6745 0.067*
C3 −0.1020 (3) 0.9121 (3) 0.5458 (3) 0.0555 (7)
H3A −0.1844 0.9391 0.5698 0.067*
C4 −0.1017 (3) 0.9231 (3) 0.4480 (3) 0.0533 (7)
H4A −0.1837 0.9573 0.4057 0.064*
C5 0.0209 (3) 0.8832 (2) 0.4124 (2) 0.0447 (6)
C6 0.1479 (3) 0.8313 (2) 0.47289 (19) 0.0409 (5)
C7 0.2772 (3) 0.7932 (3) 0.4327 (2) 0.0480 (6)
H7A 0.2670 0.8034 0.3655 0.058*
C8 0.4052 (4) 0.7467 (3) 0.4783 (2) 0.0527 (6)
H8A 0.4215 0.7321 0.5453 0.063*
C9 0.5248 (3) 0.7170 (3) 0.4236 (2) 0.0501 (6)
C10 0.6672 (3) 0.6632 (2) 0.4787 (2) 0.0428 (6)
C11 0.7762 (3) 0.6300 (3) 0.4255 (2) 0.0458 (6)
H11A 0.7598 0.6433 0.3583 0.055*
C12 0.9060 (3) 0.5780 (2) 0.4739 (2) 0.0463 (6)
C13 0.9367 (3) 0.5544 (3) 0.5741 (2) 0.0478 (6)
C14 0.8298 (3) 0.5889 (3) 0.6265 (2) 0.0505 (6)
H14A 0.8471 0.5762 0.6938 0.061*
C15 0.6969 (3) 0.6426 (3) 0.5783 (2) 0.0480 (6)
H15A 0.6259 0.6653 0.6142 0.058*
C16 1.1014 (5) 0.4726 (5) 0.7133 (3) 0.0857 (13)
H16A 1.1972 0.4329 0.7304 0.129*
H16B 1.0245 0.4206 0.7278 0.129*
H16C 1.1041 0.5457 0.7502 0.129*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0769 (5) 0.1065 (7) 0.0450 (4) 0.0182 (5) 0.0090 (3) 0.0033 (4)
F1 0.0590 (11) 0.0974 (14) 0.0482 (10) 0.0220 (9) 0.0137 (8) 0.0121 (10)
F2 0.0564 (9) 0.0931 (14) 0.0632 (11) 0.0103 (9) 0.0350 (9) −0.0092 (10)
O1 0.0880 (18) 0.125 (2) 0.0543 (14) 0.0458 (17) 0.0320 (13) 0.0164 (15)
O2 0.0398 (10) 0.1009 (18) 0.0566 (13) 0.0060 (11) 0.0124 (9) −0.0102 (12)
C1 0.0477 (13) 0.0491 (14) 0.0478 (14) 0.0008 (11) 0.0161 (11) 0.0033 (12)
C2 0.0601 (17) 0.0623 (17) 0.0529 (16) −0.0056 (14) 0.0297 (14) −0.0028 (14)
C3 0.0464 (14) 0.0587 (16) 0.0685 (19) −0.0037 (12) 0.0281 (13) −0.0069 (14)
C4 0.0398 (13) 0.0518 (15) 0.068 (2) −0.0015 (11) 0.0099 (12) −0.0036 (14)
C5 0.0441 (13) 0.0465 (14) 0.0436 (13) −0.0029 (11) 0.0098 (11) −0.0027 (10)
C6 0.0421 (12) 0.0388 (12) 0.0435 (13) −0.0024 (9) 0.0130 (10) −0.0011 (10)
C7 0.0517 (14) 0.0520 (15) 0.0441 (14) 0.0054 (12) 0.0189 (11) 0.0010 (11)
C8 0.0542 (15) 0.0589 (16) 0.0501 (15) 0.0084 (13) 0.0225 (12) −0.0005 (13)
C9 0.0540 (14) 0.0515 (14) 0.0510 (15) 0.0076 (12) 0.0247 (12) −0.0003 (12)
C10 0.0471 (13) 0.0385 (12) 0.0490 (14) −0.0052 (10) 0.0242 (11) −0.0053 (10)
C11 0.0503 (14) 0.0491 (14) 0.0437 (13) −0.0043 (11) 0.0229 (11) −0.0057 (11)
C12 0.0426 (12) 0.0540 (15) 0.0491 (14) −0.0051 (11) 0.0246 (11) −0.0112 (12)
C13 0.0365 (12) 0.0564 (15) 0.0527 (15) −0.0066 (11) 0.0147 (11) −0.0110 (12)
C14 0.0449 (13) 0.0684 (18) 0.0418 (14) −0.0043 (12) 0.0174 (11) −0.0068 (13)
C15 0.0446 (12) 0.0583 (15) 0.0473 (14) −0.0024 (11) 0.0236 (11) −0.0070 (12)
C16 0.0552 (19) 0.142 (4) 0.057 (2) 0.014 (2) 0.0050 (16) −0.002 (2)

Geometric parameters (Å, º)

Cl1—C5 1.720 (3) C7—H7A 0.9300
F1—C1 1.386 (3) C8—C9 1.489 (4)
F2—C12 1.354 (3) C8—H8A 0.9300
O1—C9 1.209 (4) C9—C10 1.485 (4)
O2—C13 1.349 (4) C10—C15 1.379 (4)
O2—C16 1.427 (5) C10—C11 1.405 (3)
C1—C2 1.376 (4) C11—C12 1.359 (4)
C1—C6 1.387 (4) C11—H11A 0.9300
C2—C3 1.363 (5) C12—C13 1.393 (4)
C2—H2A 0.9300 C13—C14 1.386 (4)
C3—C4 1.371 (5) C14—C15 1.389 (4)
C3—H3A 0.9300 C14—H14A 0.9300
C4—C5 1.383 (4) C15—H15A 0.9300
C4—H4A 0.9300 C16—H16A 0.9600
C5—C6 1.403 (4) C16—H16B 0.9600
C6—C7 1.466 (3) C16—H16C 0.9600
C7—C8 1.309 (4)
C13—O2—C16 117.3 (3) O1—C9—C8 121.0 (3)
C2—C1—F1 115.9 (3) C10—C9—C8 118.2 (3)
C2—C1—C6 125.0 (3) C15—C10—C11 118.5 (3)
F1—C1—C6 119.1 (2) C15—C10—C9 123.7 (2)
C3—C2—C1 118.4 (3) C11—C10—C9 117.7 (2)
C3—C2—H2A 120.8 C12—C11—C10 118.9 (3)
C1—C2—H2A 120.8 C12—C11—H11A 120.6
C2—C3—C4 120.3 (3) C10—C11—H11A 120.6
C2—C3—H3A 119.8 F2—C12—C11 119.4 (3)
C4—C3—H3A 119.8 F2—C12—C13 117.3 (3)
C3—C4—C5 119.9 (3) C11—C12—C13 123.3 (2)
C3—C4—H4A 120.1 O2—C13—C14 126.0 (3)
C5—C4—H4A 120.1 O2—C13—C12 116.4 (2)
C4—C5—C6 122.5 (3) C14—C13—C12 117.6 (3)
C4—C5—Cl1 117.3 (2) C13—C14—C15 119.8 (3)
C6—C5—Cl1 120.1 (2) C13—C14—H14A 120.1
C1—C6—C5 113.8 (2) C15—C14—H14A 120.1
C1—C6—C7 125.3 (3) C10—C15—C14 121.9 (2)
C5—C6—C7 120.9 (2) C10—C15—H15A 119.1
C8—C7—C6 129.1 (3) C14—C15—H15A 119.1
C8—C7—H7A 115.5 O2—C16—H16A 109.5
C6—C7—H7A 115.5 O2—C16—H16B 109.5
C7—C8—C9 120.5 (3) H16A—C16—H16B 109.5
C7—C8—H8A 119.7 O2—C16—H16C 109.5
C9—C8—H8A 119.7 H16A—C16—H16C 109.5
O1—C9—C10 120.8 (3) H16B—C16—H16C 109.5
F1—C1—C2—C3 179.8 (3) O1—C9—C10—C15 177.8 (3)
C6—C1—C2—C3 0.1 (5) C8—C9—C10—C15 −2.2 (4)
C1—C2—C3—C4 0.2 (5) O1—C9—C10—C11 −3.2 (4)
C2—C3—C4—C5 −0.1 (5) C8—C9—C10—C11 176.9 (3)
C3—C4—C5—C6 −0.3 (4) C15—C10—C11—C12 0.5 (4)
C3—C4—C5—Cl1 −179.8 (2) C9—C10—C11—C12 −178.5 (2)
C2—C1—C6—C5 −0.4 (4) C10—C11—C12—F2 −179.6 (2)
F1—C1—C6—C5 179.9 (2) C10—C11—C12—C13 0.7 (4)
C2—C1—C6—C7 178.4 (3) C16—O2—C13—C14 1.7 (5)
F1—C1—C6—C7 −1.3 (4) C16—O2—C13—C12 −178.6 (3)
C4—C5—C6—C1 0.5 (4) F2—C12—C13—O2 −1.1 (4)
Cl1—C5—C6—C1 180.0 (2) C11—C12—C13—O2 178.6 (3)
C4—C5—C6—C7 −178.3 (3) F2—C12—C13—C14 178.7 (2)
Cl1—C5—C6—C7 1.2 (3) C11—C12—C13—C14 −1.7 (4)
C1—C6—C7—C8 −0.7 (5) O2—C13—C14—C15 −179.0 (3)
C5—C6—C7—C8 178.0 (3) C12—C13—C14—C15 1.3 (4)
C6—C7—C8—C9 −178.2 (3) C11—C10—C15—C14 −0.9 (4)
C7—C8—C9—O1 0.8 (5) C9—C10—C15—C14 178.2 (3)
C7—C8—C9—C10 −179.3 (3) C13—C14—C15—C10 −0.1 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2A···O1i 0.93 2.50 3.391 (4) 162
C3—H3A···O2ii 0.93 2.52 3.441 (4) 171
C8—H8A···F1 0.93 2.21 2.842 (4) 124

Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) x−3/2, y+1/2, z.

References

  1. Arty, I. S., Timmerman, H., Samhoedi, M., Sastrohamidjojo, Sugiyanto & van der Goot, H. (2000). Eur. J. Med. Chem. 35, 449–457. [DOI] [PubMed]
  2. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Harrison, W. T. A., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006a). Acta Cryst. E62, o3251–o3253. [DOI] [PubMed]
  4. Jarag, K. J., Pinjari, D. V., Pandit, A. B. & Shankarling, G. S. (2011). Ultrason. Sonochem. 18, 617–623. [DOI] [PubMed]
  5. Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO. http://hirshfeldsurface.net/
  6. Mukherjee, S., Kumar, V., Prasad, A. K., Raj, H. G., Bracke, M. E., Olsen, C. E., Jain, S. C. & Parmar, V. S. (2001). Bioorg. Med. Chem. 9, 337–345. [DOI] [PubMed]
  7. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  8. Razak, I. A., Fun, H.-K., Ngaini, Z., Rahman, N. I. A. & Hussain, H. (2009). Acta Cryst. E65, o1439–o1440. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  11. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016006526/hb7578sup1.cif

e-72-00716-sup1.cif (502.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016006526/hb7578Isup2.hkl

e-72-00716-Isup2.hkl (319.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016006526/hb7578Isup3.cml

CCDC reference: 1474605

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES