Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Apr 5;72(Pt 5):632–634. doi: 10.1107/S2056989016005417

Synthesis and crystal structure of Na4Ni7(AsO4)6

Rénald David a,*
PMCID: PMC4908513  PMID: 27308006

The structure of Na4Ni7(AsO4)6 is made of layers of Ni octa­hedra and As tetra­hedra assembled in sheets parallel to the bc plane. These layers are inter­connected by corner-sharing between Ni octa­hedra and As tetra­hedra. This linkage creates tunnels running along the c axis in which the Na atoms are located.

Keywords: crystal structure, nickel arsenate, ceramic synthesis

Abstract

The title compound, tetra­sodium hepta­nickel hexa­arsenate, was obtained by ceramic synthesis and crystallizes in the monoclinic space group C2/m. The asymmetric unit contains seven Ni atoms of which two have site symmetry 2/m and three site symmetry 2, four As atoms of which two have site symmetry m and two site symmetry 2, three Na atoms of which two have site symmetry 2, and fifteen O atoms of which four have site symmetry m. The structure of Na4Ni7(AsO4)6 is made of layers of Ni octa­hedra and As tetra­hedra assembled in sheets parallel to the bc plane. These layers are inter­connected by corner-sharing between NiO6 octa­hedra and AsO4 tetra­hedra. This linkage creates tunnels running along the c axis in which the Na atoms are located. This arrangement is similar to the one observed in Na4Ni7(PO4)6, but the layers of the two compounds are slightly different because of the disorder of one of the Ni sites in the structure of the title compound.

Chemical context  

Although the structures of transition metal phosphates have been widely investigated during the last decades, very little work has been done on comparable arsenates due to the toxicity of arsenic. The latter phases can exhibit, however, peculiar properties. BaCo2(AsO4)2 is a good example of a quasi-2D system with a magnetically frustrated honeycomb lattice (Regnault et al., 1977). BaCoAs2O7 appears as the first example of a magnetization step promoted by a structural modulation (David et al., 2013a ). LiCoAsO4 shows reversible electrochemical activity at high potential (Satya Kishore & Varadaraju, 2006). Moreover, a recent study reveals the inter­est of arsenate groups in playing the role of efficient disconnecting units in the magnetic compound BaCo2(As3O6)2·H2O, being the first pure inorganic compound with slow spin dynamics (David et al., 2013b ). From the crystal chemistry point of view, substitution of phosphate by arsenate gives the possibility of stabilizing new phases. For example, NaNiPO4 crystallizes with the maricite structure (Senthilkumar et al., 2014), whereas NaNiAsO4 has a honeycomb layer structure (Range & Meister, 1984). In this study, we describe the structure of Na4Ni7(AsO4)6 and compare it with its phosphate analogue.

Structural commentary  

The structure of the title compound Na4Ni7(AsO4)6 is quite similar to the one of the phosphate homologue Na4Ni7(PO4)6. Both are made of inter­connected Ni7(XO4)6 layers with tunnels in between where the Na atoms are located, as shown in Fig. 1 a. The arrangement of NiO6 and XO4 in the layer is, however, slightly different, as evidenced in Fig. 2. As described by Moring & Kostiner (1986), Na4Ni7(PO4)6 layers are made of parallel ribbons (called ribbon 1) containing Ni1, Ni2, P3 and P4 polyhedra. These ribbons 1 are inter­connected by another kind of ribbon (called ribbon 2) made of dimers consisting of edge-sharing NiO6 octahedra (Ni3 and Ni4). The latter are linked to PO4 tetrahedra (P1 and P2) by edge- and corner-sharing. The difference between the two compounds is associated with the possibility of the Ni2 atom in Na4Ni7(PO4)6 occupying two octa­hedral sites. The first site, belonging to ribbon 1, is equivalent to the Ni2a site in Na4Ni7(AsO4)6. The other, equivalent to the Ni2b and Ni5 sites in Na4Ni7(AsO4)6, belongs to ribbon 2, forming penta­mers of edge-sharing NiO6 octa­hedra. The layers of the title compound Na4Ni7(AsO4)6 can thus be described with three kinds of ribbons, as shown in Fig. 2. The linkage between the layers is done by corner-sharing between NiO6 and AsO4 units of two consecutive ribbons 2 along the stacking axis (Fig. 1 a). This linkage is identical to the one of the phosphorus homologue. However, since in Na4Ni7(AsO4)6 layers are made of three different kinds of ribbons, two adjacent layers are shifted to align ribbon 1 with ribbon 1′. That is why in Na4Ni7(AsO4)6 the stacking axis is roughly doubled compared to Na4Ni7(PO4)6 [c = 6.398 (2) Å versus a = 14.5383 (11) Å in the title structure]. It implies two different kinds of Na layers, as shown in Fig. 1 b.

Figure 1.

Figure 1

Description of the crystal structure of Na4Ni7(AsO4)6 with (a) a view of the stacking and (b) a view of the Na layers. The dotted lines show the cell edges. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2.

Figure 2

Description of the layers (top) and the ribbon 2 (bottom) of (a) Na4Ni7(AsO4)6 and (b) Na4Ni7(PO4)6. The dotted lines show the cell edges.

Synthesis and crystallization  

Sodium carbonate (>99.5%), arsenic oxide (99%) and nickel sulfate hexa­hydrate (>99.9%) were purchased from Sigma–Aldrich. They were used as received without further purification. Reagents were ground together in stoichiometric ratio in an agate mortar. The obtained mixture was pelletized, placed in an alumina boat and annealed at 573 K for 1h. The obtained mixture was reground, pelletized and heated at 1073 K (5 K min−1) for 48 h, after which the alumina boat was removed from the furnace and cooled to room temperature. The brown crystals of the title compound were isolated by hand.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 1. The (001) reflection, affected by the beamstop, has been removed from the refinement. Another reflection (Inline graphic01), flagged as potentially affected by the beamstop, was in fact not and was kept in the refinement. After positioning and refining all the atom positions except Ni2b, the difference Fourier map revealed residual density (≃8 e Å−3) near Ni2a (at ≃0.6 Å). It was refined introducing a second position Ni2b with complementary occupation. The occupancy ratio was refined to 0.80 (4):0.20 (4) for the Ni2a/Ni2b site, constraining the sum to be equal to 1.

Table 1. Experimental details.

Crystal data
Chemical formula Na4Ni7(AsO4)6
M r 1336.3
Crystal system, space group Monoclinic, C2/m
Temperature (K) 293
a, b, c (Å) 14.5383 (11), 14.5047 (11), 10.6120 (8)
β (°) 118.299 (2)
V3) 1970.3 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 16.76
Crystal size (mm) 0.07 × 0.06 × 0.04
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2015)
T min, T max 0.640, 0.747
No. of measured, independent and observed [I > 3σ(I)] reflections 48075, 3773, 2901
R int 0.036
(sin θ/λ)max−1) 0.772
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.052, 2.73
No. of reflections 3773
No. of parameters 146
Δρmax, Δρmin (e Å−3) 3.34, −2.22

Computer programs: APEX3 and SAINT (Bruker, 2015), SUPERFLIP (Palatinus & Chapuis, 2007), JANA2006 (Petříčcek et al., 2014, DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016005417/vn2109sup1.cif

e-72-00632-sup1.cif (125.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016005417/vn2109Isup2.hkl

e-72-00632-Isup2.hkl (155.7KB, hkl)

CCDC reference: 1471603

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The RS2E (French Network on Electrochemical Energy Storage) and ANR (Labex STORE-EX: grant ANR-10-LABX-0076) are acknowledged for funding of the X-ray diffractometer.

supplementary crystallographic information

Crystal data

Na4Ni7(AsO4)6 F(000) = 2520
Mr = 1336.3 Dx = 4.505 Mg m3
Monoclinic, C2/m Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2y Cell parameters from 38754 reflections
a = 14.5383 (11) Å θ = 2.1–33.3°
b = 14.5047 (11) Å µ = 16.76 mm1
c = 10.6120 (8) Å T = 293 K
β = 118.299 (2)° Irregular, brown
V = 1970.3 (3) Å3 0.07 × 0.06 × 0.04 mm
Z = 4

Data collection

Bruker D8 Venture diffractometer 2901 reflections with I > 3σ(I)
Radiation source: X-ray tube Rint = 0.036
phi scan θmax = 33.3°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2015) h = −21→20
Tmin = 0.640, Tmax = 0.747 k = −22→21
48075 measured reflections l = −16→16
3773 independent reflections

Refinement

Refinement on F 0 restraints
R[F2 > 2σ(F2)] = 0.039 0 constraints
wR(F2) = 0.052 Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
S = 2.73 (Δ/σ)max = 0.015
3773 reflections Δρmax = 3.34 e Å3
146 parameters Δρmin = −2.22 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ni1 0.5 0 0 0.0068 (4)
Ni2a 0.5 0.1306 (6) 0.5 0.0078 (8) 0.80 (4)
Ni2b 0.5 0.166 (5) 0.5 0.027 (7) 0.20 (4)
Ni3 0.91312 (4) 0.18257 (3) 0.23065 (6) 0.00542 (19)
Ni4 0.59336 (4) 0.18693 (3) 0.26615 (6) 0.00530 (19)
Ni5 0.5 0.32688 (6) 0 0.0112 (3)
Ni6 0 0 0.5 0.0061 (4)
As1 0.85957 (3) 0.18473 (3) 0.45674 (4) 0.00503 (16)
As2 0.65106 (3) 0.18354 (3) 0.05278 (4) 0.00470 (15)
As3 0.47038 (5) 0 0.28662 (6) 0.0062 (2)
As4 0.45990 (5) 0.5 −0.20991 (6) 0.0056 (2)
Na1 0.2934 (2) 0.5 −0.0189 (3) 0.0304 (13)
Na2 0.25173 (16) 0.11586 (14) 0.3367 (2) 0.0305 (9)
Na3 0.7399 (2) 0 0.3103 (4) 0.0435 (15)
O1 0.6079 (2) 0.09855 (19) 0.1237 (3) 0.0067 (5)*
O2 0.8783 (2) 0.2776 (2) 0.3717 (3) 0.0125 (6)*
O3 0.4137 (3) 0 0.1101 (4) 0.0104 (8)*
O4 0.4391 (2) 0.21767 (19) 0.1132 (3) 0.0090 (6)*
O5 0.7665 (2) 0.1552 (2) 0.0682 (3) 0.0097 (6)*
O6 0.5380 (2) 0.4081 (2) −0.1240 (3) 0.0096 (6)*
O8 0.3535 (3) 0.5 −0.1899 (5) 0.0140 (9)*
O9 0.3901 (4) 0 0.3581 (5) 0.0232 (11)*
O10 0.9333 (2) 0.20454 (19) 0.6329 (3) 0.0089 (6)*
O11 0.5468 (2) 0.0939 (2) 0.3604 (3) 0.0115 (6)*
O12 0.7395 (2) 0.1588 (2) 0.4274 (3) 0.0096 (6)*
O13 0.6448 (2) 0.27433 (19) 0.1522 (3) 0.0092 (6)*
O14 0.4220 (3) 0.5 −0.3841 (4) 0.0108 (9)*
O15 0.8965 (2) 0.10027 (18) 0.3788 (3) 0.0062 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0070 (5) 0.0067 (5) 0.0068 (5) 0 0.0032 (4) 0
Ni2a 0.0102 (7) 0.006 (2) 0.0096 (7) 0 0.0068 (5) 0
Ni2b 0.021 (3) 0.04 (2) 0.019 (3) 0 0.010 (2) 0
Ni3 0.0047 (2) 0.0062 (3) 0.0048 (3) −0.00029 (18) 0.0018 (2) 0.00088 (18)
Ni4 0.0050 (2) 0.0057 (3) 0.0048 (3) 0.00053 (18) 0.0020 (2) −0.00048 (18)
Ni5 0.0097 (4) 0.0149 (4) 0.0084 (4) 0 0.0039 (3) 0
Ni6 0.0070 (5) 0.0048 (5) 0.0066 (5) 0 0.0033 (4) 0
As1 0.0049 (2) 0.0058 (2) 0.0047 (2) 0.00044 (14) 0.00248 (16) 0.00007 (14)
As2 0.00360 (19) 0.0057 (2) 0.0046 (2) 0.00079 (14) 0.00184 (16) 0.00099 (14)
As3 0.0082 (3) 0.0051 (3) 0.0054 (3) 0 0.0032 (2) 0
As4 0.0061 (3) 0.0044 (3) 0.0058 (3) 0 0.0024 (2) 0
Na1 0.0270 (17) 0.0353 (17) 0.0297 (17) 0 0.0141 (14) 0
Na2 0.0251 (11) 0.0240 (11) 0.0399 (14) −0.0090 (9) 0.0134 (10) −0.0080 (10)
Na3 0.0236 (17) 0.0179 (15) 0.061 (2) 0 −0.0026 (16) 0

Geometric parameters (Å, º)

Ni1—O1 2.068 (2) Ni6—O15iv 2.049 (2)
Ni1—O1i 2.068 (2) Ni6—O15xiii 2.049 (2)
Ni1—O1ii 2.068 (2) Ni6—O15xiv 2.049 (2)
Ni1—O1iii 2.068 (2) As1—Na2vii 3.249 (2)
Ni1—O3 2.081 (6) As1—Na3 3.1713 (16)
Ni1—O3i 2.081 (6) As1—O2 1.714 (3)
Ni2a—Ni2b 0.51 (7) As1—O10 1.681 (3)
Ni2a—Na2 3.185 (2) As1—O12 1.664 (3)
Ni2a—Na2iv 3.185 (2) As1—O15 1.702 (3)
Ni2a—O11 1.974 (4) As2—O1 1.711 (3)
Ni2a—O11iv 1.974 (4) As2—O4i 1.696 (3)
Ni2b—Na2 3.260 (17) As2—O5 1.659 (3)
Ni2b—Na2iv 3.260 (17) As2—O13 1.716 (3)
Ni2b—O2v 1.83 (3) As3—O3 1.650 (4)
Ni2b—O2vi 1.83 (3) As3—O9 1.667 (7)
Ni3—O4vii 2.058 (3) As3—O11 1.697 (3)
Ni3—O5 2.047 (3) As3—O11iii 1.697 (3)
Ni3—O6viii 2.069 (3) As4—Na1i 3.240 (3)
Ni3—O10ix 2.029 (3) As4—Na2xv 3.190 (2)
Ni3—O15 2.077 (3) As4—Na2xvi 3.190 (2)
Ni4—O1 2.068 (3) As4—O6 1.707 (3)
Ni4—O4 2.101 (3) As4—O6xvii 1.707 (3)
Ni4—O10v 2.042 (3) As4—O8 1.658 (6)
Ni4—O11 1.980 (4) As4—O14 1.660 (5)
Ni4—O12 2.041 (3) Na1—Na2xv 3.540 (4)
Ni5—O6 2.029 (3) Na1—Na2xvi 3.540 (4)
Ni5—O6i 2.029 (3) Na1—Na3xviii 3.923 (6)
Ni5—O13 2.097 (3) Na1—O8 2.358 (7)
Ni5—O13i 2.097 (3) Na2—Na2iii 3.361 (3)
Ni6—O14x 2.030 (6) Na2—O2vi 2.294 (4)
Ni6—O14xi 2.030 (6) Na2—O8xi 2.309 (3)
Ni6—O15xii 2.049 (2) Na2—O13vi 2.429 (3)
O1—Ni1—O1i 92.53 (10) Na1i—As4—Na2xvi 145.04 (5)
O1—Ni1—O1ii 180.0 (5) Na1i—As4—O6 51.71 (9)
O1—Ni1—O1iii 87.47 (10) Na1i—As4—O6xvii 51.71 (9)
O1—Ni1—O3 96.97 (12) Na1i—As4—O8 132.24 (16)
O1—Ni1—O3i 83.03 (12) Na1i—As4—O14 119.95 (18)
O1i—Ni1—O1ii 87.47 (10) Na2xv—As4—Na2xvi 63.58 (5)
O1i—Ni1—O1iii 180.0 (5) Na2xv—As4—O6 154.25 (13)
O1i—Ni1—O3 83.03 (12) Na2xv—As4—O6xvii 94.48 (10)
O1i—Ni1—O3i 96.97 (12) Na2xv—As4—O8 44.13 (10)
O1ii—Ni1—O1iii 92.53 (10) Na2xv—As4—O14 77.65 (15)
O1ii—Ni1—O3 83.03 (12) Na2xvi—As4—O6 94.48 (10)
O1ii—Ni1—O3i 96.97 (12) Na2xvi—As4—O6xvii 154.25 (13)
O1iii—Ni1—O3 96.97 (12) Na2xvi—As4—O8 44.13 (10)
O1iii—Ni1—O3i 83.03 (12) Na2xvi—As4—O14 77.65 (15)
O3—Ni1—O3i 180.0 (5) O6—As4—O6xvii 102.64 (12)
Ni2b—Ni2a—Na2 93.85 (16) O6—As4—O8 110.86 (15)
Ni2b—Ni2a—Na2iv 93.85 (16) O6—As4—O14 112.34 (14)
Ni2b—Ni2a—O11 105.6 (3) O6xvii—As4—O8 110.86 (15)
Ni2b—Ni2a—O11iv 105.6 (3) O6xvii—As4—O14 112.34 (14)
Na2—Ni2a—Na2iv 172.3 (3) O8—As4—O14 107.8 (2)
Na2—Ni2a—O11 106.17 (12) As4i—Na1—Na2xv 110.70 (11)
Na2—Ni2a—O11iv 71.66 (9) As4i—Na1—Na2xvi 110.70 (11)
Na2iv—Ni2a—O11 71.66 (9) As4i—Na1—Na3xviii 87.08 (8)
Na2iv—Ni2a—O11iv 106.17 (12) As4i—Na1—O8 83.94 (14)
O11—Ni2a—O11iv 148.7 (5) Na2xv—Na1—Na2xvi 56.69 (7)
Ni2a—Ni2b—Na2 77.1 (13) Na2xv—Na1—Na3xviii 145.38 (8)
Ni2a—Ni2b—Na2iv 77.1 (13) Na2xv—Na1—O8 40.16 (9)
Ni2a—Ni2b—O2v 116 (2) Na2xvi—Na1—Na3xviii 145.38 (8)
Ni2a—Ni2b—O2vi 116 (2) Na2xvi—Na1—O8 40.16 (9)
Na2—Ni2b—Na2iv 154 (3) Na3xviii—Na1—O8 171.02 (14)
Na2—Ni2b—O2v 158 (2) Ni2a—Na2—Ni2b 9.1 (13)
Na2—Ni2b—O2vi 43.1 (7) Ni2a—Na2—As1vi 61.00 (16)
Na2iv—Ni2b—O2v 43.1 (7) Ni2a—Na2—As4xi 151.93 (17)
Na2iv—Ni2b—O2vi 158 (2) Ni2a—Na2—Na1xi 101.59 (12)
O2v—Ni2b—O2vi 127 (4) Ni2a—Na2—Na2iii 93.85 (17)
O4vii—Ni3—O5 92.46 (12) Ni2a—Na2—O2vi 41.55 (17)
O4vii—Ni3—O6viii 84.64 (13) Ni2a—Na2—O8xi 129.3 (2)
O4vii—Ni3—O10ix 82.32 (12) Ni2a—Na2—O13vi 121.44 (17)
O4vii—Ni3—O15 169.39 (11) Ni2b—Na2—As1vi 52.1 (12)
O5—Ni3—O6viii 84.66 (12) Ni2b—Na2—As4xi 160.9 (13)
O5—Ni3—O10ix 170.33 (16) Ni2b—Na2—Na1xi 105.7 (6)
O5—Ni3—O15 94.46 (12) Ni2b—Na2—Na2iii 102.9 (13)
O6viii—Ni3—O10ix 86.74 (12) Ni2b—Na2—O2vi 33.1 (12)
O6viii—Ni3—O15 103.99 (12) Ni2b—Na2—O8xi 137.2 (11)
O10ix—Ni3—O15 91.91 (12) Ni2b—Na2—O13vi 114.0 (11)
O1—Ni4—O4 90.49 (11) As1vi—Na2—As4xi 145.50 (8)
O1—Ni4—O10v 166.43 (12) As1vi—Na2—Na1xi 129.31 (10)
O1—Ni4—O11 97.17 (13) As1vi—Na2—Na2iii 152.92 (7)
O1—Ni4—O12 93.57 (12) As1vi—Na2—O2vi 30.22 (10)
O4—Ni4—O10v 80.96 (11) As1vi—Na2—O8xi 162.71 (11)
O4—Ni4—O11 92.27 (12) As1vi—Na2—O13vi 74.79 (8)
O4—Ni4—O12 175.26 (15) As4xi—Na2—Na1xi 69.02 (7)
O10v—Ni4—O11 93.70 (14) As4xi—Na2—Na2iii 58.21 (5)
O10v—Ni4—O12 95.48 (12) As4xi—Na2—O2vi 164.23 (11)
O11—Ni4—O12 84.81 (12) As4xi—Na2—O8xi 30.00 (15)
O6—Ni5—O6i 108.95 (13) As4xi—Na2—O13vi 83.39 (9)
O6—Ni5—O13 103.20 (12) Na1xi—Na2—Na2iii 61.65 (6)
O6—Ni5—O13i 101.19 (12) Na1xi—Na2—O2vi 104.27 (14)
O6i—Ni5—O13 101.19 (12) Na1xi—Na2—O8xi 41.18 (16)
O6i—Ni5—O13i 103.20 (12) Na1xi—Na2—O13vi 77.57 (10)
O13—Ni5—O13i 137.37 (11) Na2iii—Na2—O2vi 132.33 (13)
O14x—Ni6—O14xi 180.0 (5) Na2iii—Na2—O8xi 43.30 (8)
O14x—Ni6—O15xii 85.74 (12) Na2iii—Na2—O13vi 130.98 (10)
O14x—Ni6—O15iv 94.26 (12) O2vi—Na2—O8xi 145.4 (2)
O14x—Ni6—O15xiii 94.26 (12) O2vi—Na2—O13vi 81.18 (12)
O14x—Ni6—O15xiv 85.74 (12) O8xi—Na2—O13vi 88.13 (11)
O14xi—Ni6—O15xii 94.26 (12) As1—Na3—As1iii 115.32 (9)
O14xi—Ni6—O15iv 85.74 (12) As1—Na3—Na1xix 98.15 (10)
O14xi—Ni6—O15xiii 85.74 (12) As1iii—Na3—Na1xix 98.15 (10)
O14xi—Ni6—O15xiv 94.26 (12) Ni1—O1—Ni4 125.67 (17)
O15xii—Ni6—O15iv 89.57 (10) Ni1—O1—As2 123.00 (15)
O15xii—Ni6—O15xiii 180.0 (5) Ni4—O1—As2 93.49 (12)
O15xii—Ni6—O15xiv 90.43 (10) Ni2bv—O2—As1 107.3 (16)
O15iv—Ni6—O15xiii 90.43 (10) Ni2bv—O2—Na2vii 103.8 (19)
O15iv—Ni6—O15xiv 180.0 (5) As1—O2—Na2vii 107.4 (2)
O15xiii—Ni6—O15xiv 89.57 (10) Ni1—O3—As3 121.8 (2)
Na2vii—As1—Na3 120.62 (5) Ni3vi—O4—Ni4 96.68 (11)
Na2vii—As1—O2 42.36 (13) Ni3vi—O4—As2i 124.13 (16)
Na2vii—As1—O10 102.64 (10) Ni4—O4—As2i 139.19 (19)
Na2vii—As1—O12 81.93 (11) Ni3—O5—As2 129.51 (19)
Na2vii—As1—O15 130.93 (11) Ni3viii—O6—Ni5 104.78 (13)
Na3—As1—O2 126.42 (12) Ni3viii—O6—As4 121.23 (17)
Na3—As1—O10 127.00 (12) Ni5—O6—As4 118.91 (19)
Na3—As1—O12 55.54 (13) As4—O8—Na1 143.8 (2)
Na3—As1—O15 51.68 (13) As4—O8—Na2xv 105.9 (2)
O2—As1—O10 105.90 (14) As4—O8—Na2xvi 105.9 (2)
O2—As1—O12 119.59 (14) Na1—O8—Na2xv 98.65 (19)
O2—As1—O15 98.30 (17) Na1—O8—Na2xvi 98.65 (19)
O10—As1—O12 107.84 (17) Na2xv—O8—Na2xvi 93.40 (14)
O10—As1—O15 118.79 (13) Ni3ix—O10—Ni4v 99.49 (11)
O12—As1—O15 106.93 (14) Ni3ix—O10—As1 132.3 (2)
O1—As2—O4i 113.78 (13) Ni4v—O10—As1 122.37 (14)
O1—As2—O5 110.07 (15) Ni2a—O11—Ni4 121.2 (3)
O1—As2—O13 98.34 (16) Ni2a—O11—As3 100.3 (3)
O4i—As2—O5 114.98 (17) Ni4—O11—As3 128.29 (18)
O4i—As2—O13 100.05 (14) Ni4—O12—As1 134.0 (2)
O5—As2—O13 118.36 (14) Ni5—O13—As2 97.57 (12)
O3—As3—O9 115.8 (2) Ni5—O13—Na2vii 114.05 (13)
O3—As3—O11 112.91 (14) As2—O13—Na2vii 142.98 (18)
O3—As3—O11iii 112.91 (14) Ni6xx—O14—As4 133.6 (2)
O9—As3—O11 103.68 (16) Ni3—O15—Ni6xxi 124.68 (17)
O9—As3—O11iii 103.68 (16) Ni3—O15—As1 97.52 (13)
O11—As3—O11iii 106.83 (13) Ni6xxi—O15—As1 120.85 (15)
Na1i—As4—Na2xv 145.04 (5)

Symmetry codes: (i) −x+1, y, −z; (ii) −x+1, −y, −z; (iii) x, −y, z; (iv) −x+1, y, −z+1; (v) −x+3/2, −y+1/2, −z+1; (vi) x−1/2, −y+1/2, z; (vii) x+1/2, −y+1/2, z; (viii) −x+3/2, −y+1/2, −z; (ix) −x+2, y, −z+1; (x) x−1/2, y−1/2, z+1; (xi) −x+1/2, y−1/2, −z; (xii) x−1, y, z; (xiii) −x+1, −y, −z+1; (xiv) x−1, −y, z; (xv) −x+1/2, y+1/2, −z; (xvi) −x+1/2, −y+1/2, −z; (xvii) x, −y+1, z; (xviii) x−1/2, y+1/2, z; (xix) x+1/2, y−1/2, z; (xx) x+1/2, y+1/2, z−1; (xxi) x+1, y, z.

References

  1. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. David, R., Kabbour, H., Colis, S. & Mentré, O. (2013a). Inorg. Chem. 52, 13742–13750. [DOI] [PubMed]
  4. David, R., Kabbour, H., Colis, S., Pautrat, A., Suard, E. & Mentré, O. (2013b). J. Phys. Chem. C, 117, 18190–18198.
  5. Moring, J. & Kostiner, E. (1986). J. Solid State Chem. 62, 105–111.
  6. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  7. Petříčcek, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.
  8. Range, K.-J. & Meister, H. (2014). Z. Naturforsch. Teil B, 39, 118–120.
  9. Regnault, L. P., Burlet, P. & Rossat-Mignod, J. (1977). Physica B, 86–88, 660–662.
  10. Satya Kishore, M. V. V. M. & Varadaraju, U. V. (2006). Mater. Res. Bull. 41, 601–607.
  11. Senthilkumar, B., Sankar, K. V., Vasylechko, L., Lee, Y.-S. & Selvan, R. K. (2014). RSC Adv. 4, 53192–53200.
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016005417/vn2109sup1.cif

e-72-00632-sup1.cif (125.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016005417/vn2109Isup2.hkl

e-72-00632-Isup2.hkl (155.7KB, hkl)

CCDC reference: 1471603

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES