Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Apr 15;72(Pt 5):696–698. doi: 10.1107/S2056989016006009

Crystal structure of 1-{4-hy­droxy-3-[(pyrrolidin-1-yl)meth­yl]phen­yl}-3-phenyl­prop-2-en-1-one

Abdullah Aydın a,*, Mehmet Akkurt b, Halise Inci Gul c, Kadir Ozden Yerdelen c, Raziye Catak Celik d
PMCID: PMC4908517  PMID: 27308021

In the title compound, the pyrrolidine ring adopts an envelope conformation, which may be correlated with the intra­molecular O—H⋯N hydrogen bond.

Keywords: crystal structure, Mannich bases, semi-empirical, methyl­phen­yl, intra­molecular O—H⋯N hydrogen bond

Abstract

In the title compound, C20H21NO2, the pyrrolidine ring adopts an envelope conformation with the N atom at the flap position. The central benzene ring makes dihedral angles of 21.39 (10) and 80.10 (15)° with the phenyl ring and the mean plane of the pyrrolidine ring, respectively. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯N hydrogen bond, which closes an S(6) ring. A weak C—H⋯π inter­action is observed in the crystal.

Chemical context  

Mannich bases are a group of compounds having various biological activities such as cytotoxic (Bilginer et al., 2013), anti-inflammatory (Sahin et al., 2010) and anti­convulsant (Gul et al., 2004) activities. α,β-Unsaturated ketones present in the chemical structure of Mannich bases themselves or those produced from them by deamination processes are responsible for their cytotoxicity.graphic file with name e-72-00696-scheme1.jpg

The cytotoxic and anti­cancer properties of chalcone (1,3-diphenyl-2-propenone) and related compounds have been reported (Bilginer et al., 2013; Dimmock et al., 1998; Gul Cizmecioglu et al., 2009); Gul Mete et al., 2009). The title compound, (I), reported in this study is a Mannich base of phenolic chalcone.

Structural commentary  

In the title compound (Fig. 1), the pyrrolidine ring (N1/C17–C20) exhibits an envelope conformation with the N atom at the flap position [the puckering parameters are Q(2) = 0.350 (3) Å and φ(2) = 186.9 (5)°]. The central benzene ring (C10–C15) makes dihedral angles of 21.39 (10) and 80.10 (15)°, with the phenyl ring (C1–C6) and the mean plane of the pyrrolidine ring (N1/C17–C20), respectively. Otherwise, the geometrical parameters for (I) are comparable those reported for related compounds (Suhud et al., 2015; Palakshamurthy et al., 2012). An intra­molecular O2—H1O⋯N1 hydrogen bond (Table 1, Fig. 2) helps to establish the mol­ecular conformation of (I).

Figure 1.

Figure 1

View of the mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O⋯N1 0.85 (3) 1.85 (3) 2.633 (2) 154 (3)
C5—H5⋯Cg3i 0.93 2.99 3.685 (2) 132

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

The mol­ecular packing and hydrogen bonding viewed down the a axis.

Supra­molecular features  

The only directional inter­action present in the crystal of (I) is a very weak C—H⋯π bond (Table 1).

Semi-empirical quantum-mechanical calculations  

A theoretical calculation was carried out using the semi-empirical quantum-mechanical CNDO/2 (Complete Neglect of Differential Overlap) method (Pople & Beveridge, 1970). The spatial view of the single mol­ecule, with atomic labels, calculated as a closed-shell in a vacuum is shown in Fig. 3. The charges at atoms O1, O2 and N1 are −0.337, −0.271 and −0.159 e, respectively. The calculated dipole moment is 2.760 Debye.

Figure 3.

Figure 3

The conformation of the title compound, calculated using the CNDO method.

Biological activity  

Compound (I) was tested against human hepatoma (Huh7) and breast cancer cell (T47D) lines in terms of its cytotoxic activities, and showed activities against both cell lines used, especially against the T47D cell line. The compound studied here may serve as a model compound for designing new anti­cancer compounds for further studies (Yerdelen, 2009).

Synthesis and crystallization  

A solution of paraformaldehyde (0.132 g; 4.4 mmol) and pyrrolidine (0.317 g, 4.4 mmol) in aceto­nitrile (5 mL) was heated under reflux at 353 K for 30 min. A solution of the chalcone, 1-(4-hy­droxy­phen­yl)-3-phenyl-2-propen-1-one (1 g, 4.4 mmol) in aceto­nitrile (25 ml), was added to the reaction flask and heating was continued. The reaction was monitored by thin layer chromatography (TLC) and stopped after 7.5 h. The reaction solvent was distilled under vacuum. The residue was purified by column chromatography using Al2O3 as adsorbant and CHCl3/MeOH (9:1) as eluent. The title compound was obtained in 44% yield (m.p. = 398–402 K).Crystals suitable for X-ray diffaction analysis were obtained by recrystallization from ehanol.

1H NMR (CDCl3, p.p.m.) δ 1.89–1.86 (m, 4H, C18-H, C19-H); 2.67 (br s, 4H, C17-H, C20-H); 3.90 (s, 2H, C16-H); 6.88–6.86 (d, 1H, C14-H); 7.41–7.39 (m, 3H, C3-H, C4-H, C5-H); 7.56–7.53 (d, 1H, C8-H, J = 15.4 Hz); 7.65–7.62 (m, 2H, C2-H, C6-H); 7.78–7.77 (d, 1H, C11-H); 7.80–7.76 (d, 1H, C7-H, J = 15.4 Hz); 7.92–7.90 (dd, 1H, C15-H);

13C NMR (CDCl3, p.p.m.) δ 188.82 (C9), 163.59 (C13), 143.77 (C7), 135.42 (C1), 130.43 (C11), 130.39 (C15), 129.60 (C10), 129.25 (C3, C5), 129.12 (C4), 128.55 (C2, C6), 122.68 (C12), 122.16 (C8), 116.15 (C14), 50.80 (C16), 53.69 (C17, C20), 23.88 (C18, C19); TOF MS [ES (−)] (CHCl3) m/z: M + (307.15), M +-1 (306.15) (Yerdelen, 2009).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Carbon-bound H atoms were placed in calculated positions with C—H = 0.93 and 0.97 Å, and refined using a riding model with U iso(H) = 1.2U eq(C). The hydroxyl H atom was found from a difference Fourier map and its positional parameters were freely refined with U iso(H) = 1.5U eq(O). The most disagreeable reflections (2 4 0), (4 9 0), (4 12 0), (5 12 4), (3 12 5), (3 3 1), (0 16 5), (1 3 0), (2 20 6), (−2 13 17), (0 5 4), (0 11 4) and (2 13 4) were omitted in the final cycles of refinement. The Flack absolute structure parameter was found to be indeterminate in the present study.

Table 2. Experimental details.

Crystal data
Chemical formula C20H21NO2
M r 307.38
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 5.8403 (5), 16.3195 (13), 17.3615 (14)
V3) 1654.7 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.66 × 0.53 × 0.33
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007)
T min, T max 0.951, 0.974
No. of measured, independent and observed [I > 2σ(I)] reflections 37526, 4120, 3647
R int 0.050
(sin θ/λ)max−1) 0.668
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.118, 1.03
No. of reflections 4120
No. of parameters 211
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.12

Computer programs: APEX2 and SAINT (Bruker, 2007), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016006009/hb7576sup1.cif

e-72-00696-sup1.cif (27.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016006009/hb7576Isup2.hkl

e-72-00696-Isup2.hkl (226.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016006009/hb7576Isup3.cml

CCDC reference: 1473395

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray,Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010 K120480 of the State of Planning Organization)

supplementary crystallographic information

Crystal data

C20H21NO2 F(000) = 656
Mr = 307.38 Dx = 1.234 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 4120 reflections
a = 5.8403 (5) Å θ = 2.4–27.7°
b = 16.3195 (13) Å µ = 0.08 mm1
c = 17.3615 (14) Å T = 296 K
V = 1654.7 (2) Å3 Prism, light yellow
Z = 4 0.66 × 0.53 × 0.33 mm

Data collection

Bruker APEXII CCD diffractometer 4120 independent reflections
Radiation source: sealed tube 3647 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.050
φ and ω scans θmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −7→7
Tmin = 0.951, Tmax = 0.974 k = −21→21
37526 measured reflections l = −23→23

Refinement

Refinement on F2 1 restraint
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.068P)2 + 0.1361P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
4120 reflections Δρmax = 0.24 e Å3
211 parameters Δρmin = −0.12 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.0436 (3) 0.72582 (11) 0.13185 (14) 0.0800 (7)
O2 0.4920 (3) 0.42033 (9) 0.00124 (10) 0.0578 (5)
N1 0.1759 (3) 0.34948 (10) 0.08639 (10) 0.0495 (5)
C1 0.3003 (4) 0.98751 (12) 0.23067 (13) 0.0524 (6)
C2 0.4274 (5) 1.05592 (14) 0.25148 (13) 0.0607 (7)
C3 0.6363 (4) 1.06897 (14) 0.21774 (14) 0.0610 (7)
C4 0.7188 (4) 1.01504 (15) 0.16329 (13) 0.0602 (7)
C5 0.5935 (4) 0.94596 (13) 0.14348 (12) 0.0534 (6)
C6 0.3823 (3) 0.93109 (11) 0.17767 (10) 0.0443 (5)
C7 0.2469 (4) 0.85825 (12) 0.15995 (12) 0.0498 (6)
C8 0.3149 (4) 0.79067 (12) 0.12533 (12) 0.0511 (6)
C9 0.1583 (4) 0.72064 (12) 0.11351 (13) 0.0499 (6)
C10 0.2497 (3) 0.64318 (11) 0.08086 (10) 0.0431 (5)
C11 0.4636 (4) 0.63705 (12) 0.04543 (11) 0.0466 (6)
C12 0.5411 (4) 0.56234 (13) 0.01826 (11) 0.0495 (6)
C13 0.4084 (3) 0.49271 (12) 0.02654 (11) 0.0441 (5)
C14 0.1907 (3) 0.49728 (11) 0.06048 (11) 0.0433 (5)
C15 0.1167 (3) 0.57238 (12) 0.08719 (11) 0.0441 (5)
C16 0.0423 (4) 0.42179 (13) 0.06449 (14) 0.0550 (6)
C17 0.2614 (5) 0.35266 (14) 0.16535 (14) 0.0648 (8)
C18 0.3247 (6) 0.26561 (15) 0.18383 (17) 0.0787 (10)
C19 0.1771 (7) 0.21350 (17) 0.1318 (2) 0.0941 (13)
C20 0.0483 (5) 0.27222 (14) 0.08114 (18) 0.0719 (9)
H1 0.15700 0.97930 0.25270 0.0630*
H1O 0.418 (6) 0.3850 (16) 0.0268 (18) 0.0870*
H2 0.37130 1.09250 0.28800 0.0730*
H3 0.72280 1.11450 0.23160 0.0730*
H4 0.85910 1.02500 0.13970 0.0720*
H5 0.65110 0.90950 0.10720 0.0640*
H7 0.09410 0.85980 0.17490 0.0600*
H8 0.46510 0.78690 0.10790 0.0610*
H11 0.55450 0.68350 0.04010 0.0560*
H12 0.68320 0.55890 −0.00570 0.0590*
H15 −0.02670 0.57600 0.11020 0.0530*
H16A −0.07880 0.43040 0.10190 0.0660*
H16B −0.02830 0.41250 0.01470 0.0660*
H17A 0.14400 0.37250 0.20020 0.0780*
H17B 0.39400 0.38830 0.16900 0.0780*
H18A 0.29390 0.25340 0.23750 0.0950*
H18B 0.48580 0.25600 0.17360 0.0950*
H19A 0.27120 0.17710 0.10100 0.1130*
H19B 0.07160 0.18070 0.16200 0.1130*
H20A 0.04430 0.25260 0.02840 0.0860*
H20B −0.10750 0.27930 0.09930 0.0860*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0507 (9) 0.0596 (10) 0.1298 (18) −0.0041 (7) 0.0166 (10) −0.0278 (10)
O2 0.0555 (9) 0.0515 (8) 0.0663 (9) 0.0081 (7) 0.0056 (7) −0.0088 (7)
N1 0.0488 (9) 0.0383 (8) 0.0613 (10) −0.0074 (7) −0.0064 (8) −0.0087 (7)
C1 0.0520 (11) 0.0477 (10) 0.0574 (11) −0.0010 (9) 0.0031 (10) 0.0005 (9)
C2 0.0739 (15) 0.0497 (11) 0.0586 (12) −0.0030 (11) 0.0022 (11) −0.0077 (9)
C3 0.0712 (15) 0.0524 (11) 0.0593 (12) −0.0158 (11) −0.0055 (11) −0.0015 (10)
C4 0.0575 (13) 0.0671 (13) 0.0559 (11) −0.0157 (11) 0.0028 (10) 0.0035 (10)
C5 0.0567 (12) 0.0548 (11) 0.0488 (10) −0.0026 (9) 0.0032 (9) −0.0034 (8)
C6 0.0480 (10) 0.0419 (9) 0.0431 (9) 0.0014 (8) −0.0052 (7) 0.0033 (7)
C7 0.0475 (10) 0.0472 (10) 0.0547 (10) −0.0015 (8) −0.0001 (8) 0.0017 (8)
C8 0.0485 (11) 0.0450 (10) 0.0598 (11) −0.0021 (8) 0.0000 (9) −0.0025 (8)
C9 0.0444 (10) 0.0447 (10) 0.0607 (11) −0.0001 (8) −0.0013 (9) −0.0034 (8)
C10 0.0427 (9) 0.0421 (9) 0.0446 (9) 0.0006 (8) −0.0046 (7) 0.0001 (7)
C11 0.0442 (9) 0.0466 (10) 0.0490 (10) −0.0057 (8) 0.0012 (8) 0.0048 (8)
C12 0.0407 (9) 0.0584 (11) 0.0493 (10) 0.0036 (9) 0.0068 (8) 0.0028 (8)
C13 0.0434 (10) 0.0459 (9) 0.0431 (8) 0.0052 (8) −0.0032 (8) −0.0026 (7)
C14 0.0388 (9) 0.0432 (9) 0.0478 (9) −0.0009 (7) −0.0065 (8) −0.0035 (7)
C15 0.0339 (8) 0.0475 (9) 0.0510 (9) 0.0004 (7) 0.0005 (7) −0.0029 (8)
C16 0.0424 (10) 0.0486 (10) 0.0741 (13) −0.0049 (9) −0.0064 (9) −0.0110 (10)
C17 0.0794 (16) 0.0539 (12) 0.0610 (12) −0.0079 (12) −0.0102 (12) −0.0087 (10)
C18 0.100 (2) 0.0572 (13) 0.0788 (16) −0.0084 (14) −0.0123 (17) 0.0062 (12)
C19 0.129 (3) 0.0513 (13) 0.102 (2) −0.0247 (16) −0.024 (2) 0.0075 (14)
C20 0.0704 (15) 0.0492 (12) 0.0960 (19) −0.0208 (11) −0.0125 (14) −0.0097 (12)

Geometric parameters (Å, º)

O1—C9 1.224 (3) C17—C18 1.503 (3)
O2—C13 1.352 (2) C18—C19 1.511 (5)
N1—C16 1.465 (3) C19—C20 1.503 (4)
N1—C17 1.460 (3) C1—H1 0.9300
N1—C20 1.467 (3) C2—H2 0.9300
O2—H1O 0.85 (3) C3—H3 0.9300
C1—C2 1.389 (3) C4—H4 0.9300
C1—C6 1.387 (3) C5—H5 0.9300
C2—C3 1.370 (4) C7—H7 0.9300
C3—C4 1.379 (3) C8—H8 0.9300
C4—C5 1.387 (3) C11—H11 0.9300
C5—C6 1.390 (3) C12—H12 0.9300
C6—C7 1.461 (3) C15—H15 0.9300
C7—C8 1.317 (3) C16—H16A 0.9700
C8—C9 1.478 (3) C16—H16B 0.9700
C9—C10 1.485 (3) C17—H17A 0.9700
C10—C15 1.397 (3) C17—H17B 0.9700
C10—C11 1.396 (3) C18—H18A 0.9700
C11—C12 1.383 (3) C18—H18B 0.9700
C12—C13 1.383 (3) C19—H19A 0.9700
C13—C14 1.403 (3) C19—H19B 0.9700
C14—C15 1.380 (3) C20—H20A 0.9700
C14—C16 1.508 (3) C20—H20B 0.9700
C16—N1—C17 113.41 (17) C3—C4—H4 120.00
C16—N1—C20 113.92 (18) C5—C4—H4 120.00
C17—N1—C20 105.22 (19) C4—C5—H5 120.00
C13—O2—H1O 104 (2) C6—C5—H5 120.00
C2—C1—C6 121.5 (2) C6—C7—H7 116.00
C1—C2—C3 119.3 (2) C8—C7—H7 116.00
C2—C3—C4 120.4 (2) C7—C8—H8 119.00
C3—C4—C5 120.3 (2) C9—C8—H8 119.00
C4—C5—C6 120.27 (19) C10—C11—H11 120.00
C1—C6—C7 119.54 (18) C12—C11—H11 120.00
C5—C6—C7 122.18 (17) C11—C12—H12 120.00
C1—C6—C5 118.28 (18) C13—C12—H12 120.00
C6—C7—C8 127.9 (2) C10—C15—H15 119.00
C7—C8—C9 121.6 (2) C14—C15—H15 119.00
O1—C9—C8 120.43 (19) N1—C16—H16A 109.00
O1—C9—C10 120.29 (19) N1—C16—H16B 109.00
C8—C9—C10 119.27 (19) C14—C16—H16A 109.00
C9—C10—C11 123.43 (17) C14—C16—H16B 109.00
C9—C10—C15 118.32 (17) H16A—C16—H16B 108.00
C11—C10—C15 118.24 (17) N1—C17—H17A 111.00
C10—C11—C12 120.41 (19) N1—C17—H17B 111.00
C11—C12—C13 120.4 (2) C18—C17—H17A 111.00
O2—C13—C12 118.81 (17) C18—C17—H17B 111.00
O2—C13—C14 120.68 (17) H17A—C17—H17B 109.00
C12—C13—C14 120.51 (18) C17—C18—H18A 111.00
C13—C14—C15 118.17 (17) C17—C18—H18B 111.00
C13—C14—C16 119.78 (17) C19—C18—H18A 111.00
C15—C14—C16 122.02 (17) C19—C18—H18B 111.00
C10—C15—C14 122.29 (17) H18A—C18—H18B 109.00
N1—C16—C14 111.35 (18) C18—C19—H19A 111.00
N1—C17—C18 104.54 (19) C18—C19—H19B 110.00
C17—C18—C19 105.3 (2) C20—C19—H19A 111.00
C18—C19—C20 106.1 (2) C20—C19—H19B 111.00
N1—C20—C19 104.9 (2) H19A—C19—H19B 109.00
C2—C1—H1 119.00 N1—C20—H20A 111.00
C6—C1—H1 119.00 N1—C20—H20B 111.00
C1—C2—H2 120.00 C19—C20—H20A 111.00
C3—C2—H2 120.00 C19—C20—H20B 111.00
C2—C3—H3 120.00 H20A—C20—H20B 109.00
C4—C3—H3 120.00
C16—N1—C17—C18 162.8 (2) C8—C9—C10—C11 −14.0 (3)
C17—N1—C16—C14 67.5 (2) C8—C9—C10—C15 164.78 (18)
C20—N1—C16—C14 −172.2 (2) C15—C10—C11—C12 −0.7 (3)
C17—N1—C20—C19 −34.8 (3) C11—C10—C15—C14 0.7 (3)
C20—N1—C17—C18 37.6 (3) C9—C10—C11—C12 178.07 (19)
C16—N1—C20—C19 −159.6 (2) C9—C10—C15—C14 −178.13 (18)
C6—C1—C2—C3 1.4 (3) C10—C11—C12—C13 −0.6 (3)
C2—C1—C6—C5 −2.1 (3) C11—C12—C13—O2 −178.20 (18)
C2—C1—C6—C7 177.4 (2) C11—C12—C13—C14 1.9 (3)
C1—C2—C3—C4 0.5 (4) C12—C13—C14—C15 −1.9 (3)
C2—C3—C4—C5 −1.6 (4) C12—C13—C14—C16 176.13 (19)
C3—C4—C5—C6 0.8 (3) O2—C13—C14—C15 178.24 (18)
C4—C5—C6—C7 −178.5 (2) O2—C13—C14—C16 −3.7 (3)
C4—C5—C6—C1 1.0 (3) C16—C14—C15—C10 −177.39 (19)
C5—C6—C7—C8 15.6 (3) C13—C14—C15—C10 0.6 (3)
C1—C6—C7—C8 −163.9 (2) C13—C14—C16—N1 42.4 (3)
C6—C7—C8—C9 178.1 (2) C15—C14—C16—N1 −139.68 (19)
C7—C8—C9—C10 −174.3 (2) N1—C17—C18—C19 −25.5 (3)
C7—C8—C9—O1 4.3 (3) C17—C18—C19—C20 4.3 (3)
O1—C9—C10—C15 −13.8 (3) C18—C19—C20—N1 18.3 (3)
O1—C9—C10—C11 167.5 (2)

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the C10–C15 ring.

D—H···A D—H H···A D···A D—H···A
O2—H1O···N1 0.85 (3) 1.85 (3) 2.633 (2) 154 (3)
C5—H5···Cg3i 0.93 2.99 3.685 (2) 132

Symmetry code: (i) x+1/2, −y+3/2, −z.

References

  1. Bilginer, S., Gul, H. I., Mete, E., Das, U., Sakagami, H., Umemura, N. & Dimmock, J. R. (2013). J. Enzyme Inhib. Med. Chem. 28, 974–980. [DOI] [PubMed]
  2. Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dimmock, J. R., Kandepu, N. M., Hetherington, M., Quail, J. W., Pugazhenthi, U., Sudom, A. M., Chamankhah, M., Rose, P., Pass, E., Allen, T. M., Halleran, S., Szydlowski, J., Mutus, B., Tannous, M., Manavathu, E. K., Myers, T. G., De Clercq, E. & Balzarini, J. (1998). J. Med. Chem. 41, 1014–1026. [DOI] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Gul, H. I., Calis, U. & Vepsalainen, J. (2004). Arzn. Fors. 54, 359–364. [DOI] [PubMed]
  6. Gul, H. I., Cizmecioglu, M., Zencir, S., Gul, M., Canturk, P., Atalay, M. & Topcu, Z. (2009). J. Enzyme Inhib. Med. Chem. 24, 804–807. [DOI] [PubMed]
  7. Gul, M., Mete, E., Atalay, M., Arik, M. & Gul, H. I. (2009). Arzn. Fors. Drug. Res. , 59, 364–369. [DOI] [PubMed]
  8. Palakshamurthy, B. S., Srinivasa, H. T., Kumar, V., Sreenivasa, S. & Devarajegowda, H. C. (2012). Acta Cryst. E68, o3382. [DOI] [PMC free article] [PubMed]
  9. Pople, J. A. & Beveridge, D. L. (1970). In Approximate Molecular Orbital Theory. New York: McGraw–Hill.
  10. Sahin, Y. N., Demircan, B., Suleyman, H., Aksoy, H. & Gul, H. I. (2010). Turk. J. Med. Sci. 40, 723–728.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Suhud, K., Heng, L. Y., Hasbullah, S. A., Ahmad, M. & Kassim, M. B. (2015). Acta Cryst. E71, o225–o226. [DOI] [PMC free article] [PubMed]
  14. Yerdelen, K. O. (2009). PhD thesis, Health Sciences, Atatürk University, Erzurum, Turkey.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016006009/hb7576sup1.cif

e-72-00696-sup1.cif (27.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016006009/hb7576Isup2.hkl

e-72-00696-Isup2.hkl (226.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016006009/hb7576Isup3.cml

CCDC reference: 1473395

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES