Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Apr 5;72(Pt 5):635–638. doi: 10.1107/S2056989016005302

Crystal structure of l-leucyl-l-isoleucine 2,2,2-tri­fluoro­ethanol monosolvate

Carl Henrik Görbitz a,*
PMCID: PMC4908515  PMID: 27308007

Unlike several other dipeptides with two hydro­phobic residues, l-Leu-l-Ile has not previously been obtained as an alcohol solvate, forming instead two different hydrates. Formation of a co-crystal has here been achieved by using a 2,2,2-tri­fluoro­ethanol solution. As expected, the resulting structure is divided into hydro­philic and hydro­phobic layers.

Keywords: dipeptide, head-to-tail chains, hydrogen bonds, layered structure, crystal structure

Abstract

Hydro­phobic dipeptides with either l-Leu or l-Phe constitute a rather heterogeneous group of crystal structures. Some form materials with large water-filled channels, but there is also a pronounced tendency to incorporate organic solvent mol­ecules, which then act as acceptors for one of the three H atoms of the charged N-terminal amino group. l-Leu-l-Ile has uniquely been obtained as two distinct hydrates, but has so far failed to co-crystallize with a simple alcohol. The present structure of C12H24N2O3·CF3CH2OH, which crystallizes with two dipeptide and two solvent mol­ecules in the asymmetric unit, demonstrates that when 2,2,2-tri­fluoro­ethanol is used as a solvent, its high capacity as a hydrogen-bond donor leads to formation of an alcohol solvate.

Chemical context  

Dipeptides with at least one hydro­phobic residue (i.e. lacking a functional group) such as Val, Leu, Ile and Phe have a high propensity to form crystal structures that are divided into hydro­phobic and hydro­philic layers (Görbitz, 2010). The latter include two C(8) head-to-tail chains with two of the three N-terminal amino H atoms acting as donors and the C-terminal carboxyl­ate group as acceptor, and also a C(4) or C(5) chain using the peptide >N—H group as donor and, respectively, the peptide carbonyl group or the carboxyl­ate group as acceptor. The third amino H atom finds an acceptor in a polar side chain or, when both residues are hydro­phobic, in a co-crystallized solvent mol­ecule. l-Leu-l-Val has thus been obtained as a series of alcohol solvates (Görbitz & Torgersen, 1999), but also as a non-layered hydrate (Görbitz & Gundersen, 1996). The same is true for l-Leu-l-Leu (Görbitz, 1998, 2001). l-Leu-l-Ile (LI) has, on the other hand, been obtained as two distinct hydrates; a 0.75 hydrate (Görbitz, 2004; CSD refcode ETIWIN) that is isostructural to the Leu-Val analogue (Görbitz & Gundersen, 1996), and a 2.5 hydrate with extensive water channels (Görbitz & Rise, 2008; CSD refcode HIZCOJ). Crystallization using methanol, ethanol or 2-propanol as precipitating agents did not result in formations of alcohol solvates.graphic file with name e-72-00635-scheme1.jpg

Recently we have become inter­ested in the use of fluorinated alcohols like 2,2,2-tri­fluoro­ethanol (TFE) and 1,1,1,3,3,3-hexa­fluoro-2-propanol during crystallization, not only due to their superior abilities to dissolve a large range of organic mol­ecules (abandoning the use of water if that is desirable), but also as crystal engineering tools to manipulate hydrogen-bonding patterns in solid-state structures by being incorporated into the crystal lattice by virtue of their strong hydrogen-bond-donating capacity. The crystal structure of the LI TFE solvate (I) presented here provides an example of how this can take place.

Structural commentary  

The four mol­ecules (two dipeptides and two solvent species) in the asymmetric unit are shown in Fig. 1. The structure is well behaved with normal bond lengths and bond angles. Disorder for TFE mol­ecule D was easily resolved (see Refinement details). The mol­ecular conformations of the two peptide mol­ecules are quite different in terms of the side-chain conformations, Table 1. The overall mol­ecular conformation of mol­ecule B is very close to that of mol­ecule B in the 2.5 hydrate (Görbitz & Rise, 2008). A substantial 24.5° deviation from the idealized trans orientation at 180° for χ2 2 of mol­ecule B is needed to relieve a short contact between H91B and F2C, Fig. 2.

Figure 1.

Figure 1

The asymmetric unit of (I), solvent mol­ecules being shown in different positions relative to the peptide mol­ecules than they have in the unit cell to avoid extensive overlap. The minor disorder orientation for TFE mol­ecule D is shown in wireframe representation. The amino group of mol­ecule A has an unusual eclipsed conformation (blue shade) resulting from formation of an intra­molecular hydrogen bond to O1A, while a normal staggered conformation (red shade) is observed for mol­ecule B. Thermal displacement ellipsoids are shown at the 50% probability level.

Table 1. Selected torsion angles (°).

Torsion angle Name Mol­ecule A/Mol­ecule B Conformation A/B
N1—C1—C6—N2 ψ1 162.6 (3)/117.8 (3) –/–
C1—C6—N2—C7 ω1 168.6 (3)/173.1 (3) –/–
C6—N2—C7—C12 φ2 −99.6 (4)/−65.5 (4) –/–
N2—C7—C12—O2 ψT −52.8 (4)/−41.1 (4) –/–
N1—C1—C2—C3 χ1 1 −69.5 (4)/177.8 (3) gauche−/trans
C1—C2—C3—C4 χ1 2,1 −68.2 (4)/−168.3 (3) gauche−/trans
C1—C2—C3—C5 χ1 2,2 170.1 (3)/69.1 (4) trans/gauche+
N2—C7—C8—C9 χ2 1,1 −60.9 (4)/−72.7 (3) gauche−/gauche
N2—C7—C8—C11 χ2 1,2 173.8 (3)/161.1 (3) trans/trans
C7—C8—C9—C10 χ2 2 −59.5 (4)/155.5 (3) gauche−/trans

Figure 2.

Figure 2

In the experimental crystal structure of (I) (left) the ethyl group of the Ile residue of mol­ecule B is rotated to relieve a short distance between H91B and F2C. If the C7B—C8B—C9B—C10B torsion angle had been exactly 180°, this distance would have been too short (right). The terminal methyl group, with C10B as a sphere, is not involved in any short contacts.

Supra­molecular features  

The unit cell and crystal-packing arrangement is illustrated in Fig. 3 a), hydrogen-bond parameters are listed in Table 2. While the two mol­ecules in the asymmetric unit of structures like l-Met-l-Ala 2-propanol solvate (Görbitz, 2000; CSD refcode CAQTOD) and l-Leu-l-Phe 2-propanol solvate (Görbitz, 1999; CSD refcode COCGOQ) are quite similar and related by pseudotranslational symmetry along a 10 Å long axis, the differences between the conformations (as discussed above) and relative positions of LI mol­ecules A and B are readily observed in Fig. 3 b). The C(5) hydrogen-bonded chain is part of an S 5 hydrogen-bonded sheet, one out of four distinct types of sheets observed in layered dipeptide crystal structures (Görbitz, 2010).

Figure 3.

Figure 3

Crystal packing of (I) viewed (a) approximately along the x axis. (b) View approximately along the y axis showing a single hydrogen-bonded C(5) chain parallel to the x axis. Only H atoms involved in strong hydrogen bonds are included; peptide mol­ecule A and TFE mol­ecule C are shown with atoms in lighter colors.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O3A i 0.91 2.13 2.928 (4) 146
N1A—H2A⋯O1A 0.91 2.07 2.607 (4) 116
N1A—H3A⋯O2B ii 0.91 1.87 2.767 (4) 168
N2A—H4A⋯O3B 0.88 2.00 2.883 (4) 177
N1B—H1B⋯O2A ii 0.91 1.79 2.695 (4) 179
N1B—H2B⋯O3B ii 0.91 1.89 2.721 (4) 151
N1B—H3B⋯O1D 0.91 1.98 2.838 (5) 156
O1D—H1D⋯O1A iii 0.86 (3) 1.87 (4) 2.695 (4) 159 (5)
O1C—H1C⋯O2B ii 0.86 (3) 1.85 (3) 2.693 (4) 167 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

This sheet is compared in Fig. 4 to the corresponding sheet of l-Leu-l-Val 2-propanol solvate (Görbitz & Torgersen, 1999), where the third amino hydrogen atom is accepted by the co-crystallized alcohol mol­ecule (shaded blue in Fig. 4 b). At the same time, the hydroxyl group serves as a hydrogen-bond donor to the peptide carbonyl group, which is not involved in any other strong hydrogen bonds (in distinction to the related S 4 pattern). Precisely the same function is taken by TFE mol­ecule D in Fig. 4 a), but solvent mol­ecule C is different; it seeks out and forms a hydrogen bond to the carboxyl­ate group of peptide mol­ecule B, uniquely abandoning its role as a hydrogen-bond acceptor (red shade in Fig. 4 b). The third amino H atom of mol­ecule A is then left to participate in only a bent intra­molecular inter­action that leads to the inherently less favorable eclipsed amino conformation shown in Fig. 1.

Figure 4.

Figure 4

Hydrogen bonds in (a) the crystal structure of (I) and (b) the crystal structure of l-Leu-l-Val 2-propanol solvate (Görbitz & Torgersen, 1999; CSD refcode JUCSEF01). Peptide Cβ atoms and solvent C atoms carrying hydroxyl groups are shown as small spheres, other side-chain and solvent atoms have been omitted for clarity. The archetype S 5 pattern in (b) is characterized by the presence of one syn and one anti head-to-tail C(8) chain with alternating mol­ecules being related by Screw symmetry (light grey shades), as well as a C(5) chain involving an amide >N—H donor and a carboxyl­ate acceptor. An S 4 pattern has the same symmetry, but a C(4) chain to O=C< carbonyl acceptor, while consecutive mol­ecules in T 5 and T 4 sheets are related by Translation rather than by a screw operation (Görbitz, 2010). See text for details on the red and blue shades.

In summary, TFE has been shown to be co-crystallized with L-Leu-L-Ile, thus radically changing the hydrogen bonding pattern. Is is the first dipeptide alcohol solvate where an alcohol mol­ecule does not act as a hydrogen bond acceptor, but rather forms a strong hydrogen bond donor to a peptide carboxyl­ate acceptor.

Synthesis and crystallization  

l-Leu-l-Val was purchased from Sigma–Aldrich and used as received. Colorless plates of the title compound were grown by vapor diffusion of aceto­nitrile into 30 µl of a saturated tri­fluoro­ethanol solution of the dipeptide.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 3. Solvent mol­ecule D is disordered over a major and a minor position with occupancies 0.825 (5) and 0.175 (5), respectively. The O1 and C1 atoms of the minor component were constrained to have the same set of anisotropic displacement parameters as the corresponding atoms of the major component, while C2 and the three F atoms were refined isotropically.

Table 3. Experimental details.

Crystal data
Chemical formula C12H24N2O3·C2H3F3O
M r 344.37
Crystal system, space group Monoclinic, P21
Temperature (K) 120
a, b, c (Å) 10.947 (3), 12.999 (4), 12.440 (4)
β (°) 101.833 (4)
V3) 1732.6 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.77 × 0.43 × 0.07
 
Data collection
Diffractometer Bruker D8 Advance single crystal CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.643, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10435, 5594, 4796
R int 0.039
(sin θ/λ)max−1) 0.598
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.095, 1.03
No. of reflections 5594
No. of parameters 454
No. of restraints 39
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.18

Computer programs: APEX2 and SAINT-Plus (Bruker, 2014), SHELXT (Sheldrick, 2015a ), Mercury (Macrae et al., 2008) and SHELXL2014 (Sheldrick, 2015b ).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016005302/hb7570sup1.cif

e-72-00635-sup1.cif (337.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016005302/hb7570Isup2.hkl

e-72-00635-Isup2.hkl (444.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016005302/hb7570Isup3.cml

CCDC reference: 1471080

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C12H24N2O3·C2H3F3O F(000) = 736
Mr = 344.37 Dx = 1.320 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 10.947 (3) Å Cell parameters from 4820 reflections
b = 12.999 (4) Å θ = 2.3–25.0°
c = 12.440 (4) Å µ = 0.12 mm1
β = 101.833 (4)° T = 120 K
V = 1732.6 (9) Å3 Plate, colorless
Z = 4 0.77 × 0.43 × 0.07 mm

Data collection

Bruker D8 Advance single crystal CCD diffractometer 5594 independent reflections
Radiation source: fine-focus sealed tube 4796 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.039
Detector resolution: 8.3 pixels mm-1 θmax = 25.1°, θmin = 1.7°
Sets of exposures each taken over 0.5° ω rotation scans h = −13→13
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −15→12
Tmin = 0.643, Tmax = 1.000 l = −14→14
10435 measured reflections

Refinement

Refinement on F2 39 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.0691P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
5594 reflections Δρmax = 0.27 e Å3
454 parameters Δρmin = −0.18 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. One of the solvent molecules is disordered over two positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1A 0.0423 (2) 0.6609 (2) 0.3719 (2) 0.0280 (6)
O2A 0.0083 (2) 0.3213 (2) 0.4273 (2) 0.0325 (7)
O3A −0.1629 (2) 0.3989 (2) 0.3414 (2) 0.0305 (7)
N1A 0.2285 (3) 0.7482 (2) 0.5048 (2) 0.0199 (7)
H1A 0.2165 0.7717 0.5708 0.030*
H2A 0.1656 0.7711 0.4505 0.030*
H3A 0.3028 0.7718 0.4929 0.030*
N2A 0.1323 (2) 0.5031 (2) 0.3755 (2) 0.0190 (7)
H4A 0.2002 0.4671 0.4009 0.023*
C1A 0.2293 (3) 0.6338 (3) 0.5053 (3) 0.0183 (8)
H11A 0.3123 0.6076 0.4960 0.022*
C2A 0.1980 (3) 0.5909 (3) 0.6115 (3) 0.0222 (8)
H21A 0.1192 0.6229 0.6220 0.027*
H22A 0.1826 0.5161 0.6018 0.027*
C3A 0.2968 (3) 0.6072 (3) 0.7160 (3) 0.0225 (8)
H31A 0.3203 0.6816 0.7215 0.027*
C4A 0.4133 (3) 0.5437 (3) 0.7136 (3) 0.0307 (10)
H41A 0.4465 0.5625 0.6489 0.046*
H42A 0.3919 0.4704 0.7103 0.046*
H43A 0.4764 0.5573 0.7802 0.046*
C5A 0.2433 (4) 0.5779 (4) 0.8157 (3) 0.0376 (11)
H51A 0.1661 0.6164 0.8144 0.056*
H52A 0.3040 0.5945 0.8830 0.056*
H53A 0.2255 0.5040 0.8138 0.056*
C6A 0.1269 (3) 0.5994 (3) 0.4086 (3) 0.0192 (8)
C7A 0.0299 (3) 0.4538 (3) 0.2983 (3) 0.0180 (8)
H71A −0.0258 0.5090 0.2592 0.022*
C8A 0.0799 (3) 0.3913 (3) 0.2128 (3) 0.0207 (8)
H81A 0.1408 0.3403 0.2533 0.025*
C9A 0.1501 (3) 0.4587 (3) 0.1444 (3) 0.0270 (9)
H91A 0.2233 0.4895 0.1941 0.032*
H92A 0.1820 0.4141 0.0918 0.032*
C10A 0.0738 (4) 0.5449 (4) 0.0804 (3) 0.0442 (12)
H12A 0.1226 0.5782 0.0324 0.066*
H13A 0.0525 0.5957 0.1319 0.066*
H14A −0.0030 0.5165 0.0358 0.066*
C11A −0.0252 (3) 0.3306 (4) 0.1401 (3) 0.0350 (10)
H15A −0.0647 0.2854 0.1861 0.052*
H16A 0.0093 0.2890 0.0877 0.052*
H17A −0.0873 0.3785 0.1000 0.052*
C12A −0.0472 (3) 0.3866 (3) 0.3615 (3) 0.0215 (8)
O1B 0.5502 (2) 0.6220 (2) 0.50128 (19) 0.0238 (6)
O2B 0.5573 (2) 0.3479 (2) 0.52421 (19) 0.0215 (6)
O3B 0.3600 (2) 0.3917 (2) 0.45792 (19) 0.0216 (6)
N1B 0.7727 (3) 0.7368 (2) 0.4733 (2) 0.0226 (7)
H1B 0.8461 0.7665 0.5066 0.034*
H2B 0.7080 0.7715 0.4921 0.034*
H3B 0.7655 0.7392 0.3991 0.034*
N2B 0.6296 (2) 0.5066 (2) 0.3983 (2) 0.0192 (7)
H4B 0.6958 0.4877 0.3732 0.023*
C1B 0.7706 (3) 0.6274 (3) 0.5093 (3) 0.0193 (8)
H11B 0.8320 0.5861 0.4779 0.023*
C2B 0.8047 (3) 0.6239 (3) 0.6345 (3) 0.0227 (8)
H21B 0.8894 0.6530 0.6585 0.027*
H22B 0.7462 0.6691 0.6636 0.027*
C3B 0.8024 (3) 0.5183 (3) 0.6864 (3) 0.0248 (9)
H31B 0.7208 0.4848 0.6546 0.030*
C4B 0.8116 (4) 0.5314 (4) 0.8093 (3) 0.0371 (11)
H41B 0.8115 0.4636 0.8438 0.056*
H42B 0.7401 0.5715 0.8221 0.056*
H43B 0.8891 0.5676 0.8411 0.056*
C5B 0.9073 (4) 0.4492 (3) 0.6641 (3) 0.0343 (10)
H51B 0.9013 0.3815 0.6974 0.052*
H52B 0.9881 0.4804 0.6960 0.052*
H53B 0.8997 0.4414 0.5847 0.052*
C6B 0.6391 (3) 0.5850 (3) 0.4685 (3) 0.0189 (8)
C7B 0.5130 (3) 0.4513 (3) 0.3620 (3) 0.0184 (8)
H71B 0.4463 0.5021 0.3316 0.022*
C8B 0.5294 (3) 0.3774 (3) 0.2694 (3) 0.0197 (8)
H81B 0.6128 0.3439 0.2930 0.024*
C9B 0.5323 (3) 0.4366 (3) 0.1635 (3) 0.0261 (9)
H91B 0.4456 0.4501 0.1243 0.031*
H92B 0.5735 0.5038 0.1826 0.031*
C10B 0.6011 (4) 0.3791 (4) 0.0867 (3) 0.0393 (11)
H12B 0.5968 0.4190 0.0192 0.059*
H13B 0.5620 0.3118 0.0685 0.059*
H14B 0.6886 0.3696 0.1231 0.059*
C11B 0.4328 (3) 0.2917 (3) 0.2499 (3) 0.0249 (9)
H15B 0.4419 0.2489 0.3159 0.037*
H16B 0.4453 0.2493 0.1879 0.037*
H17B 0.3489 0.3217 0.2332 0.037*
C12B 0.4741 (3) 0.3938 (3) 0.4562 (3) 0.0175 (8)
O1C 0.5265 (2) 0.7674 (2) 0.3049 (2) 0.0299 (7)
H1C 0.501 (4) 0.784 (3) 0.364 (3) 0.045*
F1C 0.2472 (2) 0.77562 (19) 0.09991 (19) 0.0419 (6)
F2C 0.3722 (2) 0.64892 (18) 0.1427 (2) 0.0478 (7)
F3C 0.2751 (2) 0.7092 (2) 0.26117 (19) 0.0454 (7)
C1C 0.4374 (3) 0.8097 (3) 0.2199 (3) 0.0257 (9)
H11C 0.4774 0.8281 0.1580 0.031*
H12C 0.4032 0.8734 0.2459 0.031*
C2C 0.3341 (3) 0.7359 (3) 0.1812 (3) 0.0285 (9)
O1D 0.8241 (3) 0.7359 (3) 0.2588 (3) 0.0329 (10) 0.825 (5)
H1D 0.897 (4) 0.710 (4) 0.279 (4) 0.049* 0.825 (5)
F1D 0.6835 (3) 0.8066 (3) 0.0612 (3) 0.0441 (9) 0.825 (5)
F2D 0.8335 (3) 0.7120 (3) 0.0332 (3) 0.0576 (12) 0.825 (5)
F3D 0.6481 (3) 0.6516 (3) 0.0016 (2) 0.0572 (12) 0.825 (5)
C1D 0.7461 (4) 0.6710 (4) 0.1859 (3) 0.0280 (13) 0.825 (5)
H11D 0.6640 0.6662 0.2072 0.034* 0.825 (5)
H12D 0.7829 0.6012 0.1901 0.034* 0.825 (5)
C2D 0.7286 (4) 0.7099 (4) 0.0713 (3) 0.0353 (14) 0.825 (5)
O11D 0.8098 (19) 0.6853 (16) 0.2667 (12) 0.0329 (10) 0.175 (5)
H11E 0.8867 0.6965 0.2746 0.049* 0.175 (5)
F11D 0.7114 (17) 0.8328 (14) 0.1014 (19) 0.090 (11)* 0.175 (5)
F12D 0.8965 (12) 0.7813 (13) 0.1012 (14) 0.077 (6)* 0.175 (5)
F13D 0.7446 (19) 0.7253 (17) −0.0213 (10) 0.116 (10)* 0.175 (5)
C11D 0.760 (2) 0.6624 (12) 0.1569 (13) 0.0280 (13) 0.175 (5)
H13D 0.6694 0.6480 0.1477 0.034* 0.175 (5)
H14D 0.8006 0.6000 0.1351 0.034* 0.175 (5)
C12D 0.7788 (13) 0.7499 (11) 0.0850 (10) 0.038 (8)* 0.175 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0237 (14) 0.0214 (16) 0.0342 (15) 0.0061 (12) −0.0051 (11) −0.0037 (12)
O2A 0.0238 (13) 0.0317 (17) 0.0442 (17) 0.0035 (13) 0.0125 (12) 0.0137 (15)
O3A 0.0144 (13) 0.0460 (19) 0.0315 (15) 0.0020 (12) 0.0056 (11) −0.0025 (14)
N1A 0.0179 (15) 0.0213 (19) 0.0198 (15) −0.0020 (13) 0.0025 (12) −0.0007 (13)
N2A 0.0143 (14) 0.0186 (19) 0.0224 (16) 0.0012 (12) −0.0003 (12) −0.0011 (14)
C1A 0.0182 (17) 0.014 (2) 0.0214 (19) 0.0003 (14) 0.0022 (14) −0.0015 (15)
C2A 0.0227 (18) 0.021 (2) 0.023 (2) −0.0005 (16) 0.0049 (15) 0.0016 (17)
C3A 0.030 (2) 0.017 (2) 0.0181 (18) −0.0010 (16) 0.0003 (15) −0.0002 (16)
C4A 0.026 (2) 0.040 (3) 0.024 (2) 0.0019 (19) 0.0003 (16) 0.0031 (19)
C5A 0.042 (2) 0.046 (3) 0.025 (2) 0.008 (2) 0.0083 (19) 0.003 (2)
C6A 0.0159 (17) 0.020 (2) 0.0212 (19) −0.0007 (15) 0.0033 (14) −0.0014 (16)
C7A 0.0162 (16) 0.018 (2) 0.0188 (18) −0.0002 (15) 0.0007 (13) 0.0008 (15)
C8A 0.0222 (17) 0.021 (2) 0.0206 (19) 0.0013 (16) 0.0073 (14) −0.0026 (17)
C9A 0.0266 (19) 0.032 (3) 0.023 (2) −0.0011 (17) 0.0055 (15) −0.0006 (18)
C10A 0.037 (2) 0.058 (3) 0.034 (3) −0.003 (2) 0.000 (2) 0.018 (2)
C11A 0.031 (2) 0.038 (3) 0.038 (2) −0.0091 (19) 0.0136 (19) −0.014 (2)
C12A 0.0215 (19) 0.022 (2) 0.0221 (19) 0.0014 (17) 0.0079 (14) −0.0087 (18)
O1B 0.0221 (13) 0.0259 (16) 0.0240 (14) 0.0017 (11) 0.0064 (11) −0.0043 (12)
O2B 0.0196 (12) 0.0230 (16) 0.0219 (13) 0.0017 (10) 0.0044 (11) 0.0019 (11)
O3B 0.0152 (12) 0.0232 (15) 0.0265 (13) 0.0016 (11) 0.0048 (10) 0.0023 (12)
N1B 0.0214 (15) 0.0222 (19) 0.0251 (17) −0.0002 (13) 0.0070 (13) −0.0002 (14)
N2B 0.0169 (14) 0.0201 (18) 0.0213 (16) 0.0002 (12) 0.0060 (12) −0.0024 (14)
C1B 0.0221 (18) 0.014 (2) 0.0229 (19) −0.0009 (15) 0.0075 (15) −0.0016 (16)
C2B 0.0206 (18) 0.023 (2) 0.0233 (19) −0.0019 (15) 0.0026 (15) −0.0022 (17)
C3B 0.0213 (18) 0.029 (2) 0.022 (2) −0.0048 (16) 0.0010 (15) 0.0006 (17)
C4B 0.042 (2) 0.040 (3) 0.027 (2) −0.006 (2) 0.0026 (19) 0.001 (2)
C5B 0.040 (2) 0.025 (3) 0.037 (2) 0.000 (2) 0.0062 (18) 0.003 (2)
C6B 0.0189 (17) 0.020 (2) 0.0174 (18) 0.0003 (15) 0.0037 (14) 0.0050 (16)
C7B 0.0146 (16) 0.019 (2) 0.0211 (19) 0.0007 (15) 0.0010 (14) 0.0012 (16)
C8B 0.0165 (17) 0.022 (2) 0.0202 (19) −0.0003 (15) 0.0024 (14) −0.0034 (16)
C9B 0.029 (2) 0.029 (2) 0.0203 (19) −0.0030 (18) 0.0060 (16) 0.0003 (17)
C10B 0.038 (2) 0.059 (3) 0.024 (2) −0.004 (2) 0.0127 (17) −0.005 (2)
C11B 0.0212 (18) 0.028 (3) 0.024 (2) −0.0013 (17) 0.0014 (15) −0.0021 (17)
C12B 0.0185 (18) 0.013 (2) 0.0196 (18) 0.0022 (15) 0.0011 (14) −0.0045 (16)
O1C 0.0289 (14) 0.0399 (19) 0.0208 (14) 0.0083 (13) 0.0045 (11) 0.0017 (13)
F1C 0.0378 (13) 0.0410 (17) 0.0400 (14) −0.0028 (12) −0.0079 (11) 0.0016 (12)
F2C 0.0526 (15) 0.0330 (17) 0.0551 (16) 0.0018 (12) 0.0048 (12) −0.0159 (13)
F3C 0.0418 (14) 0.0557 (19) 0.0410 (15) −0.0157 (12) 0.0140 (12) 0.0048 (13)
C1C 0.028 (2) 0.026 (2) 0.022 (2) 0.0010 (17) 0.0035 (16) 0.0003 (17)
C2C 0.035 (2) 0.026 (3) 0.024 (2) 0.0008 (18) 0.0042 (18) 0.0010 (18)
O1D 0.0277 (17) 0.039 (3) 0.0311 (17) 0.003 (2) 0.0032 (14) 0.004 (2)
F1D 0.054 (2) 0.041 (2) 0.035 (2) 0.0164 (17) 0.0036 (17) 0.0132 (18)
F2D 0.055 (2) 0.084 (3) 0.044 (2) 0.0129 (19) 0.0334 (17) 0.0123 (19)
F3D 0.073 (2) 0.062 (3) 0.0291 (17) −0.0009 (19) −0.0069 (16) −0.0075 (16)
C1D 0.026 (2) 0.039 (3) 0.020 (3) 0.007 (2) 0.007 (2) 0.002 (2)
C2D 0.034 (3) 0.045 (4) 0.028 (3) 0.007 (3) 0.007 (2) 0.003 (3)
O11D 0.0277 (17) 0.039 (3) 0.0311 (17) 0.003 (2) 0.0032 (14) 0.004 (2)
C11D 0.026 (2) 0.039 (3) 0.020 (3) 0.007 (2) 0.007 (2) 0.002 (2)

Geometric parameters (Å, º)

O1A—C6A 1.238 (4) C1B—H11B 1.0000
O2A—C12A 1.247 (5) C2B—C3B 1.519 (5)
O3A—C12A 1.251 (4) C2B—H21B 0.9900
N1A—C1A 1.488 (5) C2B—H22B 0.9900
N1A—H1A 0.9100 C3B—C4B 1.520 (5)
N1A—H2A 0.9100 C3B—C5B 1.526 (5)
N1A—H3A 0.9100 C3B—H31B 1.0000
N2A—C6A 1.323 (5) C4B—H41B 0.9800
N2A—C7A 1.466 (4) C4B—H42B 0.9800
N2A—H4A 0.8800 C4B—H43B 0.9800
C1A—C6A 1.533 (5) C5B—H51B 0.9800
C1A—C2A 1.536 (5) C5B—H52B 0.9800
C1A—H11A 1.0000 C5B—H53B 0.9800
C2A—C3A 1.525 (5) C7B—C12B 1.523 (5)
C2A—H21A 0.9900 C7B—C8B 1.538 (5)
C2A—H22A 0.9900 C7B—H71B 1.0000
C3A—C4A 1.525 (5) C8B—C11B 1.521 (5)
C3A—C5A 1.525 (5) C8B—C9B 1.532 (5)
C3A—H31A 1.0000 C8B—H81B 1.0000
C4A—H41A 0.9800 C9B—C10B 1.527 (5)
C4A—H42A 0.9800 C9B—H91B 0.9900
C4A—H43A 0.9800 C9B—H92B 0.9900
C5A—H51A 0.9800 C10B—H12B 0.9800
C5A—H52A 0.9800 C10B—H13B 0.9800
C5A—H53A 0.9800 C10B—H14B 0.9800
C7A—C8A 1.526 (5) C11B—H15B 0.9800
C7A—C12A 1.538 (5) C11B—H16B 0.9800
C7A—H71A 1.0000 C11B—H17B 0.9800
C8A—C11A 1.528 (5) O1C—C1C 1.396 (4)
C8A—C9A 1.534 (5) O1C—H1C 0.86 (3)
C8A—H81A 1.0000 F1C—C2C 1.342 (4)
C9A—C10A 1.522 (6) F2C—C2C 1.328 (4)
C9A—H91A 0.9900 F3C—C2C 1.338 (4)
C9A—H92A 0.9900 C1C—C2C 1.486 (5)
C10A—H12A 0.9800 C1C—H11C 0.9900
C10A—H13A 0.9800 C1C—H12C 0.9900
C10A—H14A 0.9800 O1D—C1D 1.394 (4)
C11A—H15A 0.9800 O1D—H1D 0.86 (3)
C11A—H16A 0.9800 F1D—C2D 1.347 (4)
C11A—H17A 0.9800 F2D—C2D 1.329 (4)
O1B—C6B 1.228 (4) F3D—C2D 1.338 (5)
O2B—C12B 1.259 (4) C1D—C2D 1.487 (5)
O3B—C12B 1.254 (4) C1D—H11D 0.9900
N1B—C1B 1.493 (5) C1D—H12D 0.9900
N1B—H1B 0.9100 O11D—C11D 1.396 (6)
N1B—H2B 0.9100 O11D—H11E 0.8400
N1B—H3B 0.9100 F11D—C12D 1.345 (6)
N2B—C6B 1.333 (5) F12D—C12D 1.327 (6)
N2B—C7B 1.453 (4) F13D—C12D 1.337 (6)
N2B—H4B 0.8800 C11D—C12D 1.488 (6)
C1B—C2B 1.526 (5) C11D—H13D 0.9900
C1B—C6B 1.528 (5) C11D—H14D 0.9900
C1A—N1A—H1A 109.5 H21B—C2B—H22B 107.4
C1A—N1A—H2A 109.5 C2B—C3B—C4B 108.8 (3)
H1A—N1A—H2A 109.5 C2B—C3B—C5B 112.1 (3)
C1A—N1A—H3A 109.5 C4B—C3B—C5B 110.6 (3)
H1A—N1A—H3A 109.5 C2B—C3B—H31B 108.4
H2A—N1A—H3A 109.5 C4B—C3B—H31B 108.4
C6A—N2A—C7A 122.7 (3) C5B—C3B—H31B 108.4
C6A—N2A—H4A 118.7 C3B—C4B—H41B 109.5
C7A—N2A—H4A 118.7 C3B—C4B—H42B 109.5
N1A—C1A—C6A 106.6 (3) H41B—C4B—H42B 109.5
N1A—C1A—C2A 111.4 (3) C3B—C4B—H43B 109.5
C6A—C1A—C2A 108.2 (3) H41B—C4B—H43B 109.5
N1A—C1A—H11A 110.2 H42B—C4B—H43B 109.5
C6A—C1A—H11A 110.2 C3B—C5B—H51B 109.5
C2A—C1A—H11A 110.2 C3B—C5B—H52B 109.5
C3A—C2A—C1A 116.0 (3) H51B—C5B—H52B 109.5
C3A—C2A—H21A 108.3 C3B—C5B—H53B 109.5
C1A—C2A—H21A 108.3 H51B—C5B—H53B 109.5
C3A—C2A—H22A 108.3 H52B—C5B—H53B 109.5
C1A—C2A—H22A 108.3 O1B—C6B—N2B 123.9 (3)
H21A—C2A—H22A 107.4 O1B—C6B—C1B 120.3 (3)
C4A—C3A—C5A 110.0 (3) N2B—C6B—C1B 115.8 (3)
C4A—C3A—C2A 111.0 (3) N2B—C7B—C12B 111.7 (3)
C5A—C3A—C2A 109.6 (3) N2B—C7B—C8B 108.2 (3)
C4A—C3A—H31A 108.7 C12B—C7B—C8B 111.3 (3)
C5A—C3A—H31A 108.7 N2B—C7B—H71B 108.5
C2A—C3A—H31A 108.7 C12B—C7B—H71B 108.5
C3A—C4A—H41A 109.5 C8B—C7B—H71B 108.5
C3A—C4A—H42A 109.5 C11B—C8B—C9B 111.5 (3)
H41A—C4A—H42A 109.5 C11B—C8B—C7B 113.2 (3)
C3A—C4A—H43A 109.5 C9B—C8B—C7B 110.9 (3)
H41A—C4A—H43A 109.5 C11B—C8B—H81B 107.0
H42A—C4A—H43A 109.5 C9B—C8B—H81B 107.0
C3A—C5A—H51A 109.5 C7B—C8B—H81B 107.0
C3A—C5A—H52A 109.5 C10B—C9B—C8B 113.1 (3)
H51A—C5A—H52A 109.5 C10B—C9B—H91B 109.0
C3A—C5A—H53A 109.5 C8B—C9B—H91B 109.0
H51A—C5A—H53A 109.5 C10B—C9B—H92B 109.0
H52A—C5A—H53A 109.5 C8B—C9B—H92B 109.0
O1A—C6A—N2A 125.0 (3) H91B—C9B—H92B 107.8
O1A—C6A—C1A 118.2 (3) C9B—C10B—H12B 109.5
N2A—C6A—C1A 116.6 (3) C9B—C10B—H13B 109.5
N2A—C7A—C8A 110.7 (3) H12B—C10B—H13B 109.5
N2A—C7A—C12A 109.8 (3) C9B—C10B—H14B 109.5
C8A—C7A—C12A 111.5 (3) H12B—C10B—H14B 109.5
N2A—C7A—H71A 108.3 H13B—C10B—H14B 109.5
C8A—C7A—H71A 108.3 C8B—C11B—H15B 109.5
C12A—C7A—H71A 108.3 C8B—C11B—H16B 109.5
C7A—C8A—C11A 110.7 (3) H15B—C11B—H16B 109.5
C7A—C8A—C9A 112.0 (3) C8B—C11B—H17B 109.5
C11A—C8A—C9A 111.6 (3) H15B—C11B—H17B 109.5
C7A—C8A—H81A 107.4 H16B—C11B—H17B 109.5
C11A—C8A—H81A 107.4 O3B—C12B—O2B 124.3 (3)
C9A—C8A—H81A 107.4 O3B—C12B—C7B 117.4 (3)
C10A—C9A—C8A 115.3 (3) O2B—C12B—C7B 118.2 (3)
C10A—C9A—H91A 108.5 C1C—O1C—H1C 104 (3)
C8A—C9A—H91A 108.5 O1C—C1C—C2C 111.0 (3)
C10A—C9A—H92A 108.5 O1C—C1C—H11C 109.4
C8A—C9A—H92A 108.5 C2C—C1C—H11C 109.4
H91A—C9A—H92A 107.5 O1C—C1C—H12C 109.4
C9A—C10A—H12A 109.5 C2C—C1C—H12C 109.4
C9A—C10A—H13A 109.5 H11C—C1C—H12C 108.0
H12A—C10A—H13A 109.5 F2C—C2C—F3C 106.4 (3)
C9A—C10A—H14A 109.5 F2C—C2C—F1C 106.4 (3)
H12A—C10A—H14A 109.5 F3C—C2C—F1C 106.5 (3)
H13A—C10A—H14A 109.5 F2C—C2C—C1C 113.1 (3)
C8A—C11A—H15A 109.5 F3C—C2C—C1C 112.2 (3)
C8A—C11A—H16A 109.5 F1C—C2C—C1C 111.7 (3)
H15A—C11A—H16A 109.5 C1D—O1D—H1D 111 (4)
C8A—C11A—H17A 109.5 O1D—C1D—C2D 111.0 (4)
H15A—C11A—H17A 109.5 O1D—C1D—H11D 109.4
H16A—C11A—H17A 109.5 C2D—C1D—H11D 109.4
O2A—C12A—O3A 123.8 (3) O1D—C1D—H12D 109.4
O2A—C12A—C7A 118.6 (3) C2D—C1D—H12D 109.4
O3A—C12A—C7A 117.6 (3) H11D—C1D—H12D 108.0
C1B—N1B—H1B 109.5 F2D—C2D—F3D 106.4 (3)
C1B—N1B—H2B 109.5 F2D—C2D—F1D 106.0 (4)
H1B—N1B—H2B 109.5 F3D—C2D—F1D 106.7 (4)
C1B—N1B—H3B 109.5 F2D—C2D—C1D 113.4 (4)
H1B—N1B—H3B 109.5 F3D—C2D—C1D 111.5 (4)
H2B—N1B—H3B 109.5 F1D—C2D—C1D 112.3 (3)
C6B—N2B—C7B 121.8 (3) C11D—O11D—H11E 109.5
C6B—N2B—H4B 119.1 O11D—C11D—C12D 110.5 (7)
C7B—N2B—H4B 119.1 O11D—C11D—H13D 109.6
N1B—C1B—C2B 108.6 (3) C12D—C11D—H13D 109.6
N1B—C1B—C6B 108.4 (3) O11D—C11D—H14D 109.6
C2B—C1B—C6B 110.2 (3) C12D—C11D—H14D 109.6
N1B—C1B—H11B 109.9 H13D—C11D—H14D 108.1
C2B—C1B—H11B 109.9 F12D—C12D—F13D 106.9 (7)
C6B—C1B—H11B 109.9 F12D—C12D—F11D 106.0 (7)
C3B—C2B—C1B 116.0 (3) F13D—C12D—F11D 106.8 (7)
C3B—C2B—H21B 108.3 F12D—C12D—C11D 113.3 (6)
C1B—C2B—H21B 108.3 F13D—C12D—C11D 111.5 (7)
C3B—C2B—H22B 108.3 F11D—C12D—C11D 111.9 (6)
C1B—C2B—H22B 108.3
N1A—C1A—C2A—C3A −69.5 (4) C7B—N2B—C6B—C1B 173.1 (3)
C6A—C1A—C2A—C3A 173.6 (3) N1B—C1B—C6B—O1B −63.1 (4)
C1A—C2A—C3A—C4A −68.2 (4) C2B—C1B—C6B—O1B 55.6 (4)
C1A—C2A—C3A—C5A 170.1 (3) N1B—C1B—C6B—N2B 117.8 (3)
C7A—N2A—C6A—O1A −6.9 (5) C2B—C1B—C6B—N2B −123.5 (3)
C7A—N2A—C6A—C1A 168.6 (3) C6B—N2B—C7B—C12B −65.5 (4)
N1A—C1A—C6A—O1A −21.6 (4) C6B—N2B—C7B—C8B 171.7 (3)
C2A—C1A—C6A—O1A 98.4 (4) N2B—C7B—C8B—C11B 161.1 (3)
N1A—C1A—C6A—N2A 162.6 (3) C12B—C7B—C8B—C11B 38.0 (4)
C2A—C1A—C6A—N2A −77.5 (4) N2B—C7B—C8B—C9B −72.7 (3)
C6A—N2A—C7A—C8A 136.9 (3) C12B—C7B—C8B—C9B 164.2 (3)
C6A—N2A—C7A—C12A −99.6 (4) C11B—C8B—C9B—C10B −77.4 (4)
N2A—C7A—C8A—C11A 173.8 (3) C7B—C8B—C9B—C10B 155.5 (3)
C12A—C7A—C8A—C11A 51.3 (4) N2B—C7B—C12B—O3B 142.0 (3)
N2A—C7A—C8A—C9A −60.9 (4) C8B—C7B—C12B—O3B −97.0 (4)
C12A—C7A—C8A—C9A 176.5 (3) N2B—C7B—C12B—O2B −41.1 (4)
C7A—C8A—C9A—C10A −59.5 (4) C8B—C7B—C12B—O2B 80.0 (4)
C11A—C8A—C9A—C10A 65.2 (4) O1C—C1C—C2C—F2C −60.4 (4)
N2A—C7A—C12A—O2A −52.8 (4) O1C—C1C—C2C—F3C 60.0 (4)
C8A—C7A—C12A—O2A 70.2 (4) O1C—C1C—C2C—F1C 179.6 (3)
N2A—C7A—C12A—O3A 129.1 (3) O1D—C1D—C2D—F2D 63.6 (5)
C8A—C7A—C12A—O3A −107.9 (4) O1D—C1D—C2D—F3D −176.3 (4)
N1B—C1B—C2B—C3B 177.8 (3) O1D—C1D—C2D—F1D −56.6 (5)
C6B—C1B—C2B—C3B 59.2 (4) O11D—C11D—C12D—F12D 52.3 (19)
C1B—C2B—C3B—C4B −168.3 (3) O11D—C11D—C12D—F13D 172.9 (18)
C1B—C2B—C3B—C5B 69.1 (4) O11D—C11D—C12D—F11D −67.5 (19)
C7B—N2B—C6B—O1B −5.9 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1A···O3Ai 0.91 2.13 2.928 (4) 146
N1A—H2A···O1A 0.91 2.07 2.607 (4) 116
N1A—H3A···O2Bii 0.91 1.87 2.767 (4) 168
N2A—H4A···O3B 0.88 2.00 2.883 (4) 177
N1B—H1B···O2Aii 0.91 1.79 2.695 (4) 179
N1B—H2B···O3Bii 0.91 1.89 2.721 (4) 151
N1B—H3B···O1D 0.91 1.98 2.838 (5) 156
O1D—H1D···O1Aiii 0.86 (3) 1.87 (4) 2.695 (4) 159 (5)
O1C—H1C···O2Bii 0.86 (3) 1.85 (3) 2.693 (4) 167 (4)

Symmetry codes: (i) −x, y+1/2, −z+1; (ii) −x+1, y+1/2, −z+1; (iii) x+1, y, z.

References

  1. Bruker (2014). APEX2, SAINT-Plusus and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
  2. Görbitz, C. H. (1999). Acta Cryst. C55, 2171–2177.
  3. Görbitz, C. H. (2000). Acta Cryst. C56, e64–e65.
  4. Görbitz, C. H. (2001). Chem. Eur. J. 7, 2153–2159.
  5. Görbitz, C. H. (2004). Acta Cryst. E60, o647–o650.
  6. Görbitz, C. H. (2010). Acta Cryst. B66, 84–93. [DOI] [PubMed]
  7. Görbitz, C. H. (1998). Acta Chem. Scand. 52, 1343–1349.
  8. Görbitz, C. H. & Gundersen, E. (1996). Acta Chem. Scand. 50, 537–543.
  9. Görbitz, C. H. & Rise, F. (2008). J. Pept. Sci. 14, 210–216. [DOI] [PubMed]
  10. Görbitz, C. H. & Torgersen, E. (1999). Acta Cryst. B55, 104–113. [DOI] [PubMed]
  11. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  12. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  13. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016005302/hb7570sup1.cif

e-72-00635-sup1.cif (337.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016005302/hb7570Isup2.hkl

e-72-00635-Isup2.hkl (444.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016005302/hb7570Isup3.cml

CCDC reference: 1471080

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES