Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Apr 22;72(Pt 5):720–723. doi: 10.1107/S2056989016006630

Synthesis, FT–IR characterization and crystal structure of aqua­(5,10,15,20-tetra­phenyl­porphyrinato-κ4 N)manganese(III) tri­fluoro­methane­sulfonate

Wafa Harhouri a,*, Chadlia Mchiri a, Shabir Najmudin b, Cecilia Bonifácio c, Habib Nasri a
PMCID: PMC4908522  PMID: 27308027

This porphyrinate macrocycle of the title compound exhibits a strong saddle and moderate ruffling deformations. In the crystal, the individual manganese porphyrin complex cations and the tri­fluoro­methane­sulfonate anions are arranged in alternating planes stacked along [001].

Keywords: crystal structure, hydrogen bonds, manganese(III) porphyrin complex

Abstract

In the title salt, [Mn(C44H28N4)(H2O)](CF3SO3) or [MnIII(TPP)(H2O)](CF3SO3) (where TPP is the dianion of 5,10,15,20-tetra­phenyl­porphyrin), the MnIII cation is chelated by the four pyrrole N atoms of the porphyrinate anion and additionally coordinated by an aqua ligand in an apical site, completing the distorted square-pyramidal coordination environment. The average Mn—N(pyrrole) bond length is 1.998 (9) Å and the Mn—O(aqua) bond length is 2.1057 (15) Å. The central MnIII ion is displaced by 0.1575 (5) Å from the N4C20 mean plane of the porphyrinate anion towards the apical aqua ligand. The porphyrinate macrocycle exhibits a moderate ruffling and strong saddle deformations. In the crystal lattice, the [MnIII(TPP)(H2O)]+ cation and the tri­fluoro­methane­sulfonate counter-ions are arranged in alternating planes packed along [001]. The components are linked together through O—H⋯O hydrogen bonds and much weaker C—H⋯O and C—H⋯F inter­actions. The crystal packing is further stabilized by weak C—H⋯π inter­actions involving the pyrrole and phenyl rings of the porphyrin moieties.

Chemical context  

While the role of manganese porphyrins in biological processes has not been unambiguously established (Boucher et al., 1972), synthetic manganese porphyrin complexes have been used extensively as models for monoxygenases enzymes (Meunier et al., 1988; Groves & Nemo, 1983) or as DNA cleavage agents (Rodriguez & Bard, 1992; Bernadou et al., 1989). The latter can also be considered as potential contrast enhancement agents for magnetic resonance imaging (Fawwaz et al., 1990).graphic file with name e-72-00720-scheme1.jpg

In most MnIII–porphyrin complexes, the metal is five-coordinate and is in its high-spin state whereby polar solvents readily can displace the coordinating anionic ligand to yield solvated complexes (Godziela et al., 1986; Janson et al., 1973). In our case, the reaction of chlorido-(5,10,15,20-tetra­phenyl­porphyrinato)manganese(III) with hygroscopic silver triflate let to the formation of an aqua-[5,10,15,20-tetra­phenyl­porphyrinato)]manganese(III) salt, [Mn(C44H28N4)(H2O)](CF3SO3), (I) or [MnIII(TPP)(H2O)](CF3SO3) (where TPP is the dianion of 5,10,15,20-tetra­phenyl­porphyrin). The coord­in­ation of a water mol­ecule instead of the triflate ion to MnIII can be explained, as mentioned above, by the weak affinity of manganese(III) to an ionic ligand and in particular by the triflate anion which is known to be a weakly coordinating ligand.

In order to gain more insight into the structure of aqua–MnIII metalloporphyrins, we report herein the synthesis, crystal structure and the spectroscopic data of compound (I).

Structural commentary  

The central MnIII cation of the complex [MnIII(TPP)(H2O)] cation exhibits a distorted square-pyramidal coordination environment (Fig. 1). The equatorial plane is formed by four nitro­gen atoms of the porphyrin ligand while the apical position is occupied by the aqua ligand. The asymmetric unit of (I) is completed by one CF3SO3 counter-ion. The Mn—O(aqua) bond length of 2.1057 (15) Å is considerably shorter than those of other aqua–MnIII metalloporphyrins which range from 2.166 to 2.258 Å (Dawe et al., 2005; Turner, et al., 1996). The average equatorial manganese–N(pyrrole) distance is 1.998 (9) Å, which is close to related [MnIII(Porph)(X)]+ ion complexes (Porph and X are a porphyrinato and a monodentate neutral ligand, respectively), e.g. [MnIII(TClPP)(py)]+ (TClPP is 5,10,15,20-(tetra-4-chloro­phen­yl)porphyrinato) where the average Mn—N(pyrrole) bond length is 2.007 (2) Å (Rittenberg et al., 2000). In Fig. 2, the displacements of each atom in (I) from the mean plane of the 24-atom porphyrin macrocycle in units of 0.01 Å is illustrated. The MnIII ion is displaced by 0.158 (5) Å from the 24-atom porphyrin mean plane (P C) which is slightly higher than in the [MnIII(DBHPP)(H2O)]+ (DBHPP = 5,10,15,20-(3,5-di-t-butyl-4-hy­droxy­phen­yl)porphyrinato) species (Mn—P C = 0.122 Å), but smaller than in the [MnIII(TPP)(py)]+ ion complex (Mn—P C = 0.199 Å; Dawe et al., 2005). As can be seen in Fig. 2, the porphyrin core presents (i) high saddle distortions as seen by the displacements of the pyrrole rings alternately above and below the mean porphyrin macrocycle and (ii) a moderate ruffling which is indicated by the high values of the displacements of the meso-C atoms above and below the porphyrin mean plane (Scheidt & Lee, 1987).

Figure 1.

Figure 1

The structures of the mol­ecular entities in compound (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms except those of the aqua ligand have been omitted for clarity.

Figure 2.

Figure 2

Formal diagram of the porphyrinate core illustrating the displacements of each atom from the 24-atoms core plane in units of 0.01 Å.

Supra­molecular features  

In the crystal packing of (I), the manganese porphyrin complex cations and the triflate anions are arranged in alternating planes packed along [001] (Fig. 3). The distance between the C20N4Mn mean planes (porphyrin cores) of two neighbouring [Mn(TPP)H2O)]+ cation complexes is 4.677 Å. The cationic and anionic entities are linked together through two O—H⋯O hydrogen bonds of medium strength between the aqua ligand and the O atoms of the triflate anion (Table 1, Fig. 3). The crystal packing of (I) is further consolidated by weak C—H⋯O and C—H⋯F hydrogen-bonding and C—H⋯π inter­actions involving the phenyl and pyrrole rings. The values of these inter­actions range between 3.449 (2) Å and 3.676 (3) Å (Table 1, Fig. 4).

Figure 3.

Figure 3

The crystal structure of the title compound in a projection approximately along [010]. H atoms have been omitted.

Table 1. Hydrogen-bond geometry (Å, °).

Cg2, Cg3, Cg4, Cg7, Cg9 and Cg11 are the centroids of the N2/C6–C9, N3/C11–C14, N4/C16–C19, Mn/N2/C9–C11/N3, C21–C26 and C33–C38 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O4 0.84 1.91 2.745 (2) 171
O1—H2O1⋯O2i 0.82 1.90 2.715 (2) 171
C7—H7⋯O3ii 0.93 2.39 3.170 (3) 141
C44—H44⋯F2i 0.93 2.50 3.397 (3) 162
C23—H23⋯Cg4ii 0.93 2.85 3.603 (3) 139
C25—H25⋯Cg2iii 0.93 2.89 3.650 (3) 139
C30—H30⋯Cg9iv 0.93 2.82 3.610 (3) 144
C37—H37⋯Cg2v 0.93 2.97 3.676 (3) 133
C40—H40⋯Cg3vi 0.93 2.62 3.449 (2) 148
C42—H42⋯Cg11vii 0.93 2.89 3.631 (3) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Figure 4.

Figure 4

The crystal packing of (I), viewed down [100], showing the weak C—H⋯O and C—H⋯F hydrogen bonds and the C—H⋯π inter­molecular inter­actions.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.31; Groom et al., 2016) revealed (i) eight di­aqua–MnIII metalloporphyrins, e.g. the [MnIII(TPP)(H2O)2]+ cation (Byrn et al., 1993) and (ii) two mono-aqua-=MnIII porphyrins, e.g. the [MnIII(TPP)(H2O)]+ cation (Diskin-Posner et al., 1999) and the [MnIII(DBHPP)(H2O)]+ cation [DBHPP = 5,10,15,20-(3,5-di-t-butyl-4-hy­droxy­phen­yl)porphyrinato; Dawe et al., 2005].

Synthesis and crystallization  

To a solution of [MnIII(TPP)Cl] (100 mg, 0.142 mmol) (Cheng & Scheidt, 1996) in chloro­form (10 ml) was added an excess of one equivalent of silver triflate (100 mg, 0.389 mmol). The reaction mixture was stirred at room temperature for 12 h. Crystals of the title complex were obtained by diffusion of hexa­nes through the chloro­form solution. We assume that water was delivered from the hygroscopic silver triflate salt.

Spectroscopic analysis: UV–vis spectrum in chloro­form: λmax (nm) 386, 474, 570 and 604.

FT–IR spectroscopy  

The FT–IR spectrum of (I) (Fig. 5) was recorded in the 4000–400 cm−1 range using a PerkinElmer Spectrum Two FTIR spectrometer. The spectrum presents characteristic vibrational bands of the TPP porphyrinato moiety. The C—H stretching frequencies of the porphyrin mol­ecule are in the range 3060 to 2860 cm−1, the C=C and C=N stretching frequencies are assigned at 1728 cm−1 and 1654 cm−1, respectively. A strong band attributed to the bending vibration of the CCH moieties of the porphyrin core is centred around 1010 cm−1. The two absorption bands at 3456 cm−1 and 3242 cm−1 are attributed to the anti­symmetric and symmetric OH stretching frequencies of the aqua ligand, while the bending vibration of the same ligand is at 1629 cm−1. The presence of the triflate counter-ion is confirmed by the following absorption bands: a medium–strong band at 1308 cm−1 attributed to the asymmetric stretching frequency of the SO3 group, a strong band at 1231 cm−1 corresponding to the symmetric stretching frequency of the CF3 moiety, a medium–strong band at 1162 cm−1 attributed to νas(CF3), a strong band at 1027 cm−1 corresponding to νs(SO3), a strong band at 633 cm−1 attributed to the bending vibration of the SO3 group and a weak and a medium–strong band at 576 cm−1 and 515 cm−1 corresponding to δas(CF3) and δas(SO3) vibrations, respectively.

Figure 5.

Figure 5

The FT–IR spectrum of (I).

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 2. Carbon-bound hydrogen atoms were placed in calculated positions and refined as riding atoms with C—H = 0.93 Å with U iso(H) = 1.2U eq(C). The two hydrogen-atom positions of the aqua ligand were discernible from difference maps. However, for the final model these positions were calculated by using the CALC-OH program (Nardelli et al., 1999) and were modelled with fixed isotropic displacement parameters.

Table 2. Experimental details.

Crystal data
Chemical formula [Mn(C44H28N4)(H2O)](CF3O3S)
M r 834.76
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c (Å) 11.0909 (1), 12.9169 (1), 13.7931 (1)
α, β, γ (°) 78.333 (3), 81.162 (4), 74.179 (3)
V3) 1851.66 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.48
Crystal size (mm) 0.48 × 0.38 × 0.16
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.835, 0.862
No. of measured, independent and observed [I > 2σ(I)] reflections 44659, 6753, 5533
R int 0.059
(sin θ/λ)max−1) 0.602
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.086, 1.05
No. of reflections 6753
No. of parameters 523
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.41

Computer programs: APEX2 and SAINT (Bruker, 2008), SIR2004 (Burla et al., 2005), SHELXL2014 (Sheldrick, 2015), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016006630/wm5285sup1.cif

e-72-00720-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016006630/wm5285Isup2.hkl

e-72-00720-Isup2.hkl (536.5KB, hkl)

CCDC reference: 1474973

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

supplementary crystallographic information

Crystal data

[Mn(C44H28N4)(H2O)](CF3O3S) Z = 2
Mr = 834.76 F(000) = 856
Triclinic, P1 Dx = 1.497 Mg m3
a = 11.0909 (1) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.9169 (1) Å Cell parameters from 9884 reflections
c = 13.7931 (1) Å θ = 2.3–25.3°
α = 78.333 (3)° µ = 0.48 mm1
β = 81.162 (4)° T = 296 K
γ = 74.179 (3)° Plate, blue
V = 1851.66 (5) Å3 0.48 × 0.38 × 0.16 mm

Data collection

Bruker APEXII CCD diffractometer 5533 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.059
φ and ω scans θmax = 25.3°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −13→13
Tmin = 0.835, Tmax = 0.862 k = −15→15
44659 measured reflections l = −16→16
6753 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: mixed
wR(F2) = 0.086 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0358P)2 + 1.4431P] where P = (Fo2 + 2Fc2)/3
6753 reflections (Δ/σ)max = 0.001
523 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.41 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn 0.88152 (3) 0.04367 (3) 0.20851 (2) 0.01081 (9)
S 1.10820 (5) 0.19791 (5) 0.42751 (4) 0.02139 (14)
F1 1.00980 (15) 0.40991 (12) 0.38570 (11) 0.0370 (4)
F2 0.97858 (18) 0.33973 (14) 0.54012 (12) 0.0517 (5)
F3 1.16153 (17) 0.36360 (14) 0.47867 (13) 0.0528 (5)
N1 0.84244 (15) −0.10052 (14) 0.22339 (12) 0.0122 (4)
N2 0.70036 (15) 0.11097 (14) 0.25129 (13) 0.0127 (4)
N3 0.91427 (15) 0.19154 (14) 0.17965 (13) 0.0126 (4)
N4 1.04477 (15) −0.01412 (14) 0.12917 (13) 0.0126 (4)
O1 0.94653 (14) 0.00719 (12) 0.35015 (11) 0.0191 (3)
H1O1 0.9612 0.0559 0.3758 0.029*
H2O1 0.9150 −0.0320 0.3960 0.029*
O2 1.16554 (17) 0.13077 (15) 0.51405 (13) 0.0330 (4)
O3 1.19208 (15) 0.20862 (16) 0.33828 (13) 0.0368 (5)
O4 0.98825 (15) 0.18025 (14) 0.41556 (13) 0.0263 (4)
C1 0.92919 (19) −0.19910 (17) 0.21380 (15) 0.0130 (4)
C2 0.8723 (2) −0.28720 (18) 0.25639 (16) 0.0160 (5)
H2 0.9116 −0.3613 0.2617 0.019*
C3 0.7507 (2) −0.24308 (18) 0.28749 (16) 0.0159 (5)
H3 0.6908 −0.2813 0.3169 0.019*
C4 0.73116 (19) −0.12714 (17) 0.26691 (15) 0.0129 (4)
C5 0.61668 (19) −0.05325 (17) 0.28771 (15) 0.0135 (4)
C6 0.60387 (19) 0.05814 (17) 0.27983 (15) 0.0139 (4)
C7 0.49042 (19) 0.13390 (18) 0.31028 (16) 0.0169 (5)
H7 0.4117 0.1195 0.3294 0.020*
C8 0.51858 (19) 0.23006 (18) 0.30619 (16) 0.0179 (5)
H8 0.4634 0.2934 0.3238 0.021*
C9 0.64944 (19) 0.21664 (17) 0.26963 (16) 0.0147 (4)
C10 0.71524 (19) 0.29641 (17) 0.25885 (16) 0.0149 (5)
C11 0.83947 (19) 0.28350 (17) 0.21575 (15) 0.0136 (4)
C12 0.90644 (19) 0.36721 (17) 0.19642 (15) 0.0152 (5)
H12 0.8766 0.4366 0.2131 0.018*
C13 1.0209 (2) 0.32687 (17) 0.14944 (16) 0.0158 (5)
H13 1.0843 0.3634 0.1282 0.019*
C14 1.02682 (19) 0.21810 (17) 0.13828 (15) 0.0131 (4)
C15 1.12767 (19) 0.15067 (17) 0.08940 (15) 0.0133 (4)
C16 1.13167 (19) 0.04401 (17) 0.08165 (15) 0.0141 (4)
C17 1.2333 (2) −0.02581 (18) 0.03017 (16) 0.0177 (5)
H17 1.3016 −0.0056 −0.0097 0.021*
C18 1.2119 (2) −0.12660 (18) 0.05006 (16) 0.0178 (5)
H18 1.2634 −0.1885 0.0269 0.021*
C19 1.09597 (19) −0.12092 (17) 0.11317 (15) 0.0127 (4)
C20 1.04806 (19) −0.21024 (17) 0.15937 (15) 0.0133 (4)
C21 0.50146 (19) −0.09467 (17) 0.32576 (16) 0.0136 (4)
C22 0.4326 (2) −0.11748 (18) 0.26001 (17) 0.0175 (5)
H22 0.4625 −0.1140 0.1929 0.021*
C23 0.3192 (2) −0.14545 (19) 0.29440 (18) 0.0229 (5)
H23 0.2729 −0.1597 0.2501 0.027*
C24 0.2747 (2) −0.15223 (19) 0.39465 (19) 0.0252 (6)
H24 0.1983 −0.1700 0.4173 0.030*
C25 0.3445 (2) −0.13248 (19) 0.46090 (18) 0.0249 (5)
H25 0.3157 −0.1381 0.5283 0.030*
C26 0.4576 (2) −0.10425 (19) 0.42650 (17) 0.0220 (5)
H26 0.5045 −0.0916 0.4712 0.026*
C27 0.65225 (19) 0.39954 (17) 0.29927 (16) 0.0166 (5)
C28 0.5486 (2) 0.47481 (17) 0.25887 (18) 0.0204 (5)
H28 0.5179 0.4627 0.2042 0.024*
C29 0.4914 (2) 0.56791 (19) 0.30047 (19) 0.0262 (6)
H29 0.4219 0.6177 0.2737 0.031*
C30 0.5363 (2) 0.58722 (19) 0.38062 (19) 0.0277 (6)
H30 0.4972 0.6498 0.4080 0.033*
C31 0.6399 (2) 0.5135 (2) 0.42083 (18) 0.0267 (6)
H31 0.6708 0.5267 0.4749 0.032*
C32 0.6974 (2) 0.41993 (19) 0.38034 (17) 0.0211 (5)
H32 0.7668 0.3704 0.4076 0.025*
C33 1.23923 (19) 0.19472 (17) 0.04546 (16) 0.0143 (4)
C34 1.2315 (2) 0.27465 (18) −0.03917 (16) 0.0186 (5)
H34 1.1560 0.3021 −0.0677 0.022*
C35 1.3358 (2) 0.31373 (19) −0.08132 (16) 0.0207 (5)
H35 1.3305 0.3661 −0.1388 0.025*
C36 1.4477 (2) 0.27500 (18) −0.03809 (17) 0.0201 (5)
H36 1.5176 0.3014 −0.0663 0.024*
C37 1.4554 (2) 0.19683 (19) 0.04725 (18) 0.0217 (5)
H37 1.5302 0.1715 0.0769 0.026*
C38 1.3521 (2) 0.15609 (18) 0.08875 (17) 0.0193 (5)
H38 1.3581 0.1029 0.1456 0.023*
C39 1.12663 (19) −0.32285 (17) 0.15003 (16) 0.0144 (5)
C40 1.1623 (2) −0.35598 (18) 0.05741 (17) 0.0188 (5)
H40 1.1365 −0.3076 0.0003 0.023*
C41 1.2358 (2) −0.46031 (19) 0.04959 (18) 0.0240 (5)
H41 1.2608 −0.4808 −0.0128 0.029*
C42 1.2722 (2) −0.53402 (19) 0.13410 (19) 0.0240 (5)
H42 1.3207 −0.6042 0.1289 0.029*
C43 1.2360 (2) −0.50259 (19) 0.22619 (19) 0.0251 (5)
H43 1.2595 −0.5522 0.2832 0.030*
C44 1.1650 (2) −0.39772 (18) 0.23441 (17) 0.0200 (5)
H44 1.1428 −0.3771 0.2968 0.024*
C45 1.0622 (3) 0.3343 (2) 0.45958 (18) 0.0303 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn 0.00810 (16) 0.01012 (17) 0.01448 (17) −0.00357 (12) 0.00103 (12) −0.00258 (12)
S 0.0188 (3) 0.0274 (3) 0.0197 (3) −0.0098 (2) −0.0019 (2) −0.0023 (2)
F1 0.0468 (9) 0.0266 (8) 0.0406 (9) −0.0118 (7) −0.0137 (7) −0.0019 (7)
F2 0.0748 (12) 0.0514 (11) 0.0325 (9) −0.0204 (9) 0.0149 (9) −0.0241 (8)
F3 0.0723 (12) 0.0507 (11) 0.0550 (11) −0.0442 (10) −0.0334 (9) 0.0059 (9)
N1 0.0103 (9) 0.0125 (9) 0.0144 (9) −0.0038 (7) 0.0003 (7) −0.0032 (7)
N2 0.0103 (9) 0.0111 (9) 0.0177 (9) −0.0049 (7) −0.0001 (7) −0.0024 (7)
N3 0.0108 (9) 0.0115 (9) 0.0159 (9) −0.0034 (7) 0.0002 (7) −0.0032 (7)
N4 0.0102 (8) 0.0137 (9) 0.0148 (9) −0.0049 (7) 0.0010 (7) −0.0037 (7)
O1 0.0246 (8) 0.0204 (8) 0.0165 (8) −0.0124 (7) −0.0038 (7) −0.0019 (6)
O2 0.0372 (10) 0.0343 (11) 0.0300 (10) −0.0187 (9) −0.0115 (8) 0.0081 (8)
O3 0.0204 (9) 0.0542 (13) 0.0262 (10) −0.0013 (8) 0.0057 (7) −0.0016 (9)
O4 0.0204 (8) 0.0283 (10) 0.0358 (10) −0.0113 (7) −0.0036 (7) −0.0106 (8)
C1 0.0138 (10) 0.0115 (11) 0.0148 (11) −0.0031 (9) −0.0032 (8) −0.0037 (8)
C2 0.0162 (11) 0.0119 (11) 0.0203 (12) −0.0037 (9) −0.0017 (9) −0.0030 (9)
C3 0.0144 (11) 0.0168 (11) 0.0186 (11) −0.0088 (9) −0.0001 (9) −0.0024 (9)
C4 0.0123 (10) 0.0151 (11) 0.0134 (10) −0.0070 (9) 0.0002 (8) −0.0033 (8)
C5 0.0127 (10) 0.0170 (11) 0.0124 (10) −0.0060 (9) −0.0004 (8) −0.0033 (8)
C6 0.0108 (10) 0.0162 (11) 0.0152 (11) −0.0050 (9) 0.0000 (8) −0.0029 (9)
C7 0.0089 (10) 0.0189 (12) 0.0226 (12) −0.0044 (9) −0.0001 (9) −0.0030 (9)
C8 0.0106 (10) 0.0142 (11) 0.0255 (12) −0.0008 (9) 0.0033 (9) −0.0032 (9)
C9 0.0114 (10) 0.0127 (11) 0.0190 (11) −0.0022 (9) 0.0001 (9) −0.0030 (9)
C10 0.0136 (11) 0.0119 (11) 0.0180 (11) −0.0022 (9) −0.0013 (9) −0.0013 (9)
C11 0.0141 (11) 0.0124 (11) 0.0142 (11) −0.0034 (9) −0.0013 (8) −0.0020 (9)
C12 0.0171 (11) 0.0119 (11) 0.0167 (11) −0.0042 (9) −0.0002 (9) −0.0029 (9)
C13 0.0144 (11) 0.0150 (11) 0.0192 (11) −0.0078 (9) 0.0001 (9) −0.0015 (9)
C14 0.0118 (10) 0.0136 (11) 0.0148 (11) −0.0056 (8) −0.0024 (8) −0.0001 (9)
C15 0.0118 (10) 0.0162 (11) 0.0124 (10) −0.0056 (9) −0.0006 (8) −0.0010 (9)
C16 0.0113 (10) 0.0169 (11) 0.0145 (11) −0.0049 (9) −0.0006 (8) −0.0020 (9)
C17 0.0121 (10) 0.0207 (12) 0.0206 (12) −0.0069 (9) 0.0045 (9) −0.0050 (9)
C18 0.0148 (11) 0.0168 (12) 0.0218 (12) −0.0029 (9) 0.0023 (9) −0.0079 (9)
C19 0.0116 (10) 0.0143 (11) 0.0128 (10) −0.0026 (8) −0.0019 (8) −0.0037 (8)
C20 0.0119 (10) 0.0143 (11) 0.0154 (11) −0.0025 (9) −0.0034 (8) −0.0058 (9)
C21 0.0099 (10) 0.0099 (10) 0.0205 (11) −0.0018 (8) 0.0002 (9) −0.0035 (9)
C22 0.0169 (11) 0.0176 (12) 0.0186 (11) −0.0058 (9) −0.0036 (9) −0.0006 (9)
C23 0.0166 (11) 0.0220 (13) 0.0329 (14) −0.0087 (10) −0.0104 (10) 0.0000 (10)
C24 0.0121 (11) 0.0203 (13) 0.0407 (15) −0.0066 (10) 0.0020 (10) 0.0006 (11)
C25 0.0239 (13) 0.0257 (13) 0.0245 (13) −0.0118 (11) 0.0111 (10) −0.0054 (10)
C26 0.0236 (12) 0.0260 (13) 0.0203 (12) −0.0119 (10) 0.0022 (10) −0.0081 (10)
C27 0.0134 (11) 0.0126 (11) 0.0238 (12) −0.0075 (9) 0.0083 (9) −0.0049 (9)
C28 0.0148 (11) 0.0130 (11) 0.0312 (13) −0.0057 (9) 0.0047 (10) −0.0013 (10)
C29 0.0170 (12) 0.0147 (12) 0.0416 (15) −0.0040 (10) 0.0086 (11) −0.0015 (11)
C30 0.0265 (13) 0.0144 (12) 0.0402 (15) −0.0101 (10) 0.0176 (11) −0.0091 (11)
C31 0.0323 (14) 0.0251 (13) 0.0270 (13) −0.0175 (11) 0.0115 (11) −0.0108 (11)
C32 0.0187 (12) 0.0185 (12) 0.0257 (13) −0.0078 (10) 0.0059 (10) −0.0044 (10)
C33 0.0151 (11) 0.0119 (11) 0.0170 (11) −0.0052 (9) 0.0035 (9) −0.0064 (9)
C34 0.0163 (11) 0.0230 (12) 0.0176 (11) −0.0075 (9) −0.0007 (9) −0.0033 (9)
C35 0.0241 (12) 0.0224 (12) 0.0162 (11) −0.0113 (10) 0.0026 (9) −0.0004 (9)
C36 0.0153 (11) 0.0223 (13) 0.0248 (12) −0.0100 (10) 0.0080 (9) −0.0092 (10)
C37 0.0103 (11) 0.0241 (13) 0.0307 (13) −0.0046 (9) 0.0001 (10) −0.0062 (10)
C38 0.0165 (11) 0.0149 (11) 0.0245 (12) −0.0044 (9) −0.0001 (9) −0.0001 (9)
C39 0.0086 (10) 0.0136 (11) 0.0228 (12) −0.0063 (9) 0.0002 (9) −0.0040 (9)
C40 0.0199 (12) 0.0176 (12) 0.0201 (12) −0.0049 (9) −0.0045 (9) −0.0035 (9)
C41 0.0223 (12) 0.0229 (13) 0.0301 (13) −0.0052 (10) 0.0000 (10) −0.0145 (11)
C42 0.0160 (11) 0.0137 (12) 0.0412 (15) 0.0000 (9) −0.0016 (10) −0.0079 (11)
C43 0.0180 (12) 0.0193 (13) 0.0320 (14) −0.0008 (10) −0.0023 (10) 0.0038 (11)
C44 0.0156 (11) 0.0209 (12) 0.0200 (12) −0.0015 (9) 0.0017 (9) −0.0022 (10)
C45 0.0404 (15) 0.0339 (15) 0.0239 (13) −0.0219 (13) −0.0076 (12) −0.0013 (11)

Geometric parameters (Å, º)

Mn—N1 1.9893 (17) C17—H17 0.9300
Mn—N3 1.9912 (17) C18—C19 1.431 (3)
Mn—N4 2.0044 (17) C18—H18 0.9300
Mn—N2 2.0079 (17) C19—C20 1.397 (3)
Mn—O1 2.1057 (15) C20—C39 1.497 (3)
S—O3 1.4313 (17) C21—C22 1.392 (3)
S—O2 1.4475 (18) C21—C26 1.392 (3)
S—O4 1.4482 (16) C22—C23 1.390 (3)
S—C45 1.820 (3) C22—H22 0.9300
F1—C45 1.342 (3) C23—C24 1.388 (3)
F2—C45 1.333 (3) C23—H23 0.9300
F3—C45 1.336 (3) C24—C25 1.385 (3)
N1—C4 1.386 (3) C24—H24 0.9300
N1—C1 1.388 (3) C25—C26 1.388 (3)
N2—C9 1.386 (3) C25—H25 0.9300
N2—C6 1.388 (3) C26—H26 0.9300
N3—C11 1.386 (3) C27—C32 1.391 (3)
N3—C14 1.392 (3) C27—C28 1.395 (3)
N4—C16 1.387 (3) C28—C29 1.389 (3)
N4—C19 1.390 (3) C28—H28 0.9300
O1—H1O1 0.8437 C29—C30 1.371 (4)
O1—H2O1 0.8225 C29—H29 0.9300
C1—C20 1.399 (3) C30—C31 1.386 (4)
C1—C2 1.431 (3) C30—H30 0.9300
C2—C3 1.352 (3) C31—C32 1.386 (3)
C2—H2 0.9300 C31—H31 0.9300
C3—C4 1.428 (3) C32—H32 0.9300
C3—H3 0.9300 C33—C34 1.390 (3)
C4—C5 1.394 (3) C33—C38 1.393 (3)
C5—C6 1.390 (3) C34—C35 1.387 (3)
C5—C21 1.499 (3) C34—H34 0.9300
C6—C7 1.432 (3) C35—C36 1.384 (3)
C7—C8 1.349 (3) C35—H35 0.9300
C7—H7 0.9300 C36—C37 1.384 (3)
C8—C9 1.437 (3) C36—H36 0.9300
C8—H8 0.9300 C37—C38 1.387 (3)
C9—C10 1.390 (3) C37—H37 0.9300
C10—C11 1.394 (3) C38—H38 0.9300
C10—C27 1.499 (3) C39—C44 1.394 (3)
C11—C12 1.433 (3) C39—C40 1.395 (3)
C12—C13 1.351 (3) C40—C41 1.388 (3)
C12—H12 0.9300 C40—H40 0.9300
C13—C14 1.427 (3) C41—C42 1.384 (3)
C13—H13 0.9300 C41—H41 0.9300
C14—C15 1.392 (3) C42—C43 1.379 (3)
C15—C16 1.392 (3) C42—H42 0.9300
C15—C33 1.495 (3) C43—C44 1.386 (3)
C16—C17 1.431 (3) C43—H43 0.9300
C17—C18 1.353 (3) C44—H44 0.9300
N1—Mn—N3 174.02 (7) N4—C19—C20 125.14 (18)
N1—Mn—N4 89.12 (7) N4—C19—C18 109.24 (18)
N3—Mn—N4 89.97 (7) C20—C19—C18 125.35 (19)
N1—Mn—N2 89.98 (7) C19—C20—C1 122.82 (19)
N3—Mn—N2 89.29 (7) C19—C20—C39 118.81 (18)
N4—Mn—N2 164.27 (7) C1—C20—C39 118.38 (18)
N1—Mn—O1 92.84 (6) C22—C21—C26 119.10 (19)
N3—Mn—O1 93.14 (7) C22—C21—C5 120.39 (19)
N4—Mn—O1 98.57 (6) C26—C21—C5 120.38 (19)
N2—Mn—O1 97.16 (7) C23—C22—C21 120.1 (2)
O3—S—O2 115.56 (11) C23—C22—H22 119.9
O3—S—O4 115.55 (11) C21—C22—H22 119.9
O2—S—O4 114.10 (10) C24—C23—C22 120.3 (2)
O3—S—C45 103.65 (12) C24—C23—H23 119.8
O2—S—C45 103.18 (11) C22—C23—H23 119.8
O4—S—C45 102.25 (11) C25—C24—C23 119.8 (2)
C4—N1—C1 105.76 (16) C25—C24—H24 120.1
C4—N1—Mn 126.66 (14) C23—C24—H24 120.1
C1—N1—Mn 126.07 (13) C24—C25—C26 119.8 (2)
C9—N2—C6 105.76 (16) C24—C25—H25 120.1
C9—N2—Mn 126.80 (13) C26—C25—H25 120.1
C6—N2—Mn 127.04 (14) C25—C26—C21 120.7 (2)
C11—N3—C14 105.63 (16) C25—C26—H26 119.6
C11—N3—Mn 126.19 (13) C21—C26—H26 119.6
C14—N3—Mn 126.89 (14) C32—C27—C28 119.1 (2)
C16—N4—C19 105.98 (16) C32—C27—C10 119.0 (2)
C16—N4—Mn 126.78 (14) C28—C27—C10 121.9 (2)
C19—N4—Mn 127.21 (13) C29—C28—C27 119.8 (2)
Mn—O1—H1O1 121.1 C29—C28—H28 120.1
Mn—O1—H2O1 120.2 C27—C28—H28 120.1
H1O1—O1—H2O1 106.1 C30—C29—C28 120.7 (2)
N1—C1—C20 125.04 (18) C30—C29—H29 119.7
N1—C1—C2 109.52 (17) C28—C29—H29 119.7
C20—C1—C2 124.94 (19) C29—C30—C31 120.0 (2)
C3—C2—C1 107.47 (19) C29—C30—H30 120.0
C3—C2—H2 126.3 C31—C30—H30 120.0
C1—C2—H2 126.3 C30—C31—C32 119.9 (2)
C2—C3—C4 107.52 (19) C30—C31—H31 120.1
C2—C3—H3 126.2 C32—C31—H31 120.1
C4—C3—H3 126.2 C31—C32—C27 120.5 (2)
N1—C4—C5 125.91 (19) C31—C32—H32 119.7
N1—C4—C3 109.65 (18) C27—C32—H32 119.7
C5—C4—C3 124.44 (19) C34—C33—C38 119.23 (19)
C6—C5—C4 123.34 (19) C34—C33—C15 120.34 (19)
C6—C5—C21 117.17 (18) C38—C33—C15 120.43 (19)
C4—C5—C21 119.42 (18) C35—C34—C33 120.4 (2)
N2—C6—C5 125.75 (19) C35—C34—H34 119.8
N2—C6—C7 109.63 (18) C33—C34—H34 119.8
C5—C6—C7 124.33 (19) C36—C35—C34 120.2 (2)
C8—C7—C6 107.52 (18) C36—C35—H35 119.9
C8—C7—H7 126.2 C34—C35—H35 119.9
C6—C7—H7 126.2 C37—C36—C35 119.8 (2)
C7—C8—C9 107.46 (19) C37—C36—H36 120.1
C7—C8—H8 126.3 C35—C36—H36 120.1
C9—C8—H8 126.3 C36—C37—C38 120.3 (2)
N2—C9—C10 125.64 (18) C36—C37—H37 119.8
N2—C9—C8 109.51 (18) C38—C37—H37 119.8
C10—C9—C8 124.8 (2) C37—C38—C33 120.1 (2)
C9—C10—C11 123.1 (2) C37—C38—H38 119.9
C9—C10—C27 118.79 (18) C33—C38—H38 119.9
C11—C10—C27 118.01 (18) C44—C39—C40 118.3 (2)
N3—C11—C10 125.85 (19) C44—C39—C20 120.49 (19)
N3—C11—C12 109.62 (17) C40—C39—C20 121.18 (19)
C10—C11—C12 124.42 (19) C41—C40—C39 120.7 (2)
C13—C12—C11 107.48 (19) C41—C40—H40 119.7
C13—C12—H12 126.3 C39—C40—H40 119.7
C11—C12—H12 126.3 C42—C41—C40 120.3 (2)
C12—C13—C14 107.60 (18) C42—C41—H41 119.8
C12—C13—H13 126.2 C40—C41—H41 119.8
C14—C13—H13 126.2 C43—C42—C41 119.5 (2)
N3—C14—C15 125.19 (19) C43—C42—H42 120.3
N3—C14—C13 109.66 (18) C41—C42—H42 120.3
C15—C14—C13 125.08 (19) C42—C43—C44 120.5 (2)
C16—C15—C14 123.68 (19) C42—C43—H43 119.7
C16—C15—C33 118.41 (18) C44—C43—H43 119.7
C14—C15—C33 117.88 (18) C43—C44—C39 120.7 (2)
N4—C16—C15 125.79 (19) C43—C44—H44 119.7
N4—C16—C17 109.47 (18) C39—C44—H44 119.7
C15—C16—C17 124.51 (19) F2—C45—F3 107.6 (2)
C18—C17—C16 107.46 (18) F2—C45—F1 107.3 (2)
C18—C17—H17 126.3 F3—C45—F1 107.1 (2)
C16—C17—H17 126.3 F2—C45—S 111.41 (17)
C17—C18—C19 107.71 (19) F3—C45—S 111.2 (2)
C17—C18—H18 126.1 F1—C45—S 112.04 (17)
C19—C18—H18 126.1
C4—N1—C1—C20 169.3 (2) Mn—N4—C19—C20 −7.5 (3)
Mn—N1—C1—C20 −24.0 (3) C16—N4—C19—C18 −3.5 (2)
C4—N1—C1—C2 −2.9 (2) Mn—N4—C19—C18 178.36 (14)
Mn—N1—C1—C2 163.78 (14) C17—C18—C19—N4 1.8 (2)
N1—C1—C2—C3 2.7 (2) C17—C18—C19—C20 −172.4 (2)
C20—C1—C2—C3 −169.5 (2) N4—C19—C20—C1 12.1 (3)
C1—C2—C3—C4 −1.4 (2) C18—C19—C20—C1 −174.7 (2)
C1—N1—C4—C5 −177.8 (2) N4—C19—C20—C39 −168.24 (19)
Mn—N1—C4—C5 15.7 (3) C18—C19—C20—C39 5.0 (3)
C1—N1—C4—C3 2.1 (2) N1—C1—C20—C19 4.3 (3)
Mn—N1—C4—C3 −164.52 (14) C2—C1—C20—C19 175.3 (2)
C2—C3—C4—N1 −0.4 (2) N1—C1—C20—C39 −175.41 (19)
C2—C3—C4—C5 179.4 (2) C2—C1—C20—C39 −4.4 (3)
N1—C4—C5—C6 −9.4 (3) C6—C5—C21—C22 101.0 (2)
C3—C4—C5—C6 170.8 (2) C4—C5—C21—C22 −82.1 (3)
N1—C4—C5—C21 173.97 (19) C6—C5—C21—C26 −74.9 (3)
C3—C4—C5—C21 −5.8 (3) C4—C5—C21—C26 101.9 (2)
C9—N2—C6—C5 −170.4 (2) C26—C21—C22—C23 2.4 (3)
Mn—N2—C6—C5 2.7 (3) C5—C21—C22—C23 −173.6 (2)
C9—N2—C6—C7 3.6 (2) C21—C22—C23—C24 −0.8 (3)
Mn—N2—C6—C7 176.68 (14) C22—C23—C24—C25 −0.9 (4)
C4—C5—C6—N2 −0.3 (3) C23—C24—C25—C26 1.1 (4)
C21—C5—C6—N2 176.46 (19) C24—C25—C26—C21 0.5 (4)
C4—C5—C6—C7 −173.4 (2) C22—C21—C26—C25 −2.2 (3)
C21—C5—C6—C7 3.3 (3) C5—C21—C26—C25 173.8 (2)
N2—C6—C7—C8 −3.5 (3) C9—C10—C27—C32 111.9 (2)
C5—C6—C7—C8 170.5 (2) C11—C10—C27—C32 −65.5 (3)
C6—C7—C8—C9 2.0 (2) C9—C10—C27—C28 −67.2 (3)
C6—N2—C9—C10 175.0 (2) C11—C10—C27—C28 115.4 (2)
Mn—N2—C9—C10 1.9 (3) C32—C27—C28—C29 −0.7 (3)
C6—N2—C9—C8 −2.3 (2) C10—C27—C28—C29 178.37 (19)
Mn—N2—C9—C8 −175.45 (14) C27—C28—C29—C30 0.5 (3)
C7—C8—C9—N2 0.2 (3) C28—C29—C30—C31 0.1 (3)
C7—C8—C9—C10 −177.2 (2) C29—C30—C31—C32 −0.5 (3)
N2—C9—C10—C11 8.3 (3) C30—C31—C32—C27 0.2 (3)
C8—C9—C10—C11 −174.7 (2) C28—C27—C32—C31 0.3 (3)
N2—C9—C10—C27 −168.9 (2) C10—C27—C32—C31 −178.76 (19)
C8—C9—C10—C27 8.0 (3) C16—C15—C33—C34 109.7 (2)
C14—N3—C11—C10 176.3 (2) C14—C15—C33—C34 −72.0 (3)
Mn—N3—C11—C10 −16.0 (3) C16—C15—C33—C38 −70.2 (3)
C14—N3—C11—C12 0.0 (2) C14—C15—C33—C38 108.1 (2)
Mn—N3—C11—C12 167.73 (14) C38—C33—C34—C35 1.4 (3)
C9—C10—C11—N3 −1.0 (3) C15—C33—C34—C35 −178.5 (2)
C27—C10—C11—N3 176.29 (19) C33—C34—C35—C36 −1.4 (3)
C9—C10—C11—C12 174.8 (2) C34—C35—C36—C37 0.2 (3)
C27—C10—C11—C12 −7.9 (3) C35—C36—C37—C38 0.9 (3)
N3—C11—C12—C13 −0.2 (2) C36—C37—C38—C33 −0.8 (3)
C10—C11—C12—C13 −176.6 (2) C34—C33—C38—C37 −0.3 (3)
C11—C12—C13—C14 0.3 (2) C15—C33—C38—C37 179.6 (2)
C11—N3—C14—C15 −177.1 (2) C19—C20—C39—C44 118.9 (2)
Mn—N3—C14—C15 15.3 (3) C1—C20—C39—C44 −61.4 (3)
C11—N3—C14—C13 0.2 (2) C19—C20—C39—C40 −61.7 (3)
Mn—N3—C14—C13 −167.42 (14) C1—C20—C39—C40 118.0 (2)
C12—C13—C14—N3 −0.3 (2) C44—C39—C40—C41 −1.0 (3)
C12—C13—C14—C15 177.0 (2) C20—C39—C40—C41 179.56 (19)
N3—C14—C15—C16 −4.6 (3) C39—C40—C41—C42 1.7 (3)
C13—C14—C15—C16 178.6 (2) C40—C41—C42—C43 −0.8 (3)
N3—C14—C15—C33 177.27 (18) C41—C42—C43—C44 −0.8 (3)
C13—C14—C15—C33 0.4 (3) C42—C43—C44—C39 1.4 (3)
C19—N4—C16—C15 −170.7 (2) C40—C39—C44—C43 −0.5 (3)
Mn—N4—C16—C15 7.4 (3) C20—C39—C44—C43 178.9 (2)
C19—N4—C16—C17 4.0 (2) O3—S—C45—F2 177.39 (18)
Mn—N4—C16—C17 −177.90 (14) O2—S—C45—F2 −61.8 (2)
C14—C15—C16—N4 −7.3 (3) O4—S—C45—F2 56.9 (2)
C33—C15—C16—N4 170.85 (19) O3—S—C45—F3 −62.62 (19)
C14—C15—C16—C17 178.8 (2) O2—S—C45—F3 58.23 (19)
C33—C15—C16—C17 −3.1 (3) O4—S—C45—F3 176.92 (17)
N4—C16—C17—C18 −3.0 (2) O3—S—C45—F1 57.18 (19)
C15—C16—C17—C18 171.8 (2) O2—S—C45—F1 178.03 (17)
C16—C17—C18—C19 0.7 (2) O4—S—C45—F1 −63.28 (19)
C16—N4—C19—C20 170.7 (2)

Hydrogen-bond geometry (Å, º)

Cg2, Cg3, Cg4, Cg7, Cg9 and Cg11 are the centroids of the N2/C6–C9, N3/C11–C14, N4/C16–C19, Mn/N2/C9–C11/N3, C21–C26 and C33–C38 rings, respectively.

D—H···A D—H H···A D···A D—H···A
O1—H1O1···O4 0.84 1.91 2.745 (2) 171
O1—H2O1···O2i 0.82 1.90 2.715 (2) 171
C7—H7···O3ii 0.93 2.39 3.170 (3) 141
C44—H44···F2i 0.93 2.50 3.397 (3) 162
C23—H23···Cg4ii 0.93 2.85 3.603 (3) 139
C25—H25···Cg2iii 0.93 2.89 3.650 (3) 139
C30—H30···Cg9iv 0.93 2.82 3.610 (3) 144
C37—H37···Cg2v 0.93 2.97 3.676 (3) 133
C40—H40···Cg3vi 0.93 2.62 3.449 (2) 148
C42—H42···Cg11vii 0.93 2.89 3.631 (3) 137

Symmetry codes: (i) −x+2, −y, −z+1; (ii) x−1, y, z; (iii) −x+1, −y, −z+1; (iv) x, y+1, z; (v) x+1, y, z; (vi) −x+2, −y, −z; (vii) x, y−1, z.

References

  1. Bernadou, J., Pratviel, G., Bennis, F., Girardet, M. & Meunier, B. (1989). Biochemistry, 28, 7268–7275. [DOI] [PubMed]
  2. Boucher, L. J. (1972). Coord. Chem. Rev. 7, 289–329.
  3. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  5. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  6. Byrn, M. P., Curtis, C. J., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K., Terzis, A. & Strouse, C. E. (1993). J. Am. Chem. Soc. 115, 9480–9497.
  7. Cheng, B. & Scheidt, W. R. (1996). Acta Cryst. C52, 361–363. [DOI] [PubMed]
  8. Dawe, L. N., Miglioi, J., Turnbow, L., Taliaferro, M. L., Shum, W. W., Bagnato, J. D., Zakharov, L. N., Rheingold, A. L., Arif, A. M., Fourmigué, M. & Miller, J. S. (2005). Inorg. Chem. 44, 7530–7539. [DOI] [PubMed]
  9. Diskin-Posner, Y., Kumar, R. K. & Goldberg, I. (1999). New J. Chem. 23, 885–890.
  10. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  11. Fawwaz, R., Bohidiewicz, P., Lavallee, D., Wang, T., Oluwole, S., Newhouse, J. & Alderson, P. (1990). Nucl. Med. Biol. 17, 65–72. [DOI] [PubMed]
  12. Godziela, G. M., Tilotta, D. & Goff, H. M. (1986). Inorg. Chem. 25, 2142–2146.
  13. Groom, C. R., Bruno, I. J., Lightfood, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  14. Groves, J. T. & Nemo, T. E. (1983). J. Am. Chem. Soc. 105, 5786–5791.
  15. Janson, T. R., Boucher, L. J. & Katz, J. J. (1973). Inorg. Chem. 12, 940–943.
  16. Meunier, G., Montauzon, D., Bernadou, J., Grassy, G., Bonnfous, M., Cros, S. & Meunier, B. (1988). Mol. Parmacol, 33, 93–102. [PubMed]
  17. Nardelli, M. (1999). J. Appl. Cryst. 32, 563–571.
  18. Rittenberg, D. K., Sugiura, K., Arif, A. M., Sakata, Y., Incarvito, C. D., Rheingold, A. L. & Miller, J. S. (2000). Chem. Eur. J. 6, 1811–1819. [DOI] [PubMed]
  19. Rodriguez, M. & Bard, A. J. (1992). Inorg. Chem. 31, 1129–1135.
  20. Scheidt, W. R. & Lee, Y. (1987). Struct. Bonding (Berlin), 64, 1–7.
  21. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  22. Turner, P., Gunter, M. J., Hambley, T. W., White, A. H. & Skelton, B. W. (1996). J. Chem. Res. 18, 220–289.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016006630/wm5285sup1.cif

e-72-00720-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016006630/wm5285Isup2.hkl

e-72-00720-Isup2.hkl (536.5KB, hkl)

CCDC reference: 1474973

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES