Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Apr 19;72(Pt 5):712–715. doi: 10.1107/S2056989016006058

Crystal structure of bis­(ethyl­enedi­thio)­tetra­thia­fulvalenium μ2-acetato-bis­[tri­bromido­rhenate(III)] 1,1,2-tri­chloro­ethane hemisolvate

Alexander A Golichenko a,*, Andrey V Kravchenko b, Irina V Omelchenko c, Denis M Chudak b, Vladimir A Starodub d, Boleslaw Barszcz e, Alexander V Shtemenko a
PMCID: PMC4908526  PMID: 27308025

The crystal structure of a binuclear mono­carboxyl­ato dirhenium(III) complex with a fulvalene derivative is reported. This compound represents a radical cation salt containing a cluster unit with rhenium–rhenium quadruple bond.

Keywords: crystal structure, radical cation salt, bis­(ethyl­enedi­thio)­tetra­thia­fulvalene, rhenium, quadruple metal–metal bond

Abstract

The asymmetric unit of the title salt, (C10H8S8)[Re2Br6(CH3COO)]·0.5C2H3Cl3, contains one bis­(ethyl­enedi­thio)­tetra­thia­fulvalene (ET) radical cation, one μ2-acetato-bis­[tri­bromido­rhenate(III)] anion and a 1,1,2-tri­chloro­ethane mol­ecule with half-occupancy disordered about a twofold rotation axis. The tetra­thia­fulvalene fragment adopts an almost planar configuration typical of the ET radical cation. The C atoms of both ethyl­enedi­thio fragments in the cation are disordered over two orientations with occupancy factors 0.65:0.35 and 0.77:0.23. In the anion, six Br atoms and a μ2-acetate ligand form a strongly distorted cubic O2Br6 coordination polyhedron around the Re2 dinuclear centre. In the crystal, centrosymmetrically related ET cations and Re2O2Br6 anions are linked into dimers by π–π stacking inter­actions [centroid-to-centroid distance = 3.826 (8) Å] and by pairs of additional Re⋯Br contacts [3.131 (3) Å], respectively. The dimers are further packed into a three-dimensional network by non-directional inter­ionic electrostatic forces and by C—H⋯Br and C—H⋯S hydrogen bonds. The disordered 1,1,2-tri­chloro­ethane mol­ecules occupy solvent-accessible channels along the b axis.

Chemical context  

In the past few decades, mol­ecular low-dimensional conducting materials have attracted much inter­est owing to their physical properties, in particular their electrical, magnetic and spectroscopic properties. The packing of radical cations in the crystal and the properties of radical cation salts depend substanti­ally on the type of anions involved (Mori et al., 1999; Mori, 1999). Labile equatorial chloride or bromide groups around the Re2 6+ cluster unit are the reactive centres in inter­actions with other chemical compounds and biological macromolecules (Shtemenko et al., 2013, 2015). Only one radical cation salt containing a rhenium–rhenium quadruple bond has been described so far {(ET)2[Re2Cl8] [ET = bis(ethyl­enedi­thio)­tetra­thia­fulvalene]; Reinheimer et al., 2008}. In this context, we present the synthesis and crystal structure of a new radical cation salt of ET with the dirhenium(III) anion [Re2Br6(CH3COO)]. Neither acetic acid nor acetate was used in the synthesis of this radical cation salt. Evidently, the acetate ligand arose by hydrolysis of CH3CN (Cotton et al., 1991). Complex compounds of dirhenium(III) with one equatorial carboxyl­ato ligand are not well studied, the structure of only three such rhenium compounds having been reported to date (Lau et al., 2000; Vega et al., 2002; Beck & Zink, 2011).graphic file with name e-72-00712-scheme1.jpg

Structural commentary  

The title compound (Fig. 1) consists of bis­(ethyl­enedi­thio)­tetra­thia­fulvalene (ET) radical cations, μ2-acetato-bis­[tri­bromido­rhenate(III)] anions and 1,1,2-tri­chloro­ethane mol­ecules in the stoichiometric molar ratio of 1:1:0.5. The solvent mol­ecule is disordered over two orientations of equal occupancy about a twofold rotation axis inter­secting the mid-point of the C—C ethane bond. The tetra­thia­fulvalene fragment adopts an almost planar configuration (r.m.s. deviation = 0.033 Å) that is typical for ET radical cations. The dihedral angle between the five-membered rings is 0.3 (6)°. The carbon atoms of both ethyl­enedi­thio fragments (C4/C5 and C9/C10) are disordered over two sets of sites with occupancy ratios of 0.65:0.35 and 0.77:0.23, respectively.

Figure 1.

Figure 1

The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −Inline graphic − x, y, −z.] Only one component of the disordered 1,1,2-tri­chloro­ethane mol­ecule and the major component of the ET cation are shown. Colour codes: C, grey; H, white; O, red; S, yellow; Cl, green; Br, brown, Re, violet.

In the anion, each ReIII atom is coordinated by three Br atoms forming ReBr3 units which are linked by a Re—Re multiple bond [2.2174 (10) Å] and a bridging μ2-acetate ligand, forming a strongly distorted cubic O2Br6 coordination polyhedron around the Re2 core. The length of the Re—Re bond is very close to the mean value of 2.222 Å for quadruple bonds (Groom et al., 2016), and the six bromine ligands are arranged into an eclipsed conformation. It is also known that the presence of O,O-bridging ligands in such structures has a negligible effect on the Re—Re bond length [it varies in the range 2.2067 (7)–2.2731 (9) Å for compounds with no bridging ligands and in the range 2.2168 (8)–2.2532 (2) Å for compounds with O,O-bridging ligands (Poineau et al., 2015)]. Thus, the structure of the Re2Br6CH3COO anion corres­ponds to the typical structure of compounds with quadruple Re—Re bonds in an Re2 6+ core (Cotton et al., 2005). The Re—Br and Re—O bonds vary in the ranges 2.435 (3)–2.451 (3) Å and 2.009 (15)–2.040 (16) Å, respectively. The distortion from an ideal cubic geometry is mainly due to the short distance between the O atoms of the acetate group [2.24 (2) Å], while the Br⋯Br separations between adjacent Br atoms vary in the range 3.411 (3)–3.553 (4) Å.

Supra­molecular features  

In the crystal (Fig. 2), pairs of centrosymmetrically related ET cations are linked in a ‘head-to-tail’ manner into dimers by π–π stacking inter­actions, with centroid-to-centroid separations of 3.836 (8) Å, perpendicular inter­planar distances of 3.518 (6) Å and offsets of 1.52 (2) Å. Pairs of Re2O2Br6 anions are also linked into dimers by additional pairwise Re⋯Br contacts [Br6⋯Re2 = 3.131 (3) Å]. Cationic and anionic dimers are packed into a three-dimensional network by non-directional inter­molecular electrostatic forces and by C—H⋯Br and C—H⋯S hydrogen bonds (Table 1). Solvent-accessible channels along the b axis are occupied by the disordered 1,1,2-tri­chloro­ethane mol­ecules.

Figure 2.

Figure 2

Partial crystal packing of the title compound, with displacement ellipsoids shown at the 50% probability level. Only one component of the disordered 1,1,2-tri­chloro­ethane mol­ecule and the major component of the ET mol­ecule are shown. Colour codes: C, grey, H, white, O, red, S, yellow, Cl, green, Br, brown, Re, violet.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5B—H5BA⋯Br1 0.98 2.77 3.63 (8) 147
C9A—H9AA⋯Br6i 0.97 2.80 3.60 (3) 140
C9B—H9BA⋯S4ii 0.97 2.75 3.46 (10) 130
C9B—H9BB⋯Br6i 0.96 2.61 3.40 (11) 140
C10A—H10A⋯Br4iii 0.97 2.92 3.83 (4) 156
C10A—H10B⋯S3ii 0.97 2.81 3.57 (3) 136
C10B—H10D⋯Br4iii 0.98 2.67 3.61 (11) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Database survey  

A search of the Cambridge Structural Database (Version 5.36; last update February 2015; Groom et al., 2016) for related compounds of bis­(ethyl­enedi­thio)­tetra­thia­fulvalene with simple Re-containing anions resulted in eight hits, amongst which one closely related structure containing the ET cation and Re2Cl8 anion (Reinheimer et al., 2008). A search for Re2HalxLy anionic moieties, where Hal is a halogen atom and L is the μ2-carb­oxy­lic group, resulted in nine hits. Some closely related patterns were found, e.g. one containing the (μ2-acetato)-hexa­chlorido­dirhenate anion exhibiting the same structure of the title compound (Vega et al., 2002), and one containing the di-μ2-acetato-bis­(di­bromido­rhenate) anion (Koz’min et al., 1981).

Synthesis and crystallization  

The synthesis of the radical cation title salt was performed by galvanostatic anodic oxidation of ET (0.002 mol l−1) in a two-electrode U-shaped glass cell with platinum electrodes. The initial current intensity of 0.1 µA was increased by 0.05 µA per day to a final value of 0.45 µA. A mixture of 1,1,2-tri­chloro­ethane/aceto­nitrile (12:1 v/v) was used as solvent. [(C4H9)4N]2[Re2Br8] (0.008 mol l−1) was used as electrolyte. After a period of 6–7 weeks, black shiny plate-shaped crystals of the title salt suitable for X-ray analysis were formed.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were placed in idealized positions and refined using a riding-model approximation, with C—H = 0.96–0.97 Å, and with U iso(H) = 1.2U eq(C) or 1.5U eq(C) for methyl H atoms. The 1,1,2-tri­chloro­ethane mol­ecule is disordered over two sets of sites about a twofold rotation axis with equal occupancy. The C4–C5 and C9–C10 groups of the ET cations are disordered over two orientations with occupancy factors of 0.65/0.35 and 0.77/0.23, respectively. These occupancies were initially obtained as free variables by the full-matrix refinement, and were then fixed in the final refinement cycles. The C—C and C—Cl bond lengths in the solvent mol­ecule were constrained to be 1.52 (1) and 1.80 (1) Å, respectively, and the C—Cl bonds of the solvent mol­ecule were restrained to have the same lengths to within 0.01 Å. The C—S and C—C bonds of the disordered fragments of the ET cation were also restrained to have the same lengths to within 0.005 Å. The atoms of each disordered fragment, including the solvent mol­ecule, were restrained to have approximately the same displacement parameters to within 0.02–0.04 Å2. DELU restraints to within 0.01 Å2 were applied to atoms C4B, C5B, C9B, C10B, C1S and Cl2S. In addition, all non-hydrogen atoms of the solvent mol­ecule were restrained to be approximately isotropic to within 0.03–0.06 Å2. Several outlier reflections (67) that were believed to be affected by the contribution of several unresolved minor twin domains were omitted from the final cycles of refinement, reducing the R factor from 0.061 to 0.052. Attempts to refine the structure using a two-component twin model were unsuccessful. Moreover, the crystals of the title compound are stable but show a strong tendency to splicing. The poor quality of the available crystal may account for the rather low bond precision of the C—C bonds and the presence of several large residual density peaks.

Table 2. Experimental details.

Crystal data
Chemical formula (C10H8S8)[Re2Br6(C2H3O2)]·0.5C2H3Cl3
M r 1362.24
Crystal system, space group Monoclinic, I2/a
Temperature (K) 298
a, b, c (Å) 27.1825 (5), 8.53737 (13), 26.0667 (5)
β (°) 100.8440 (17)
V3) 5941.21 (18)
Z 8
Radiation type Mo Kα
μ (mm−1) 16.93
Crystal size (mm) 0.4 × 0.4 × 0.1
 
Data collection
Diffractometer Agilent Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014)
T min, T max 0.067, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 36051, 6755, 6304
R int 0.039
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.052, 0.137, 1.14
No. of reflections 6755
No. of parameters 334
No. of restraints 99
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.77, −1.90

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016006058/rz5188sup1.cif

e-72-00712-sup1.cif (927.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016006058/rz5188Isup2.hkl

e-72-00712-Isup2.hkl (330.7KB, hkl)

CCDC reference: 1473493

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a grant for Science Research (No. 0111U000111) from the Ministry of Education and Science of Ukraine. We also thank COST Action CM1105 for supporting this study.

supplementary crystallographic information

Crystal data

(C10H8S8)[Re2Br6(C2H3O2)]·0.5C2H3Cl3 F(000) = 4960
Mr = 1362.24 Dx = 3.046 Mg m3
Monoclinic, I2/a Mo Kα radiation, λ = 0.71073 Å
a = 27.1825 (5) Å Cell parameters from 18811 reflections
b = 8.53737 (13) Å θ = 2.9–30.7°
c = 26.0667 (5) Å µ = 16.93 mm1
β = 100.8440 (17)° T = 298 K
V = 5941.21 (18) Å3 Block, metallic dark violet
Z = 8 0.4 × 0.4 × 0.1 mm

Data collection

Agilent Xcalibur Sapphire3 diffractometer 6755 independent reflections
Radiation source: Enhance (Mo) X-ray Source 6304 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.039
Detector resolution: 16.1827 pixels mm-1 θmax = 27.5°, θmin = 2.9°
ω scans h = −35→35
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) k = −11→9
Tmin = 0.067, Tmax = 1.000 l = −33→33
36051 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137 H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0534P)2 + 229.8497P] where P = (Fo2 + 2Fc2)/3
6755 reflections (Δ/σ)max = 0.001
334 parameters Δρmax = 1.77 e Å3
99 restraints Δρmin = −1.90 e Å3

Special details

Experimental. Absorption correction: CrysAlisPro (Agilent, 2014) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.0279 (2) −0.3844 (7) 0.1248 (2) 0.0486 (13)
S2 −0.0188 (2) −0.1562 (6) 0.0484 (2) 0.0411 (11)
S3 −0.0801 (3) −0.0100 (7) 0.1157 (3) 0.0532 (14)
S4 −0.0284 (3) −0.2886 (8) 0.2057 (2) 0.0602 (17)
S5 0.0889 (2) −0.5248 (8) 0.0393 (2) 0.0484 (13)
S6 0.0408 (2) −0.2918 (6) −0.0354 (2) 0.0436 (12)
S7 0.0915 (3) −0.3875 (7) −0.1204 (2) 0.0586 (17)
S8 0.1502 (3) −0.6653 (9) −0.0297 (2) 0.0590 (16)
C1 0.0209 (7) −0.313 (2) 0.0627 (7) 0.034 (4)
C2 −0.0374 (7) −0.152 (2) 0.1079 (8) 0.037 (4)
C3 −0.0160 (8) −0.262 (3) 0.1431 (8) 0.043 (5)
C4 −0.065 (3) −0.122 (6) 0.220 (3) 0.064 (11) 0.35
H4A −0.1001 −0.1537 0.2165 0.077* 0.35
H4B −0.0538 −0.0909 0.2563 0.077* 0.35
C4A −0.0391 (15) −0.084 (3) 0.2196 (15) 0.056 (8) 0.65
H4AA −0.0440 −0.0750 0.2554 0.067* 0.65
H4AB −0.0094 −0.0242 0.2166 0.067* 0.65
C5A −0.0822 (16) −0.015 (5) 0.1850 (9) 0.060 (9) 0.65
H5AA −0.0864 0.0909 0.1965 0.072* 0.65
H5AB −0.1118 −0.0737 0.1893 0.072* 0.65
C5B −0.062 (3) 0.011 (9) 0.1862 (9) 0.061 (12) 0.35
H5BA −0.0272 0.0463 0.1933 0.073* 0.35
H5BB −0.0817 0.0950 0.1967 0.073* 0.35
C6 0.0472 (7) −0.372 (2) 0.0258 (7) 0.035 (4)
C7 0.1061 (8) −0.523 (2) −0.0214 (8) 0.039 (4)
C8 0.0834 (9) −0.415 (2) −0.0558 (8) 0.044 (5)
C9A 0.1534 (9) −0.479 (4) −0.1154 (13) 0.057 (8) 0.77
H9AA 0.1634 −0.4736 −0.1492 0.068* 0.77
H9AB 0.1777 −0.4205 −0.0908 0.068* 0.77
C9B 0.134 (4) −0.548 (10) −0.130 (4) 0.05 (2) 0.23
H9BA 0.1153 −0.6449 −0.1362 0.060* 0.23
H9BB 0.1493 −0.5262 −0.1596 0.060* 0.23
C10A 0.1547 (13) −0.643 (4) −0.0988 (9) 0.051 (7) 0.77
H10A 0.1857 −0.6902 −0.1045 0.061* 0.77
H10B 0.1272 −0.6987 −0.1202 0.061* 0.77
C10B 0.173 (4) −0.566 (13) −0.083 (3) 0.05 (2) 0.23
H10C 0.1860 −0.4639 −0.0715 0.059* 0.23
H10D 0.2006 −0.6266 −0.0923 0.059* 0.23
Re1 0.12639 (3) 0.02771 (9) 0.15999 (3) 0.0325 (2)
Re2 0.18894 (3) 0.19389 (8) 0.18533 (3) 0.0285 (2)
Br1 0.05027 (9) 0.1855 (3) 0.15459 (12) 0.0621 (7)
Br2 0.10600 (9) −0.1027 (3) 0.23712 (10) 0.0541 (6)
Br3 0.11180 (11) 0.0172 (4) 0.06499 (10) 0.0623 (7)
Br4 0.20677 (9) 0.2898 (3) 0.10198 (9) 0.0529 (6)
Br5 0.15056 (10) 0.4496 (3) 0.19753 (11) 0.0560 (6)
Br6 0.20369 (9) 0.1635 (3) 0.28134 (8) 0.0476 (5)
O1 0.2381 (6) 0.0139 (18) 0.1841 (6) 0.047 (3)
O2 0.1742 (6) −0.1510 (17) 0.1587 (6) 0.046 (3)
C11 0.2221 (8) −0.129 (2) 0.1733 (7) 0.039 (4)
C12 0.2582 (11) −0.260 (3) 0.1768 (12) 0.066 (7)
H12A 0.2756 −0.2551 0.1480 0.100*
H12B 0.2404 −0.3578 0.1756 0.100*
H12C 0.2819 −0.2533 0.2090 0.100*
Cl1S −0.1993 (6) 0.0569 (19) 0.0673 (6) 0.150 (6)
Cl2S −0.2811 (11) 0.288 (3) 0.0317 (11) 0.140 (10) 0.50
C1S −0.2592 (9) 0.090 (4) 0.0257 (5) 0.15 (2)
H1S −0.2848 0.0099 0.0239 0.180*
H1SA −0.2718 0.1918 0.0336 0.180* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.052 (3) 0.062 (3) 0.035 (2) 0.022 (3) 0.013 (2) 0.012 (2)
S2 0.053 (3) 0.036 (2) 0.037 (2) 0.010 (2) 0.016 (2) 0.008 (2)
S3 0.064 (4) 0.044 (3) 0.055 (3) 0.018 (3) 0.022 (3) 0.001 (2)
S4 0.080 (4) 0.065 (4) 0.043 (3) 0.015 (3) 0.032 (3) 0.013 (3)
S5 0.049 (3) 0.065 (4) 0.034 (2) 0.018 (3) 0.014 (2) 0.010 (2)
S6 0.062 (3) 0.036 (2) 0.036 (2) 0.009 (2) 0.017 (2) 0.0036 (19)
S7 0.102 (5) 0.041 (3) 0.040 (3) 0.018 (3) 0.032 (3) 0.006 (2)
S8 0.064 (4) 0.075 (4) 0.042 (3) 0.028 (3) 0.020 (3) 0.008 (3)
C1 0.033 (9) 0.043 (10) 0.028 (8) 0.000 (8) 0.008 (7) 0.002 (7)
C2 0.040 (10) 0.038 (10) 0.036 (9) −0.002 (8) 0.015 (8) 0.000 (8)
C3 0.049 (11) 0.050 (12) 0.033 (9) 0.010 (9) 0.015 (8) 0.007 (9)
C4 0.071 (17) 0.065 (16) 0.061 (15) 0.002 (14) 0.025 (14) −0.003 (12)
C4A 0.070 (18) 0.053 (15) 0.057 (15) 0.000 (14) 0.040 (14) −0.015 (13)
C5A 0.074 (19) 0.059 (17) 0.058 (15) 0.008 (16) 0.043 (14) −0.007 (14)
C5B 0.066 (18) 0.061 (16) 0.060 (16) 0.000 (14) 0.023 (13) −0.004 (12)
C6 0.039 (10) 0.039 (10) 0.030 (8) −0.002 (8) 0.011 (7) 0.002 (7)
C7 0.042 (10) 0.045 (11) 0.031 (9) 0.004 (8) 0.012 (8) −0.004 (8)
C8 0.067 (14) 0.036 (10) 0.030 (9) −0.010 (10) 0.014 (9) −0.007 (8)
C9A 0.07 (2) 0.061 (19) 0.050 (17) −0.023 (17) 0.030 (16) −0.004 (15)
C9B 0.05 (2) 0.05 (3) 0.05 (2) 0.000 (17) 0.013 (15) 0.001 (17)
C10A 0.058 (18) 0.050 (17) 0.050 (16) 0.014 (15) 0.025 (14) 0.003 (14)
C10B 0.05 (2) 0.05 (3) 0.05 (2) 0.000 (17) 0.013 (15) −0.001 (17)
Re1 0.0300 (4) 0.0326 (4) 0.0333 (4) −0.0033 (3) 0.0025 (3) 0.0011 (3)
Re2 0.0294 (4) 0.0276 (3) 0.0275 (3) −0.0007 (2) 0.0027 (3) 0.0040 (2)
Br1 0.0443 (12) 0.0641 (15) 0.0752 (17) 0.0068 (11) 0.0042 (11) 0.0085 (13)
Br2 0.0564 (13) 0.0555 (13) 0.0517 (12) −0.0093 (10) 0.0140 (10) 0.0070 (10)
Br3 0.0602 (15) 0.0809 (18) 0.0408 (11) −0.0144 (13) −0.0036 (10) −0.0037 (11)
Br4 0.0481 (12) 0.0703 (15) 0.0389 (11) −0.0074 (11) 0.0047 (9) 0.0135 (10)
Br5 0.0561 (13) 0.0389 (11) 0.0737 (16) 0.0048 (10) 0.0142 (12) 0.0065 (11)
Br6 0.0513 (12) 0.0517 (12) 0.0388 (10) −0.0108 (10) 0.0056 (9) 0.0051 (9)
O1 0.050 (9) 0.041 (8) 0.048 (8) 0.002 (7) 0.005 (7) 0.004 (7)
O2 0.056 (9) 0.034 (7) 0.048 (8) −0.001 (6) 0.009 (7) −0.004 (6)
C11 0.056 (12) 0.033 (9) 0.031 (9) 0.005 (9) 0.014 (8) −0.001 (8)
C12 0.074 (18) 0.048 (14) 0.085 (19) 0.023 (13) 0.034 (15) 0.014 (13)
Cl1S 0.133 (11) 0.148 (12) 0.153 (12) 0.021 (9) −0.014 (9) −0.014 (10)
Cl2S 0.15 (2) 0.115 (17) 0.14 (2) 0.048 (16) −0.024 (17) 0.005 (15)
C1S 0.15 (4) 0.12 (2) 0.19 (4) 0.02 (3) 0.05 (3) −0.01 (3)

Geometric parameters (Å, º)

S1—C1 1.708 (19) C7—C8 1.35 (3)
S1—C3 1.72 (2) C9A—H9AA 0.9700
S2—C1 1.71 (2) C9A—H9AB 0.9700
S2—C2 1.72 (2) C9A—C10A 1.46 (5)
S3—C2 1.72 (2) C9B—H9BA 0.9700
S3—C5A 1.82 (2) C9B—H9BB 0.9700
S3—C5B 1.82 (2) C9B—C10B 1.46 (14)
S4—C3 1.74 (2) C10A—H10A 0.9700
S4—C4 1.82 (2) C10A—H10B 0.9700
S4—C4A 1.82 (2) C10B—H10C 0.9700
S5—C6 1.72 (2) C10B—H10D 0.9700
S5—C7 1.73 (2) Re1—Re2 2.2174 (10)
S6—C6 1.716 (19) Re1—Br1 2.451 (3)
S6—C8 1.72 (2) Re1—Br2 2.451 (2)
S7—C8 1.75 (2) Re1—Br3 2.435 (3)
S7—C9A 1.84 (2) Re1—O2 2.009 (15)
S7—C9B 1.84 (2) Re2—Br4 2.454 (2)
S8—C7 1.75 (2) Re2—Br5 2.465 (2)
S8—C10A 1.84 (2) Re2—Br6 2.473 (2)
S8—C10B 1.84 (2) Re2—O1 2.040 (16)
C1—C6 1.40 (3) O1—C11 1.30 (3)
C2—C3 1.36 (3) O2—C11 1.30 (3)
C4—H4A 0.9700 C11—C12 1.48 (3)
C4—H4B 0.9700 C12—H12A 0.9600
C4—C5B 1.46 (4) C12—H12B 0.9600
C4A—H4AA 0.9700 C12—H12C 0.9600
C4A—H4AB 0.9700 Cl1S—C1S 1.800 (16)
C4A—C5A 1.46 (4) Cl2S—C1S 1.81 (2)
C5A—H5AA 0.9700 Cl2S—H1SA 0.8557
C5A—H5AB 0.9700 C1S—C1Si 1.515 (18)
C5B—H5BA 0.9700 C1S—H1S 0.9700
C5B—H5BB 0.9700 C1S—H1SA 0.9703
C1—S1—C3 94.9 (10) C10A—C9A—H9AA 108.9
C1—S2—C2 95.6 (9) C10A—C9A—H9AB 108.9
C2—S3—C5A 104.3 (14) S7—C9B—H9BA 109.6
C2—S3—C5B 97 (3) S7—C9B—H9BB 109.6
C5A—S3—C5B 19 (3) H9BA—C9B—H9BB 108.1
C3—S4—C4 108 (2) C10B—C9B—S7 110 (7)
C3—S4—C4A 97.4 (15) C10B—C9B—H9BA 109.6
C4A—S4—C4 25 (3) C10B—C9B—H9BB 109.6
C6—S5—C7 94.9 (9) S8—C10A—H10A 109.0
C6—S6—C8 94.9 (10) S8—C10A—H10B 109.0
C8—S7—C9A 98.9 (13) C9A—C10A—S8 113 (2)
C8—S7—C9B 103 (3) C9A—C10A—H10A 109.0
C9A—S7—C9B 26 (4) C9A—C10A—H10B 109.0
C7—S8—C10A 102.8 (12) H10A—C10A—H10B 107.8
C7—S8—C10B 96 (4) S8—C10B—H10C 109.1
C10B—S8—C10A 28 (4) S8—C10B—H10D 109.1
S1—C1—S2 116.1 (11) C9B—C10B—S8 112 (7)
C6—C1—S1 122.7 (15) C9B—C10B—H10C 109.1
C6—C1—S2 121.1 (15) C9B—C10B—H10D 109.1
S3—C2—S2 116.0 (12) H10C—C10B—H10D 107.9
C3—C2—S2 115.7 (15) Re2—Re1—Br1 104.91 (8)
C3—C2—S3 128.3 (16) Re2—Re1—Br2 108.99 (7)
S1—C3—S4 116.6 (12) Re2—Re1—Br3 107.19 (7)
C2—C3—S1 117.5 (15) Br1—Re1—Br2 88.73 (10)
C2—C3—S4 125.9 (17) Br3—Re1—Br1 89.29 (11)
S4—C4—H4A 109.2 Br3—Re1—Br2 143.01 (9)
S4—C4—H4B 109.2 O2—Re1—Re2 91.6 (4)
H4A—C4—H4B 107.9 O2—Re1—Br1 163.4 (4)
C5B—C4—S4 112 (5) O2—Re1—Br2 85.2 (5)
C5B—C4—H4A 109.2 O2—Re1—Br3 86.4 (4)
C5B—C4—H4B 109.2 Re1—Re2—Br4 102.59 (6)
S4—C4A—H4AA 108.8 Re1—Re2—Br5 106.59 (7)
S4—C4A—H4AB 108.8 Re1—Re2—Br6 101.74 (6)
H4AA—C4A—H4AB 107.7 Br4—Re2—Br5 88.72 (9)
C5A—C4A—S4 114 (3) Br4—Re2—Br6 155.47 (8)
C5A—C4A—H4AA 108.8 Br5—Re2—Br6 87.39 (9)
C5A—C4A—H4AB 108.8 O1—Re2—Re1 88.9 (4)
S3—C5A—H5AA 108.1 O1—Re2—Br4 89.9 (5)
S3—C5A—H5AB 108.1 O1—Re2—Br5 164.3 (4)
C4A—C5A—S3 117 (2) O1—Re2—Br6 87.4 (5)
C4A—C5A—H5AA 108.1 C11—O1—Re2 120.9 (14)
C4A—C5A—H5AB 108.1 C11—O2—Re1 119.9 (13)
H5AA—C5A—H5AB 107.3 O1—C11—C12 120 (2)
S3—C5B—H5BA 107.3 O2—C11—O1 118.4 (18)
S3—C5B—H5BB 107.3 O2—C11—C12 121 (2)
C4—C5B—S3 120 (5) C11—C12—H12A 109.5
C4—C5B—H5BA 107.3 C11—C12—H12B 109.5
C4—C5B—H5BB 107.3 C11—C12—H12C 109.5
H5BA—C5B—H5BB 106.9 H12A—C12—H12B 109.5
S6—C6—S5 116.3 (11) H12A—C12—H12C 109.5
C1—C6—S5 122.5 (15) H12B—C12—H12C 109.5
C1—C6—S6 121.2 (15) C1S—Cl2S—H1SA 8.9
S5—C7—S8 114.5 (12) Cl1S—C1S—Cl2S 112 (2)
C8—C7—S5 116.4 (16) Cl1S—C1S—H1S 118.6
C8—C7—S8 129.0 (16) Cl1S—C1S—H1SA 109.2
S6—C8—S7 115.3 (13) Cl2S—C1S—H1S 114.7
C7—C8—S6 117.5 (16) Cl2S—C1S—H1SA 7.8
C7—C8—S7 127.2 (18) C1Si—C1S—Cl1S 97 (2)
S7—C9A—H9AA 108.9 C1Si—C1S—Cl2S 104.2 (12)
S7—C9A—H9AB 108.9 C1Si—C1S—H1S 108.0
H9AA—C9A—H9AB 107.7 C1Si—C1S—H1SA 112.0
C10A—C9A—S7 114 (2) H1S—C1S—H1SA 111.3
S1—C1—C6—S5 0 (3) C7—S8—C10A—C9A 40 (3)
S1—C1—C6—S6 −177.4 (11) C7—S8—C10B—C9B −63 (7)
S2—C1—C6—S5 177.7 (11) C8—S6—C6—S5 0.2 (14)
S2—C1—C6—S6 0 (2) C8—S6—C6—C1 178.1 (17)
S2—C2—C3—S1 2 (3) C8—S7—C9A—C10A 58 (3)
S2—C2—C3—S4 −178.8 (14) C8—S7—C9B—C10B −42 (7)
S3—C2—C3—S1 −177.1 (13) C9A—S7—C8—S6 158.8 (15)
S3—C2—C3—S4 2 (3) C9A—S7—C8—C7 −22 (2)
S4—C4—C5B—S3 58 (9) C9A—S7—C9B—C10B 42 (6)
S4—C4A—C5A—S3 −61 (4) C9B—S7—C8—S6 −175 (4)
S5—C7—C8—S6 1 (2) C9B—S7—C8—C7 4 (4)
S5—C7—C8—S7 −178.2 (13) C9B—S7—C9A—C10A −43 (8)
S7—C9A—C10A—S8 −71 (3) C10A—S8—C7—S5 174.5 (16)
S7—C9B—C10B—S8 77 (9) C10A—S8—C7—C8 −4 (3)
S8—C7—C8—S6 179.3 (13) C10A—S8—C10B—C9B 43 (6)
S8—C7—C8—S7 0 (3) C10B—S8—C7—S5 −158 (4)
C1—S1—C3—S4 176.8 (14) C10B—S8—C7—C8 23 (4)
C1—S1—C3—C2 −4 (2) C10B—S8—C10A—C9A −40 (8)
C1—S2—C2—S3 −179.7 (12) Re1—Re2—O1—C11 −3.2 (15)
C1—S2—C2—C3 0.9 (19) Re1—O2—C11—O1 −6 (2)
C2—S2—C1—S1 −3.7 (13) Re1—O2—C11—C12 175.2 (17)
C2—S2—C1—C6 178.7 (17) Re2—Re1—O2—C11 3.0 (15)
C2—S3—C5A—C4A 22 (4) Re2—O1—C11—O2 6 (3)
C2—S3—C5B—C4 −61 (7) Re2—O1—C11—C12 −175.0 (17)
C3—S1—C1—S2 4.6 (14) Br1—Re1—Re2—Br4 −90.90 (10)
C3—S1—C1—C6 −177.8 (18) Br1—Re1—Re2—Br5 1.54 (11)
C3—S4—C4—C5B −19 (7) Br1—Re1—Re2—Br6 92.30 (10)
C3—S4—C4A—C5A 63 (3) Br1—Re1—Re2—O1 179.4 (5)
C4—S4—C3—S1 168 (3) Br1—Re1—O2—C11 −174.7 (11)
C4—S4—C3—C2 −11 (4) Br2—Re1—Re2—Br4 175.23 (10)
C4—S4—C4A—C5A −54 (6) Br2—Re1—Re2—Br5 −92.32 (10)
C4A—S4—C3—S1 144.9 (18) Br2—Re1—Re2—Br6 −1.56 (10)
C4A—S4—C3—C2 −34 (3) Br2—Re1—Re2—O1 85.6 (5)
C4A—S4—C4—C5B 50 (4) Br2—Re1—O2—C11 −105.9 (15)
C5A—S3—C2—S2 −169.7 (19) Br3—Re1—Re2—Br4 3.05 (11)
C5A—S3—C2—C3 10 (3) Br3—Re1—Re2—Br5 95.49 (11)
C5A—S3—C5B—C4 53 (6) Br3—Re1—Re2—Br6 −173.75 (10)
C5B—S3—C2—S2 −152 (3) Br3—Re1—Re2—O1 −86.6 (5)
C5B—S3—C2—C3 28 (3) Br3—Re1—O2—C11 110.1 (15)
C5B—S3—C5A—C4A −48 (8) Br4—Re2—O1—C11 −105.8 (15)
C6—S5—C7—S8 −179.3 (12) Br5—Re2—O1—C11 169.2 (11)
C6—S5—C7—C8 −0.5 (19) Br6—Re2—O1—C11 98.6 (15)
C6—S6—C8—S7 178.5 (13) O2—Re1—Re2—Br4 89.8 (5)
C6—S6—C8—C7 −0.6 (19) O2—Re1—Re2—Br5 −177.8 (5)
C7—S5—C6—S6 0.1 (14) O2—Re1—Re2—Br6 −87.0 (5)
C7—S5—C6—C1 −177.7 (18) O2—Re1—Re2—O1 0.1 (6)

Symmetry code: (i) −x−1/2, y, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5B—H5BA···Br1 0.98 2.77 3.63 (8) 147
C9A—H9AA···Br6ii 0.97 2.80 3.60 (3) 140
C9B—H9BA···S4iii 0.97 2.75 3.46 (10) 130
C9B—H9BB···Br6ii 0.96 2.61 3.40 (11) 140
C10A—H10A···Br4iv 0.97 2.92 3.83 (4) 156
C10A—H10B···S3iii 0.97 2.81 3.57 (3) 136
C10B—H10D···Br4iv 0.98 2.67 3.61 (11) 161

Symmetry codes: (ii) x, −y−1/2, z−1/2; (iii) −x, −y−1, −z; (iv) −x+1/2, y−1, −z.

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Beck, J. & Zink, G. (2011). J. Chem. Crystallogr. 41, 1185–1189.
  3. Cotton, F. A., DeCanio, E. C., Kibala, P. A. & Vidyasagar, K. (1991). Inorg. Chim. Acta, 184, 221–228.
  4. Cotton, F. A., Murillo, C. A. & Walton, R. A. (2005). Multiple Bonds between Metal Atoms, 3rd ed., pp. 271–376. New York: Springer Science and Business Media Inc.
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Koz’min, P. A., Surazhskaya, M. D. & Larina, T. B. (1981). Russ. J. Inorg. Chem. 26, 57–60.
  8. Lau, S. S., Fanwick, P. E. & Walton, R. A. (2000). Inorg. Chim. Acta, 308, 8–16.
  9. Mori, T. (1999). Bull. Chem. Soc. Jpn, 72, 2011–2027.
  10. Mori, T., Mori, H. & Tanaka, Sh. (1999). Bull. Chem. Soc. Jpn, 72, 179–197.
  11. Poineau, F., Sattelberger, A. P., Lu, E. & Liddle, S. T. (2015). Molecular Metal–Metal Bonds: Compounds, Synthesis, Properties, edited by S. T. Liddle, pp. 205–216. Weinheim: Wiley-VCH.
  12. Reinheimer, E. W., Galán-Mascarós, J. R., Gómez-García, C. J., Zhao, H., Fourmigué, M. & Dunbar, K. R. (2008). J. Mol. Struct. 890, 81–89.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Shtemenko, N. I., Chifotides, H. T., Domasevitch, K. V., Golichenko, A. A., Babiy, S. A., Li, Z., Paramonova, K. V., Shtemenko, A. V. & Dunbar, K. R. (2013). J. Inorg. Biochem. 129, 127–134. [DOI] [PubMed]
  16. Shtemenko, A. V., Chifotides, H. T., Yegorova, D. E., Shtemenko, N. I. & Dunbar, K. R. (2015). J. Inorg. Biochem. 153, 114–120. [DOI] [PubMed]
  17. Vega, A., Calvo, V., Manzur, J., Spodine, E. & Saillard, J.-Y. (2002). Inorg. Chem. 41, 5382–5387. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016006058/rz5188sup1.cif

e-72-00712-sup1.cif (927.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016006058/rz5188Isup2.hkl

e-72-00712-Isup2.hkl (330.7KB, hkl)

CCDC reference: 1473493

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES