Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Apr 29;72(Pt 5):760–763. doi: 10.1107/S2056989016006873

Crystal structure of bis­(aceto­phenone 4-benzoyl­thio­semicarbazonato-κ2 N 1,S)nickel(II)

Faraidoon Karim Kadir a,b, Mustaffa Shamsuddin a,c,, Mohd Mustaqim Rosli d,*
PMCID: PMC4908518  PMID: 27308036

In [Ni(C16H14N3OS)2], the nickel ion is tetra­coordinated in a square-planar geometry by two independent mol­ecules of the ligand which act as mononegative bidentate N,S-donors and form two five-membered chelate rings. Close approach of hydrogen atoms to Ni2+ suggests anagostic inter­actions (Ni⋯H—C) are present.

Keywords: crystal structure, thio­semicarbazone, nickel(II), anagostic inter­actions, C—H⋯O inter­actions

Abstract

In the asymmetric unit of the title complex, [Ni(C16H14N3OS)2], the nickel ion is tetra­coordinated in a distorted square-planar geometry by two independent mol­ecules of the ligand which act as mononegative bidentate N,S-donors and form two five-membered chelate rings. The ligands are in trans (E) conformations with respect to the C=N bonds. The close approach of hydrogen atoms to the Ni2+ atom suggests anagostic inter­actions (Ni⋯H—C) are present. The crystal structure is built up by a network of two C—H⋯O inter­actions. One of the inter­actions forms inversion dimers and the other links the mol­ecules into infinite chains parallel to [100]. In addition, a weak C—H⋯π inter­action is also present.

Chemical context  

Thio­semicarbazones containing N and S donor atoms have been widely used in metal coordination chemistry due to their structural flexibility and versatility (Pelosi et al., 2010; Yousef et al., 2013; Jagadeesh et al., 2015). The chemistry of transition metal complexes of thio­semicarbazones has gained significant attention due to their potential medicinal applications (Pelosi et al., 2010; Li et al., 2012; Manikandan et al., 2014). The variable mode of binding of thio­semicarbazone towards nickel has encouraged us to explore its coordination chemistry further since nickel has the ability to take up different coord­ination environments. Nickel complexes are known to catalyse carbon–carbon cross-coupling and other reactions (Suganthy et al., 2013; Wang et al., 2014).graphic file with name e-72-00760-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title complex (I) with the numbering scheme is shown in Fig. 1. The nickel ion is tetra-coordinated in a square-planar geometry by two crystallographically independent mol­ecules of the ligand which act as mononegative bidentate N,S-donors and form two five-membered chelate rings. The ligands are in trans (E) conformations with respect to the C7=N1 and C23=N4 bonds, as evidenced by the torsion angles N2—N1—C7—C6 = −171.0 (2) and N5—N4—C23—C22 = −171.8 (2)°, respectively. This is in close agreement with previously reported data (Sampath et al., 2013, Suganthy et al., 2013). A remarkable tetra­hedrally distorted square-planar coordination geometry is shown by the nickel metal ion, with the two ligands displaying a less common cis N,S-chelation mode (de Oliveira et al., 2014). The Ni—S and Ni—N bond lengths (Table 1) and the N1—Ni1—S2 and N4—Ni1-S1 bond angle of 159.86 (7) and 159.67 (7)°, respectively, confirm the distortion from a typical coordination geometry.

Figure 1.

Figure 1

The mol­ecular structure of (I) showing 50% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radius.

Table 1. Selected geometric parameters (Å, °).

Ni1—N4 1.922 (2) S1—C9 1.728 (3)
Ni1—N1 1.928 (2) S2—C25 1.735 (3)
Ni1—S2 2.1489 (10) N1—C7 1.293 (3)
Ni1—S1 2.1518 (10) N4—C23 1.294 (3)
       
N4—Ni1—N1 101.23 (10) N4—Ni1—S1 159.67 (7)
N4—Ni1—S2 86.18 (7) N1—Ni1—S1 85.99 (7)
N1—Ni1—S2 159.86 (7) S2—Ni1—S1 93.44 (4)

Upon chelation to the NiII ion, the ligands underwent deprotonation from the tautomeric thiol­ates and their negative charges are delocalized over atoms N1–N2–C9–S1 and N4–N5–C22–S2. Consequently, the bond lengths S1—C9 in one ligand and S2—C25 in the other ligand are 1.728 (3) and 1.735 (3) Å, respectively, which are consistent with single-bond character (Sankaraperumal et al., 2013). Furthermore, the Ni—N [1.922 (2) and 1.928 (2) Å] and Ni—S bond lengths [range 2.1489 (10) and 2.1518 (10) Å] are consistent with those in similar reported compounds. The S—C [1.728 and 1.735 (3)Å] and N—C [1.293 (3) and 1.294 (3) Å] bond lengths of the ligand are consistent with literature values (Sankaraperumal et al., 2013, de Oliveira et al., 2014).

Notably, two anagostic inter­actions in the trans-arrangement are observed in the title complex between the nickel(II) ion and the aromatic C—H groups (Fig. 2). The Ni1⋯H1A and Ni1⋯H17A distances are 2.616 and 2.527 Å, respectively, which are shorter than the van der Waals radii sum for Ni (1.63 Å; Bondi, 1964) and H (1.10 Å; Rowland & Taylor, 1996). In addition, the Ni1—H1A—C1 and Ni1—H17A—C17 bond angles are 109.6 and 112.7°, respectively. These observed values of contact distances and bond angles fall in the range for anagostic inter­actions reported by Brookhart et al. (2007). Similar observations have been reported recently by de Oliveira et al. (2014).

Figure 2.

Figure 2

Two anagostic inter­actions (dashed lines) between the nickel(II) ion and the aromatic C—H groups.

Supra­molecular features  

The crystal structure of (I) contains a network of C—H⋯O inter­actions (Table 2). First the inter­action C16—H16A⋯O1 links pairs of mol­ecules to form inversion dimers enclosing centrosymmetric Inline graphic(10) ring motifs, as shown in Fig. 3. These dimers are further linked by C21—H21A⋯O2 inter­actions, resulting an infinite chains along [100] (Fig. 4). In addition, a C—H⋯π inter­action is also present (Table 2).

Table 2. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C27–C32 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O1i 0.95 2.51 3.306 (5) 141
C21—H21A⋯O2ii 0.95 2.60 3.522 (4) 165
C19—H19ACg1iii 0.95 2.86 3.400 (4) 117

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 3.

Figure 3

Inversion dimers found in complex (I), formed by C—H⋯O hydrogen bonds (dashed lines; see Table 2).

Figure 4.

Figure 4

A view along the c axis of the crystal packing of complex (I), showing the infinite chain [100] formed by C—H⋯O inter­action (dashed lines; see Table 2). H atoms not involved in the hydrogen bonding have been omitted for clarity.

Synthesis and crystallization  

The title complex was prepared by adding a solution of aceto­phenone-4-benzoyl-3-thio­semicarbazone (75 mg; 0.25 mmol) in di­chloro­methane (10 mL) dropwise to a stirred solution of nickel(II) nitrate hexa­hydrate (47.5 mg; 0.26 mmol) in 2-propanol (10 mL) in a small beaker. The resulting mixture solution was stirred continuously for 1 h at 318–323 K. The resultant green precipitate was separated by vacuum filtration, washed with 2-propanol and then with ether, and dried in a vacuum desiccator over dry silica gel. Single crystals suitable for X-ray analysis were obtained after slow evaporation of a di­chloro­methane solution saturated with 2-propanol. Yield; 52.5 mg, 65%. Melting point: 521–523 K.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms attached to nitro­gen were located in difference Fourier maps and freely refined. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.98 Å and U iso(H) = 1.2U eq(C) or 1.5U eq(C-meth­yl). A rotating group model was applied to the methyl groups.

Table 3. Experimental details.

Crystal data
Chemical formula [Ni(C16H14N3OS)2]
M r 651.43
Crystal system, space group Monoclinic, P21/n
Temperature (K) 297
a, b, c (Å) 10.220 (3), 15.468 (5), 19.151 (6)
β (°) 92.150 (5)
V3) 3025.1 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.82
Crystal size (mm) 0.19 × 0.18 × 0.09
 
Data collection
Diffractometer Bruker APEX DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2009)
No. of measured, independent and observed [I > 2σ(I)] reflections 43914, 5893, 4635
R int 0.070
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.048, 0.100, 1.05
No. of reflections 5893
No. of parameters 398
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.46, −0.38

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016006873/pj2029sup1.cif

e-72-00760-sup1.cif (1.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016006873/pj2029Isup2.hkl

e-72-00760-Isup2.hkl (468.7KB, hkl)

CCDC reference: 1476076

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Universiti Teknologi Malaysia (UTM) for financial support through vote numbers 03H06 & 03H81 and the Kurdistan Regional Government–Human Capacity Development Program (KRG–HCDP) for the scholarship to FKK.

supplementary crystallographic information

Crystal data

[Ni(C16H14N3OS)2] F(000) = 1352
Mr = 651.43 Dx = 1.430 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.220 (3) Å Cell parameters from 9846 reflections
b = 15.468 (5) Å θ = 2.2–30.1°
c = 19.151 (6) Å µ = 0.82 mm1
β = 92.150 (5)° T = 297 K
V = 3025.1 (17) Å3 Block, dark green
Z = 4 0.19 × 0.18 × 0.09 mm

Data collection

Bruker APEX DUO CCD area-detector diffractometer 4635 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.070
φ and ω scans θmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −12→12
k = −19→19
43914 measured reflections l = −23→23
5893 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0315P)2 + 3.0091P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
5893 reflections Δρmax = 0.46 e Å3
398 parameters Δρmin = −0.38 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.38656 (3) 0.38363 (2) 0.14831 (2) 0.03092 (11)
S1 0.29568 (8) 0.25816 (5) 0.14900 (5) 0.0468 (2)
S2 0.20856 (7) 0.44818 (5) 0.11538 (4) 0.03977 (19)
O1 0.4015 (4) 0.09249 (17) 0.07102 (13) 0.0989 (12)
O2 0.0116 (2) 0.58787 (16) 0.14021 (16) 0.0740 (8)
N1 0.5206 (2) 0.33342 (14) 0.20917 (11) 0.0313 (5)
N2 0.5355 (2) 0.24301 (14) 0.20848 (12) 0.0359 (5)
N3 0.4341 (3) 0.11462 (16) 0.18572 (14) 0.0417 (6)
N4 0.4758 (2) 0.48357 (14) 0.11409 (11) 0.0323 (5)
N5 0.4058 (2) 0.56192 (15) 0.10985 (12) 0.0363 (6)
N6 0.2077 (3) 0.62374 (18) 0.09826 (14) 0.0437 (7)
C1 0.4607 (3) 0.4993 (2) 0.27376 (15) 0.0421 (7)
H1A 0.3864 0.4626 0.2691 0.051*
C2 0.4439 (4) 0.5856 (2) 0.28904 (18) 0.0600 (10)
H2A 0.3585 0.6081 0.2949 0.072*
C3 0.5504 (5) 0.6388 (2) 0.2958 (2) 0.0709 (12)
H3A 0.5388 0.6983 0.3061 0.085*
C4 0.6732 (5) 0.6070 (2) 0.2879 (2) 0.0708 (12)
H4A 0.7468 0.6444 0.2924 0.085*
C5 0.6910 (3) 0.5205 (2) 0.27322 (18) 0.0532 (9)
H5A 0.7770 0.4984 0.2687 0.064*
C6 0.5840 (3) 0.46575 (18) 0.26511 (14) 0.0351 (6)
C7 0.6017 (3) 0.37289 (18) 0.25164 (14) 0.0327 (6)
C8 0.7109 (3) 0.3267 (2) 0.28965 (17) 0.0496 (8)
H8A 0.7528 0.3657 0.3241 0.074*
H8B 0.7755 0.3079 0.2563 0.074*
H8C 0.6762 0.2761 0.3136 0.074*
C9 0.4336 (3) 0.20575 (18) 0.18243 (14) 0.0362 (7)
C10 0.4225 (4) 0.0628 (2) 0.12850 (16) 0.0483 (8)
C11 0.4392 (3) −0.03163 (18) 0.14117 (15) 0.0383 (7)
C12 0.4104 (3) −0.07032 (19) 0.20340 (16) 0.0422 (7)
H12A 0.3823 −0.0362 0.2412 0.051*
C13 0.4223 (3) −0.1588 (2) 0.21092 (19) 0.0529 (9)
H13A 0.4006 −0.1854 0.2537 0.063*
C14 0.4651 (3) −0.2085 (2) 0.1574 (2) 0.0537 (9)
H14A 0.4727 −0.2694 0.1629 0.064*
C15 0.4970 (4) −0.1705 (2) 0.09600 (18) 0.0558 (9)
H15A 0.5291 −0.2047 0.0591 0.067*
C16 0.4826 (4) −0.0828 (2) 0.08766 (17) 0.0568 (9)
H16A 0.5028 −0.0569 0.0444 0.068*
C17 0.6155 (3) 0.3332 (2) 0.06147 (14) 0.0391 (7)
H17A 0.5243 0.3319 0.0498 0.047*
C18 0.6894 (3) 0.2592 (2) 0.05372 (15) 0.0445 (8)
H18A 0.6488 0.2073 0.0375 0.053*
C19 0.8210 (3) 0.2609 (2) 0.06944 (16) 0.0495 (8)
H19A 0.8720 0.2101 0.0643 0.059*
C20 0.8790 (3) 0.3359 (2) 0.09259 (17) 0.0522 (9)
H20A 0.9706 0.3369 0.1032 0.063*
C21 0.8063 (3) 0.4102 (2) 0.10076 (16) 0.0451 (8)
H21A 0.8481 0.4619 0.1164 0.054*
C22 0.6723 (3) 0.40955 (19) 0.08613 (14) 0.0344 (6)
C23 0.5946 (3) 0.48889 (18) 0.09338 (14) 0.0344 (6)
C24 0.6553 (3) 0.5734 (2) 0.07503 (18) 0.0488 (8)
H24A 0.6976 0.5680 0.0301 0.073*
H24B 0.7208 0.5895 0.1114 0.073*
H24C 0.5874 0.6180 0.0715 0.073*
C25 0.2822 (3) 0.54878 (18) 0.10913 (14) 0.0337 (6)
C26 0.0801 (3) 0.6392 (2) 0.11104 (17) 0.0443 (8)
C27 0.0329 (3) 0.7260 (2) 0.08622 (15) 0.0391 (7)
C28 0.1022 (3) 0.8009 (2) 0.10018 (17) 0.0482 (8)
H28A 0.1824 0.7984 0.1269 0.058*
C29 0.0558 (4) 0.8797 (2) 0.07568 (18) 0.0590 (9)
H29A 0.1040 0.9310 0.0859 0.071*
C30 −0.0587 (4) 0.8839 (3) 0.0369 (2) 0.0629 (10)
H30A −0.0902 0.9381 0.0199 0.075*
C31 −0.1284 (4) 0.8099 (3) 0.02259 (18) 0.0610 (10)
H31A −0.2082 0.8130 −0.0044 0.073*
C32 −0.0837 (3) 0.7306 (2) 0.04694 (17) 0.0501 (8)
H32A −0.1326 0.6796 0.0368 0.060*
H1N3 0.469 (3) 0.094 (2) 0.2191 (16) 0.040 (9)*
H1N6 0.247 (3) 0.662 (2) 0.0807 (18) 0.057 (11)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0308 (2) 0.02381 (19) 0.0382 (2) −0.00201 (15) 0.00162 (14) 0.00350 (15)
S1 0.0369 (4) 0.0279 (4) 0.0755 (6) −0.0047 (3) −0.0012 (4) 0.0022 (4)
S2 0.0331 (4) 0.0334 (4) 0.0527 (4) −0.0017 (3) 0.0002 (3) 0.0065 (3)
O1 0.209 (4) 0.0493 (16) 0.0385 (13) 0.043 (2) 0.0135 (18) 0.0059 (12)
O2 0.0527 (16) 0.0495 (15) 0.122 (2) 0.0062 (12) 0.0323 (16) 0.0261 (15)
N1 0.0352 (13) 0.0235 (12) 0.0354 (12) 0.0022 (10) 0.0030 (10) 0.0011 (9)
N2 0.0444 (15) 0.0225 (13) 0.0408 (13) 0.0024 (11) 0.0020 (11) 0.0013 (10)
N3 0.0586 (18) 0.0232 (13) 0.0430 (15) 0.0007 (12) −0.0011 (13) 0.0044 (12)
N4 0.0314 (13) 0.0277 (13) 0.0378 (12) 0.0001 (10) 0.0020 (10) 0.0028 (10)
N5 0.0344 (14) 0.0286 (13) 0.0462 (14) 0.0024 (11) 0.0049 (11) 0.0073 (10)
N6 0.0382 (16) 0.0345 (15) 0.0592 (17) 0.0043 (13) 0.0111 (13) 0.0155 (13)
C1 0.0466 (19) 0.0400 (18) 0.0397 (16) 0.0040 (15) 0.0008 (14) −0.0050 (13)
C2 0.076 (3) 0.048 (2) 0.056 (2) 0.021 (2) −0.0094 (19) −0.0111 (17)
C3 0.108 (4) 0.032 (2) 0.070 (2) 0.009 (2) −0.031 (2) −0.0107 (17)
C4 0.086 (3) 0.040 (2) 0.083 (3) −0.020 (2) −0.026 (2) 0.0003 (19)
C5 0.050 (2) 0.045 (2) 0.064 (2) −0.0099 (16) −0.0082 (16) −0.0020 (16)
C6 0.0408 (17) 0.0321 (16) 0.0321 (14) −0.0011 (13) −0.0021 (12) −0.0003 (12)
C7 0.0335 (15) 0.0321 (16) 0.0326 (14) 0.0006 (13) 0.0046 (12) 0.0008 (12)
C8 0.0474 (19) 0.045 (2) 0.0550 (19) 0.0114 (16) −0.0114 (15) −0.0040 (15)
C9 0.0460 (18) 0.0242 (15) 0.0389 (15) 0.0008 (13) 0.0093 (13) 0.0014 (12)
C10 0.072 (2) 0.0336 (18) 0.0398 (17) 0.0091 (16) 0.0133 (16) 0.0018 (14)
C11 0.0477 (18) 0.0260 (15) 0.0411 (16) 0.0049 (13) 0.0005 (13) −0.0012 (12)
C12 0.0474 (19) 0.0321 (17) 0.0477 (17) 0.0006 (14) 0.0103 (14) 0.0012 (13)
C13 0.052 (2) 0.0371 (19) 0.070 (2) −0.0007 (16) 0.0124 (17) 0.0146 (17)
C14 0.051 (2) 0.0260 (17) 0.083 (3) −0.0021 (15) −0.0117 (18) −0.0024 (17)
C15 0.072 (2) 0.040 (2) 0.055 (2) 0.0129 (17) −0.0132 (18) −0.0175 (16)
C16 0.089 (3) 0.043 (2) 0.0389 (17) 0.0126 (19) −0.0001 (17) −0.0044 (15)
C17 0.0364 (16) 0.0485 (19) 0.0327 (14) −0.0001 (14) 0.0056 (12) −0.0008 (13)
C18 0.054 (2) 0.0422 (19) 0.0374 (16) 0.0025 (16) 0.0067 (14) −0.0032 (13)
C19 0.054 (2) 0.051 (2) 0.0435 (17) 0.0151 (17) 0.0088 (15) 0.0042 (15)
C20 0.0327 (17) 0.067 (2) 0.057 (2) 0.0062 (17) 0.0055 (15) 0.0032 (18)
C21 0.0358 (17) 0.049 (2) 0.0511 (18) −0.0033 (15) 0.0059 (14) 0.0011 (15)
C22 0.0340 (16) 0.0389 (17) 0.0309 (14) −0.0002 (13) 0.0074 (12) 0.0039 (12)
C23 0.0341 (16) 0.0353 (16) 0.0340 (14) −0.0030 (13) 0.0026 (12) 0.0041 (12)
C24 0.0421 (19) 0.0419 (19) 0.063 (2) −0.0059 (15) 0.0133 (16) 0.0101 (16)
C25 0.0370 (17) 0.0304 (16) 0.0341 (14) 0.0039 (13) 0.0068 (12) 0.0065 (12)
C26 0.0406 (18) 0.0385 (18) 0.0542 (19) 0.0018 (14) 0.0093 (15) 0.0042 (14)
C27 0.0345 (16) 0.0404 (18) 0.0431 (16) 0.0049 (14) 0.0101 (13) 0.0025 (13)
C28 0.049 (2) 0.044 (2) 0.0521 (18) 0.0039 (16) −0.0020 (15) −0.0012 (15)
C29 0.077 (3) 0.038 (2) 0.062 (2) 0.0052 (19) 0.006 (2) −0.0033 (16)
C30 0.075 (3) 0.050 (2) 0.064 (2) 0.022 (2) 0.009 (2) 0.0128 (18)
C31 0.047 (2) 0.079 (3) 0.057 (2) 0.018 (2) 0.0037 (17) 0.0150 (19)
C32 0.0397 (18) 0.053 (2) 0.058 (2) −0.0003 (16) 0.0060 (15) 0.0043 (16)

Geometric parameters (Å, º)

Ni1—N4 1.922 (2) C11—C16 1.381 (4)
Ni1—N1 1.928 (2) C12—C13 1.381 (4)
Ni1—S2 2.1489 (10) C12—H12A 0.9500
Ni1—S1 2.1518 (10) C13—C14 1.366 (5)
S1—C9 1.728 (3) C13—H13A 0.9500
S2—C25 1.735 (3) C14—C15 1.365 (5)
O1—C10 1.204 (4) C14—H14A 0.9500
O2—C26 1.210 (4) C15—C16 1.374 (5)
N1—C7 1.293 (3) C15—H15A 0.9500
N1—N2 1.407 (3) C16—H16A 0.9500
N2—C9 1.275 (4) C17—C18 1.383 (4)
N3—C10 1.359 (4) C17—C22 1.391 (4)
N3—C9 1.411 (4) C17—H17A 0.9500
N3—H1N3 0.78 (3) C18—C19 1.367 (4)
N4—C23 1.294 (3) C18—H18A 0.9500
N4—N5 1.408 (3) C19—C20 1.369 (5)
N5—C25 1.279 (4) C19—H19A 0.9500
N6—C26 1.356 (4) C20—C21 1.381 (5)
N6—C25 1.399 (4) C20—H20A 0.9500
N6—H1N6 0.80 (3) C21—C22 1.387 (4)
C1—C2 1.379 (5) C21—H21A 0.9500
C1—C6 1.379 (4) C22—C23 1.471 (4)
C1—H1A 0.9500 C23—C24 1.494 (4)
C2—C3 1.366 (6) C24—H24A 0.9800
C2—H2A 0.9500 C24—H24B 0.9800
C3—C4 1.361 (6) C24—H24C 0.9800
C3—H3A 0.9500 C26—C27 1.497 (4)
C4—C5 1.380 (5) C27—C28 1.380 (4)
C4—H4A 0.9500 C27—C32 1.387 (4)
C5—C6 1.388 (4) C28—C29 1.383 (5)
C5—H5A 0.9500 C28—H28A 0.9500
C6—C7 1.472 (4) C29—C30 1.364 (5)
C7—C8 1.491 (4) C29—H29A 0.9500
C8—H8A 0.9800 C30—C31 1.371 (5)
C8—H8B 0.9800 C30—H30A 0.9500
C8—H8C 0.9800 C31—C32 1.383 (5)
C10—C11 1.490 (4) C31—H31A 0.9500
C11—C12 1.375 (4) C32—H32A 0.9500
N4—Ni1—N1 101.23 (10) C14—C13—H13A 119.7
N4—Ni1—S2 86.18 (7) C12—C13—H13A 119.7
N1—Ni1—S2 159.86 (7) C15—C14—C13 119.9 (3)
N4—Ni1—S1 159.67 (7) C15—C14—H14A 120.1
N1—Ni1—S1 85.99 (7) C13—C14—H14A 120.1
S2—Ni1—S1 93.44 (4) C14—C15—C16 119.8 (3)
C9—S1—Ni1 94.53 (10) C14—C15—H15A 120.1
C25—S2—Ni1 94.14 (10) C16—C15—H15A 120.1
C7—N1—N2 114.1 (2) C15—C16—C11 121.1 (3)
C7—N1—Ni1 127.91 (19) C15—C16—H16A 119.5
N2—N1—Ni1 118.01 (17) C11—C16—H16A 119.5
C9—N2—N1 111.4 (2) C18—C17—C22 121.1 (3)
C10—N3—C9 123.6 (3) C18—C17—H17A 119.4
C10—N3—H1N3 116 (2) C22—C17—H17A 119.4
C9—N3—H1N3 116 (2) C19—C18—C17 119.8 (3)
C23—N4—N5 114.1 (2) C19—C18—H18A 120.1
C23—N4—Ni1 128.18 (19) C17—C18—H18A 120.1
N5—N4—Ni1 117.74 (17) C18—C19—C20 119.9 (3)
C25—N5—N4 111.3 (2) C18—C19—H19A 120.1
C26—N6—C25 129.9 (3) C20—C19—H19A 120.1
C26—N6—H1N6 117 (3) C19—C20—C21 120.9 (3)
C25—N6—H1N6 113 (3) C19—C20—H20A 119.5
C2—C1—C6 120.8 (3) C21—C20—H20A 119.5
C2—C1—H1A 119.6 C20—C21—C22 120.2 (3)
C6—C1—H1A 119.6 C20—C21—H21A 119.9
C3—C2—C1 119.8 (4) C22—C21—H21A 119.9
C3—C2—H2A 120.1 C21—C22—C17 118.1 (3)
C1—C2—H2A 120.1 C21—C22—C23 120.5 (3)
C4—C3—C2 120.5 (3) C17—C22—C23 121.4 (3)
C4—C3—H3A 119.8 N4—C23—C22 119.5 (2)
C2—C3—H3A 119.8 N4—C23—C24 122.0 (3)
C3—C4—C5 120.1 (4) C22—C23—C24 118.5 (2)
C3—C4—H4A 119.9 C23—C24—H24A 109.5
C5—C4—H4A 119.9 C23—C24—H24B 109.5
C4—C5—C6 120.3 (4) H24A—C24—H24B 109.5
C4—C5—H5A 119.8 C23—C24—H24C 109.5
C6—C5—H5A 119.8 H24A—C24—H24C 109.5
C1—C6—C5 118.5 (3) H24B—C24—H24C 109.5
C1—C6—C7 120.5 (3) N5—C25—N6 113.7 (3)
C5—C6—C7 120.9 (3) N5—C25—S2 124.9 (2)
N1—C7—C6 119.4 (2) N6—C25—S2 121.2 (2)
N1—C7—C8 122.1 (3) O2—C26—N6 123.0 (3)
C6—C7—C8 118.5 (2) O2—C26—C27 123.4 (3)
C7—C8—H8A 109.5 N6—C26—C27 113.7 (3)
C7—C8—H8B 109.5 C28—C27—C32 119.1 (3)
H8A—C8—H8B 109.5 C28—C27—C26 122.3 (3)
C7—C8—H8C 109.5 C32—C27—C26 118.6 (3)
H8A—C8—H8C 109.5 C27—C28—C29 120.5 (3)
H8B—C8—H8C 109.5 C27—C28—H28A 119.7
N2—C9—N3 115.7 (3) C29—C28—H28A 119.7
N2—C9—S1 125.1 (2) C30—C29—C28 120.2 (4)
N3—C9—S1 119.1 (2) C30—C29—H29A 119.9
O1—C10—N3 121.3 (3) C28—C29—H29A 119.9
O1—C10—C11 122.5 (3) C29—C30—C31 119.8 (3)
N3—C10—C11 116.2 (3) C29—C30—H30A 120.1
C12—C11—C16 118.6 (3) C31—C30—H30A 120.1
C12—C11—C10 122.7 (3) C30—C31—C32 120.7 (3)
C16—C11—C10 118.6 (3) C30—C31—H31A 119.7
C11—C12—C13 120.0 (3) C32—C31—H31A 119.7
C11—C12—H12A 120.0 C31—C32—C27 119.7 (3)
C13—C12—H12A 120.0 C31—C32—H32A 120.2
C14—C13—C12 120.6 (3) C27—C32—H32A 120.2
C7—N1—N2—C9 161.4 (2) C12—C11—C16—C15 0.0 (5)
Ni1—N1—N2—C9 −19.0 (3) C10—C11—C16—C15 −178.6 (3)
C23—N4—N5—C25 159.4 (2) C22—C17—C18—C19 −1.0 (4)
Ni1—N4—N5—C25 −20.2 (3) C17—C18—C19—C20 −0.2 (5)
C6—C1—C2—C3 0.0 (5) C18—C19—C20—C21 0.4 (5)
C1—C2—C3—C4 −0.3 (6) C19—C20—C21—C22 0.6 (5)
C2—C3—C4—C5 −0.3 (6) C20—C21—C22—C17 −1.7 (4)
C3—C4—C5—C6 1.2 (6) C20—C21—C22—C23 −178.8 (3)
C2—C1—C6—C5 1.0 (4) C18—C17—C22—C21 1.9 (4)
C2—C1—C6—C7 177.5 (3) C18—C17—C22—C23 179.0 (2)
C4—C5—C6—C1 −1.6 (5) N5—N4—C23—C22 −171.8 (2)
C4—C5—C6—C7 −178.1 (3) Ni1—N4—C23—C22 7.8 (4)
N2—N1—C7—C6 −171.0 (2) N5—N4—C23—C24 7.0 (4)
Ni1—N1—C7—C6 9.4 (4) Ni1—N4—C23—C24 −173.5 (2)
N2—N1—C7—C8 6.9 (4) C21—C22—C23—N4 −145.6 (3)
Ni1—N1—C7—C8 −172.7 (2) C17—C22—C23—N4 37.4 (4)
C1—C6—C7—N1 41.4 (4) C21—C22—C23—C24 35.6 (4)
C5—C6—C7—N1 −142.2 (3) C17—C22—C23—C24 −141.4 (3)
C1—C6—C7—C8 −136.6 (3) N4—N5—C25—N6 −174.2 (2)
C5—C6—C7—C8 39.8 (4) N4—N5—C25—S2 1.9 (3)
N1—N2—C9—N3 −174.0 (2) C26—N6—C25—N5 −161.8 (3)
N1—N2—C9—S1 2.2 (3) C26—N6—C25—S2 21.9 (5)
C10—N3—C9—N2 −121.1 (3) Ni1—S2—C25—N5 13.3 (3)
C10—N3—C9—S1 62.5 (4) Ni1—S2—C25—N6 −170.8 (2)
Ni1—S1—C9—N2 12.1 (3) C25—N6—C26—O2 5.6 (6)
Ni1—S1—C9—N3 −171.8 (2) C25—N6—C26—C27 −174.9 (3)
C9—N3—C10—O1 −5.5 (6) O2—C26—C27—C28 131.8 (4)
C9—N3—C10—C11 173.7 (3) N6—C26—C27—C28 −47.7 (4)
O1—C10—C11—C12 −152.7 (4) O2—C26—C27—C32 −49.2 (5)
N3—C10—C11—C12 28.1 (5) N6—C26—C27—C32 131.3 (3)
O1—C10—C11—C16 25.8 (6) C32—C27—C28—C29 0.3 (5)
N3—C10—C11—C16 −153.4 (3) C26—C27—C28—C29 179.3 (3)
C16—C11—C12—C13 −1.4 (5) C27—C28—C29—C30 −0.4 (5)
C10—C11—C12—C13 177.1 (3) C28—C29—C30—C31 0.3 (6)
C11—C12—C13—C14 1.3 (5) C29—C30—C31—C32 −0.1 (6)
C12—C13—C14—C15 0.3 (5) C30—C31—C32—C27 −0.1 (5)
C13—C14—C15—C16 −1.7 (5) C28—C27—C32—C31 0.0 (5)
C14—C15—C16—C11 1.6 (6) C26—C27—C32—C31 −179.1 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C27–C32 ring.

D—H···A D—H H···A D···A D—H···A
C16—H16A···O1i 0.95 2.51 3.306 (5) 141
C21—H21A···O2ii 0.95 2.60 3.522 (4) 165
C19—H19A···Cg1iii 0.95 2.86 3.400 (4) 117

Symmetry codes: (i) −x+1, −y, −z; (ii) x+1, y, z; (iii) −x+1, −y+1, −z.

References

  1. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  2. Brookhart, M., Green, M. L. H. & Parkin, G. (2007). Proc. Natl Acad. Sci. USA, 104, 6908–6914. [DOI] [PMC free article] [PubMed]
  3. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Jagadeesh, M., Lavanya, M., Kalangi, S. K., Sarala, Y., Ramachandraiah, C. & Reddy, A. V. (2015). Spectrochim. Acta Part A, 135, 180–184. [DOI] [PubMed]
  5. Li, M. X., Zhang, L. Z., Yang, M., Niu, J. Y. & Zhou, J. (2012). Bioorg. Med. Chem. Lett. 22, 2418–2423. [DOI] [PubMed]
  6. Manikandan, R., Viswanathamurthi, P., Velmurugan, K., Nandhakumar, R., Hashimoto, T. & Endo, A. (2014). J. Photochem. Photobiol. B, 130, 205–216. [DOI] [PubMed]
  7. Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014). Acta Cryst. E70, 101–103. [DOI] [PMC free article] [PubMed]
  8. Pelosi, G., Bisceglie, F., Bignami, F., Ronzi, P., Schiavone, P., Re, M. C., Casoli, C. & Pilotti, E. (2010). J. Med. Chem. 53, 8765–8769. [DOI] [PubMed]
  9. Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.
  10. Sampath, K., Sathiyaraj, S., Raja, G. & Jayabalakrishnan, C. (2013). J. Mol. Struct. 1046, 82–91.
  11. Sankaraperumal, A., Karthikeyan, J., Nityananda Shetty, A. & Lakshmisundaram, R. (2013). Polyhedron, 50, 264–269.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Suganthy, P. K., Prabhu, R. N. & Sridevi, V. S. (2013). Tetrahedron Lett. 54, 5695–5698.
  16. Wang, J., Zong, Y., Wei, S. & Pan, Y. (2014). Appl. Organomet. Chem. 28, 351–353.
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  18. Yousef, T. A., Abu El-Reash, G. M., Al-Jahdali, M. & El-Rakhawy, E. R. (2013). J. Mol. Struct. 1053, 15–21.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016006873/pj2029sup1.cif

e-72-00760-sup1.cif (1.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016006873/pj2029Isup2.hkl

e-72-00760-Isup2.hkl (468.7KB, hkl)

CCDC reference: 1476076

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES