Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Apr 5;72(Pt 5):612–615. doi: 10.1107/S2056989016004916

Crystal structure of levomepromazine maleate

Gyula Tamás Gál a,*, Nóra Veronika May a, Petra Bombicz a
PMCID: PMC4908531  PMID: 27308001

In the crystal, enanti­omerically pure (S)-3-(2-meth­oxy­pheno­thia­zin-10-yl)-N,N,2-tri­methyl­propanaminium hydrogen maleate, also known as levomepromazine maleate, forms a three-dimensional supra­molecular network through N—H⋯O, C—H⋯O and C—H⋯π inter­actions. The asymmetric unit comprises two slightly conformationally different levomepromazine cations and two hydrogen maleate anions.

Keywords: crystal structure, pheno­thia­zine, maleate, hydrogen bonding, C—H⋯π inter­actions

Abstract

The asymmetric unit of the title salt, C19H25N2OS+·C4H3O4 [systematic name: (S)-3-(2-meth­oxy­pheno­thia­zin-10-yl)-N,N,2-tri­methyl­propanaminium hydrogen maleate], comprises two (S)-levomepromazine cations and two hydrogen maleate anions. The conformations of the two cations are similar. The major difference relates to the orientation of the meth­oxy substituent at the pheno­thia­zine ring system. The crystal components form a three-dimensional supra­molecular network via N—H⋯O, C—H⋯O and C—H⋯π inter­actions. A comparison of the conformations of the levomepromazine cations with those of the neutral mol­ecule and similar protonated mol­ecules reveals significant conformational flexibility of the pheno­thia­zine ring system and the substituent at the pheno­thia­zine N atom.

Chemical context  

Levomepromazine maleate is a type of tranquilizer that is widely used as an important active pharmaceutical ingredient (API). As a typical N-substituted pheno­thia­zine anti­psychotic, this API is able to block a variety of receptors. For example, levomepromazine is used for treating schizophrenia (Froim­owitz & Cody, 1993). The levomepromazine mol­ecule is chiral and the (R)-(−) enanti­omer is the medically active form. It is worth noting that the neutral (R)-levomepromazine mol­ecule corresponds to the (S)-levomepromazine cation formed by protonation of its tertiary amino group, according to the Cahn–Ingold-Prelog (CIP) convention. The crystal structure of neutral (R)-levomepromazine has been reported previously, including the determination of its absolute configuration (Sato et al.). As (R)-levomepromazine is generally sold in the form of its maleate salt, we report here the crystal structure of this compound and compare the conformation of neutral levomepromazine with those of its cationic forms.graphic file with name e-72-00612-scheme1.jpg

Structural commentary  

The asymmetric unit of the title compound comprises two levomepromazine cations and two hydrogen maleate anions (Fig. 1). The nitro­gen atoms N18 and N48 are protonated, thus the cations contain a tertiary amine group. The main difference in the cationic structures results from the different orientation of the meth­oxy substituent of the pheno­thia­zine ring system, as illustrated in Fig. 2 a where superposition of the two cations is presented. The root-mean-square deviation measuring the average distance between the atoms of the superimposed mol­ecules is 0.509 Å and the maximum distance between the meth­oxy carbon atoms is 2.980 (4) Å. The pheno­thia­zine groups are similarly bent along the N—S line with dihedral angles between the benzene rings of 42.51 (17) and 43.71 (18)°; these values are close to the analogous dihedral angles in the neutral levomepromazine mol­ecule [41.24° at room temperature (MPZPAM; Sato et al., 1980) and 43.09° at 121 K (Dahl et al., 1982)].

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The asymmetric unit contains two organic salt mol­ecules. H atoms have been omitted for clarity.

Figure 2.

Figure 2

Conformational comparison of (a) the two levomepromazine mol­ecules in the asymmetric unit of the title structure, and (b) one of the levomepromazines from the title structure (gray) compared with neutral dimorphic levomepromazine (green, MPZPAM) as well as the non-methyl­ated derivative (purple, MAPTML10).

The conformation of the investigated levomepromazine hydrogen maleate salt was compared with that of neutral levomepromazin (MPZPAM) and with the closely related compound 3-(2-meth­oxy-10-pheno­thia­zin­yl)-N,N-dimethyl-propanaminium hydrogen maleate, in which the propyl side chain is non-methyl­ated (MAPTML10; Marsau & Gauthier, 1973) (see Fig. 2 b). Mol­ecules MPZPAM and MAPTML10 were inverted to obtain the same conformation for the pheno­thia­zine rings (which resulted in the opposite enanti­o­mer for MPZPAM). It can be seen that the main difference is in the torsion angle around the N10—C15 bond and the conformation of the side chain. For MPZPAM, the pheno­thia­zine ring could be fully superimposed with the pheno­thia­zine ring of the title compound, but the propyl side chains differ in the configuration and orientation of their amino­methyl groups. In the non-methyl­ated derivative MAPTML10, the heterocyclic ring system is significantly closer to being flat (the dihedral angle between the benzene rings is 21.74°), while the aliphatic chain bends to the opposite site of the pheno­thia­zine ring in comparison with the title compound.

The planar structure of the hydrogen maleate anions is stabilized by very strong intra­molecular O—H⋯O hydrogen bonds between the carb­oxy­lic and carboxyl­ate groups, as is often observed for these anions (Table 1, Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C31–C36 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O4 0.84 1.61 2.452 (3) 178
O8—H8O⋯O6 0.84 1.61 2.443 (4) 174
N18—H18N⋯O3i 1.00 1.73 2.716 (3) 170
N48—H48N⋯O5ii 1.00 1.74 2.710 (3) 164
N48—H48N⋯O6ii 1.00 2.63 3.332 (4) 128
C11—H11⋯O3iii 0.95 2.52 3.316 (5) 141
C14—H14⋯O1 0.95 2.53 3.466 (5) 167
C17—H17A⋯O1 0.99 2.43 3.340 (4) 153
C19—H19B⋯O7iii 0.99 2.49 3.449 (5) 166
C23—H23A⋯O52iv 0.98 2.56 3.518 (5) 167
C23—H23CCg 0.98 2.47 3.421 (4) 145
C47—H47A⋯O7v 0.99 2.34 3.296 (4) 161
C49—H49B⋯O1 0.98 2.39 3.333 (5) 163
C50—H50B⋯O3vi 0.98 2.55 3.278 (4) 131
C53—H53C⋯O4vii 0.98 2.56 3.479 (5) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Figure 3.

Figure 3

The view of the columnar structure arrangement extending along the a axis showing the C—H⋯O and C—H⋯π inter­actions as turquoise lines.

Supra­molecular features  

The crystal structure of the title compound features strong N—H⋯O hydrogen bonds and several weak C—H⋯O inter­actions (Table 1). The maleate anions form ionic pairs with the protonated amino groups of the levomepromazine cations by strong N—H⋯O inter­actions (Fig. 3). The meth­oxy groups of the levomepromazine cations differ in their inter­molecular inter­actions. In one, the meth­oxy methyl group is involved in a C—H⋯π inter­action to the aromatic ring of a neighbouring levomepromazine cation [C23—H23CCg(C31–C36), Table 1]. The same methyl group forms an additional hydrogen bond to a meth­oxy O atom of the other symmetry-independent levomepromazine cation (C23—H23A⋯O52, Fig. 4). There are numerous C—H⋯O inter­actions between the hydrogen maleate anions and the levomepromazine C—H groups, assisting the assembly of the crystal components in the bc plane (Table 1, Fig. 4).

Figure 4.

Figure 4

Crystal packing along the bc plane showing the N—H⋯O and C—H⋯O inter­actions as turquoise lines.

Synthesis and crystallization  

The title compound was obtained from EGIS Pharmaceuticals Private Limited Company and used without further purification. The compound was enanti­omerically pure, its melting point is 457–459 K. Colorless single crystals were obtained by slow evaporation of the solvent from an ethyl acetate solution over one week.

Refinement  

Crystal data, data collection and details of the structure refinement are summarized in Table 2. The 13 missing reflections were found to be obstructed by the beamstop. All H atoms were located in difference electron-density maps. Hydrogen atoms were included in the structure-factor calculations but they were not refined; their positions were calculated with C—H = 0.95–1.00 Å and they were allowed to ride on their parent atoms, with U iso(H) = 1.2U eq(C) for aromatic, methyl­ene and methine and U iso(H) = 1.5U eq(C) for methyl protons. The absolute configuration around the C16 and C46 atoms in the title compound (Fig. 1) were determined to be S from anomalous dispersion effects.

Table 2. Experimental details.

Crystal data
Chemical formula C19H25N2OS+·C4H3O4
M r 444.53
Crystal system, space group Orthorhombic, P212121
Temperature (K) 103
a, b, c (Å) 11.6395 (5), 19.0487 (6), 20.4977 (7)
V3) 4544.7 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.5 × 0.3 × 0.2
 
Data collection
Diffractometer R-AXIS RAPID
Absorption correction Numerical NUMABS; Higashi, 2002
T min, T max 0.893, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 105320, 10363, 8459
R int 0.085
(sin θ/λ)max−1) 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.049, 0.133, 1.05
No. of reflections 10363
No. of parameters 569
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.67, −0.31
Absolute structure Flack x determined using 3169 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013
Absolute structure parameter −0.02 (3)

Computer programs: CrystalClear (Rigaku/MSC, 2007), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2006) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016004916/gk2652sup1.cif

e-72-00612-sup1.cif (3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016004916/gk2652Isup2.hkl

e-72-00612-Isup2.hkl (567.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016004916/gk2652Isup3.cml

CCDC reference: 1470232

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the Hungarian Scientific Research Fund, project numbers OTKA K-115762 and K-100801. GTG is grateful for a Junior Research Fellowship (No. 255512109) for financial support.

supplementary crystallographic information

Crystal data

C19H25N2OS+·C4H3O4 Dx = 1.299 Mg m3
Mr = 444.53 Melting point = 457–459 K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
a = 11.6395 (5) Å Cell parameters from 74983 reflections
b = 19.0487 (6) Å θ = 3.2–27.5°
c = 20.4977 (7) Å µ = 0.18 mm1
V = 4544.7 (3) Å3 T = 103 K
Z = 8 Prism, colourless
F(000) = 1888 0.5 × 0.3 × 0.2 mm

Data collection

R-AXIS RAPID diffractometer 10363 independent reflections
Radiation source: NORMAL-focus sealed tube 8459 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.085
Detector resolution: 10.0000 pixels mm-1 θmax = 27.5°, θmin = 3.2°
dtprofit.ref scans h = −15→15
Absorption correction: numerical NUMABS; Higashi, 2002 k = −24→24
Tmin = 0.893, Tmax = 0.971 l = −26→26
105320 measured reflections

Refinement

Refinement on F2 Secondary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0791P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
10363 reflections Δρmax = 0.67 e Å3
569 parameters Δρmin = −0.31 e Å3
0 restraints Absolute structure: Flack x determined using 3169 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013
Primary atom site location: structure-invariant direct methods Absolute structure parameter: −0.02 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S7 0.71907 (8) 0.43498 (5) 0.42513 (4) 0.0376 (2)
S37 0.27962 (8) 0.47770 (4) 0.44305 (4) 0.0324 (2)
O3 0.2810 (2) 0.85941 (11) 0.69965 (12) 0.0340 (5)
O4 0.4194 (2) 0.77876 (12) 0.69694 (13) 0.0380 (6)
O5 0.2773 (2) 0.64259 (12) 0.29296 (13) 0.0395 (6)
O1 0.3156 (3) 0.56393 (12) 0.65973 (14) 0.0458 (7)
O2 0.4351 (2) 0.65270 (12) 0.67442 (14) 0.0397 (6)
H2O 0.4307 0.6961 0.6812 0.048*
O22 0.3315 (2) 0.23474 (12) 0.42581 (12) 0.0367 (6)
O7 0.3143 (3) 0.93613 (13) 0.33972 (16) 0.0521 (8)
O6 0.4133 (2) 0.72465 (13) 0.28657 (14) 0.0428 (6)
N48 0.0515 (2) 0.44623 (13) 0.75804 (13) 0.0267 (6)
H48N 0.1129 0.4098 0.7628 0.032*
N18 0.5491 (2) 0.45179 (13) 0.77062 (12) 0.0261 (6)
H18N 0.6141 0.4180 0.7763 0.031*
O8 0.4289 (2) 0.85049 (13) 0.30770 (15) 0.0441 (6)
H8O 0.4253 0.8067 0.3030 0.053*
N10 0.5392 (2) 0.43086 (14) 0.52619 (13) 0.0274 (6)
C16 0.5607 (3) 0.44213 (16) 0.64667 (14) 0.0256 (6)
H16 0.5808 0.4929 0.6417 0.031*
C20 0.4693 (3) 0.4429 (2) 0.82668 (16) 0.0351 (8)
H20A 0.4062 0.4767 0.8230 0.053*
H20B 0.5110 0.4509 0.8675 0.053*
H20C 0.4380 0.3951 0.8264 0.053*
C27 0.3141 (3) 0.79688 (17) 0.69359 (16) 0.0304 (7)
C17 0.4879 (3) 0.43375 (17) 0.70818 (14) 0.0269 (6)
H17A 0.4192 0.4641 0.7042 0.032*
H17B 0.4611 0.3845 0.7108 0.032*
N40 0.0636 (3) 0.45554 (14) 0.51572 (13) 0.0327 (6)
C36 0.1707 (3) 0.41769 (16) 0.42030 (15) 0.0288 (7)
C46 0.0698 (3) 0.44388 (16) 0.63495 (15) 0.0291 (7)
H46 0.1011 0.4928 0.6358 0.035*
C45 −0.0030 (3) 0.43515 (18) 0.57258 (16) 0.0331 (7)
H45A −0.0276 0.3856 0.5682 0.040*
H45B −0.0727 0.4647 0.5756 0.040*
C47 −0.0078 (3) 0.43418 (17) 0.69381 (16) 0.0290 (7)
H47A −0.0733 0.4671 0.6902 0.035*
H47B −0.0391 0.3859 0.6932 0.035*
C50 −0.0309 (3) 0.4373 (2) 0.81310 (17) 0.0358 (8)
H50A 0.0107 0.4396 0.8546 0.054*
H50B −0.0691 0.3917 0.8093 0.054*
H50C −0.0885 0.4748 0.8116 0.054*
C14 0.5155 (3) 0.55931 (18) 0.53450 (17) 0.0339 (7)
H14 0.4561 0.5537 0.5659 0.041*
C21 0.6714 (3) 0.39977 (18) 0.64729 (17) 0.0327 (7)
H21A 0.7201 0.4156 0.6834 0.049*
H21B 0.7121 0.4065 0.6059 0.049*
H21C 0.6532 0.3499 0.6529 0.049*
O52 −0.0838 (3) 0.27161 (18) 0.38223 (15) 0.0592 (9)
C15 0.4825 (3) 0.42064 (17) 0.58918 (14) 0.0270 (7)
H15A 0.4609 0.3706 0.5939 0.032*
H15B 0.4112 0.4489 0.5905 0.032*
C1 0.5213 (3) 0.38102 (15) 0.47535 (15) 0.0264 (6)
C9 0.5686 (3) 0.50069 (17) 0.50747 (15) 0.0299 (7)
C24 0.3317 (3) 0.62659 (17) 0.66822 (18) 0.0341 (8)
C54 0.3118 (3) 0.70422 (17) 0.30093 (18) 0.0347 (8)
C33 0.0037 (3) 0.31867 (17) 0.39121 (17) 0.0332 (7)
C19 0.5978 (3) 0.52445 (17) 0.76919 (17) 0.0339 (8)
H19A 0.5370 0.5580 0.7580 0.051*
H19B 0.6589 0.5269 0.7364 0.051*
H19C 0.6293 0.5361 0.8122 0.051*
C3 0.4162 (3) 0.28458 (16) 0.42653 (17) 0.0319 (7)
C26 0.2222 (3) 0.74344 (17) 0.68253 (19) 0.0366 (8)
H26 0.1462 0.7617 0.6829 0.044*
C6 0.5962 (3) 0.38091 (17) 0.42268 (17) 0.0313 (7)
C55 0.2258 (4) 0.75469 (18) 0.32921 (19) 0.0401 (8)
H55 0.1546 0.7342 0.3416 0.048*
C57 0.3310 (3) 0.87372 (18) 0.32830 (18) 0.0358 (8)
C39 0.0910 (3) 0.52782 (18) 0.50652 (17) 0.0362 (8)
C31 0.0745 (3) 0.41109 (16) 0.46133 (15) 0.0283 (7)
C8 0.6538 (3) 0.51034 (18) 0.46007 (16) 0.0325 (7)
C4 0.4893 (4) 0.28620 (18) 0.37300 (18) 0.0378 (8)
H4 0.4784 0.2541 0.3380 0.045*
C34 0.0976 (3) 0.32530 (18) 0.35056 (17) 0.0345 (8)
H34 0.1053 0.2961 0.3132 0.041*
C5 0.5772 (3) 0.33408 (18) 0.37057 (17) 0.0360 (8)
H5 0.6259 0.3357 0.3334 0.043*
C38 0.1890 (3) 0.54566 (17) 0.47043 (16) 0.0348 (8)
C13 0.5500 (4) 0.62664 (18) 0.51517 (19) 0.0444 (10)
H13 0.5144 0.6667 0.5340 0.053*
C2 0.4303 (3) 0.33317 (16) 0.47697 (16) 0.0294 (7)
H2 0.3779 0.3337 0.5125 0.035*
C25 0.2291 (3) 0.67395 (17) 0.67218 (18) 0.0360 (8)
H25 0.1572 0.6511 0.6664 0.043*
C51 0.1706 (3) 0.3927 (2) 0.63410 (19) 0.0381 (8)
H51A 0.2198 0.4014 0.6720 0.057*
H51B 0.2151 0.3994 0.5940 0.057*
H51C 0.1415 0.3445 0.6357 0.057*
C56 0.2338 (3) 0.82429 (18) 0.33969 (19) 0.0391 (8)
H56 0.1666 0.8453 0.3572 0.047*
C32 −0.0088 (3) 0.36124 (17) 0.44602 (17) 0.0327 (7)
H32 −0.0746 0.3563 0.4731 0.039*
C23 0.2465 (3) 0.23796 (17) 0.47604 (18) 0.0347 (8)
H23A 0.2832 0.2313 0.5186 0.052*
H23B 0.1894 0.2009 0.4690 0.052*
H23C 0.2085 0.2839 0.4749 0.052*
C49 0.1073 (3) 0.51674 (18) 0.76233 (18) 0.0363 (8)
H49A 0.0502 0.5533 0.7534 0.054*
H49B 0.1694 0.5197 0.7302 0.054*
H49C 0.1388 0.5234 0.8062 0.054*
C35 0.1809 (3) 0.37539 (17) 0.36501 (16) 0.0323 (7)
H35 0.2453 0.3808 0.3370 0.039*
C12 0.6355 (4) 0.6354 (2) 0.46897 (19) 0.0477 (10)
H12 0.6589 0.6812 0.4564 0.057*
C11 0.6869 (4) 0.5769 (2) 0.44106 (18) 0.0433 (9)
H11 0.7448 0.5827 0.4089 0.052*
C42 0.1473 (6) 0.6686 (2) 0.4844 (2) 0.0651 (15)
H42 0.1664 0.7163 0.4767 0.078*
C43 0.0522 (5) 0.6517 (2) 0.5214 (2) 0.0640 (14)
H43 0.0068 0.6880 0.5399 0.077*
C44 0.0220 (4) 0.5815 (2) 0.5320 (2) 0.0522 (11)
H44 −0.0450 0.5703 0.5564 0.063*
C41 0.2149 (5) 0.61537 (18) 0.45858 (19) 0.0482 (10)
H41 0.2796 0.6270 0.4325 0.058*
C53 −0.1196 (4) 0.2632 (2) 0.3167 (2) 0.0514 (10)
H53A −0.1352 0.3093 0.2975 0.077*
H53B −0.1896 0.2346 0.3154 0.077*
H53C −0.0588 0.2397 0.2918 0.077*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S7 0.0263 (4) 0.0496 (5) 0.0369 (4) 0.0003 (4) 0.0064 (4) 0.0061 (4)
S37 0.0307 (4) 0.0340 (4) 0.0325 (4) −0.0046 (3) −0.0002 (4) 0.0012 (3)
O3 0.0333 (13) 0.0272 (11) 0.0415 (13) 0.0013 (10) −0.0098 (11) 0.0008 (9)
O4 0.0258 (13) 0.0347 (12) 0.0535 (16) −0.0009 (10) −0.0049 (11) 0.0017 (11)
O5 0.0373 (14) 0.0298 (12) 0.0513 (15) −0.0017 (11) 0.0075 (13) −0.0054 (10)
O1 0.0445 (17) 0.0293 (13) 0.0636 (17) 0.0004 (11) 0.0159 (13) −0.0005 (12)
O2 0.0287 (14) 0.0324 (12) 0.0581 (17) 0.0044 (10) 0.0049 (12) −0.0010 (11)
O22 0.0408 (15) 0.0330 (11) 0.0362 (13) −0.0048 (11) −0.0023 (11) −0.0072 (10)
O7 0.0460 (18) 0.0310 (13) 0.079 (2) −0.0045 (12) −0.0112 (15) −0.0009 (13)
O6 0.0294 (14) 0.0404 (13) 0.0586 (17) −0.0002 (11) 0.0101 (13) −0.0012 (12)
N48 0.0252 (14) 0.0248 (12) 0.0302 (13) −0.0022 (11) 0.0021 (11) 0.0001 (10)
N18 0.0259 (14) 0.0291 (13) 0.0234 (12) 0.0003 (11) −0.0018 (11) −0.0038 (10)
O8 0.0327 (15) 0.0389 (13) 0.0608 (18) −0.0084 (11) 0.0039 (13) 0.0008 (13)
N10 0.0279 (15) 0.0328 (13) 0.0214 (12) −0.0046 (11) 0.0011 (11) −0.0005 (11)
C16 0.0224 (16) 0.0298 (15) 0.0246 (14) −0.0028 (13) −0.0001 (12) −0.0016 (12)
C20 0.037 (2) 0.0455 (19) 0.0231 (16) −0.0010 (16) 0.0044 (13) −0.0042 (14)
C27 0.0304 (19) 0.0321 (16) 0.0288 (16) −0.0012 (13) −0.0072 (13) 0.0050 (13)
C17 0.0237 (16) 0.0325 (15) 0.0245 (15) −0.0044 (13) −0.0020 (12) −0.0029 (12)
N40 0.0352 (17) 0.0339 (14) 0.0289 (14) −0.0013 (12) 0.0042 (12) −0.0038 (11)
C36 0.0308 (17) 0.0317 (15) 0.0238 (15) 0.0024 (13) −0.0029 (13) 0.0042 (12)
C46 0.0240 (17) 0.0308 (15) 0.0324 (16) −0.0022 (13) 0.0021 (13) −0.0014 (13)
C45 0.0303 (18) 0.0381 (16) 0.0309 (17) −0.0026 (14) 0.0018 (14) −0.0013 (14)
C47 0.0219 (15) 0.0326 (15) 0.0325 (16) −0.0027 (13) −0.0013 (13) 0.0000 (13)
C50 0.0325 (19) 0.0436 (19) 0.0312 (17) −0.0068 (15) 0.0048 (14) 0.0007 (15)
C14 0.037 (2) 0.0341 (16) 0.0305 (17) −0.0053 (15) −0.0017 (14) 0.0002 (14)
C21 0.0250 (17) 0.0432 (18) 0.0297 (17) 0.0027 (14) −0.0025 (14) −0.0052 (14)
O52 0.060 (2) 0.0741 (19) 0.0432 (16) −0.0270 (17) −0.0057 (15) −0.0035 (14)
C15 0.0255 (17) 0.0344 (15) 0.0210 (15) −0.0042 (13) 0.0027 (12) −0.0017 (12)
C1 0.0275 (17) 0.0288 (15) 0.0228 (15) 0.0044 (12) −0.0012 (12) −0.0008 (12)
C9 0.0267 (17) 0.0370 (17) 0.0259 (15) −0.0075 (14) −0.0056 (13) 0.0028 (13)
C24 0.036 (2) 0.0293 (16) 0.0374 (19) 0.0021 (14) 0.0060 (15) 0.0043 (14)
C54 0.031 (2) 0.0356 (18) 0.0371 (19) 0.0005 (14) 0.0047 (15) 0.0014 (14)
C33 0.0325 (19) 0.0354 (17) 0.0316 (17) −0.0067 (15) −0.0037 (15) 0.0030 (14)
C19 0.039 (2) 0.0303 (16) 0.0319 (17) −0.0043 (15) −0.0036 (14) −0.0055 (14)
C3 0.0346 (19) 0.0288 (15) 0.0321 (17) 0.0013 (13) −0.0033 (15) −0.0018 (13)
C26 0.0250 (17) 0.0302 (16) 0.055 (2) 0.0010 (14) −0.0056 (17) 0.0003 (14)
C6 0.0275 (17) 0.0351 (16) 0.0313 (17) 0.0073 (13) 0.0022 (14) 0.0022 (13)
C55 0.030 (2) 0.0370 (18) 0.053 (2) −0.0032 (15) 0.0113 (18) −0.0049 (15)
C57 0.035 (2) 0.0315 (17) 0.041 (2) −0.0039 (15) −0.0073 (16) 0.0028 (14)
C39 0.045 (2) 0.0327 (17) 0.0311 (17) 0.0061 (15) −0.0009 (15) −0.0005 (14)
C31 0.0281 (18) 0.0297 (15) 0.0270 (16) 0.0018 (13) −0.0033 (13) 0.0018 (12)
C8 0.0283 (18) 0.0422 (18) 0.0269 (16) −0.0073 (14) −0.0021 (13) 0.0046 (13)
C4 0.046 (2) 0.0362 (18) 0.0314 (18) 0.0051 (16) 0.0009 (16) −0.0069 (14)
C34 0.043 (2) 0.0328 (16) 0.0275 (16) −0.0044 (15) −0.0001 (15) −0.0009 (13)
C5 0.038 (2) 0.0404 (18) 0.0295 (17) 0.0089 (15) 0.0084 (15) −0.0010 (14)
C38 0.047 (2) 0.0311 (16) 0.0264 (16) −0.0013 (15) −0.0032 (15) 0.0021 (13)
C13 0.065 (3) 0.0323 (17) 0.036 (2) −0.0061 (18) −0.0023 (19) −0.0037 (15)
C2 0.0294 (18) 0.0313 (15) 0.0276 (16) 0.0034 (13) −0.0006 (14) −0.0029 (13)
C25 0.0261 (18) 0.0308 (16) 0.051 (2) −0.0015 (14) −0.0002 (17) 0.0022 (14)
C51 0.0250 (18) 0.048 (2) 0.041 (2) 0.0015 (15) 0.0041 (16) −0.0017 (16)
C56 0.033 (2) 0.0351 (17) 0.050 (2) 0.0008 (15) 0.0056 (17) −0.0034 (15)
C32 0.0249 (17) 0.0408 (17) 0.0324 (17) −0.0003 (14) −0.0015 (14) 0.0001 (14)
C23 0.036 (2) 0.0326 (16) 0.0355 (18) −0.0058 (14) −0.0015 (15) −0.0003 (14)
C49 0.039 (2) 0.0307 (17) 0.0396 (19) −0.0105 (15) −0.0014 (15) −0.0005 (14)
C35 0.0341 (19) 0.0342 (16) 0.0286 (17) −0.0003 (14) 0.0033 (14) 0.0031 (13)
C12 0.068 (3) 0.040 (2) 0.035 (2) −0.0235 (19) −0.004 (2) 0.0051 (16)
C11 0.050 (2) 0.049 (2) 0.0305 (18) −0.0188 (17) −0.0003 (16) 0.0023 (16)
C42 0.117 (5) 0.0329 (19) 0.045 (2) 0.002 (2) 0.008 (3) −0.0007 (18)
C43 0.100 (4) 0.039 (2) 0.053 (3) 0.019 (2) 0.015 (3) −0.0016 (19)
C44 0.064 (3) 0.047 (2) 0.046 (2) 0.009 (2) 0.008 (2) −0.0054 (18)
C41 0.074 (3) 0.0338 (18) 0.037 (2) −0.0100 (19) 0.005 (2) 0.0015 (15)
C53 0.052 (3) 0.060 (2) 0.043 (2) −0.013 (2) −0.0028 (19) −0.0103 (19)

Geometric parameters (Å, º)

S7—C6 1.763 (4) O52—C53 1.416 (5)
S7—C8 1.775 (4) C15—H15A 0.9900
S37—C38 1.761 (4) C15—H15B 0.9900
S37—C36 1.769 (4) C1—C6 1.388 (5)
O3—C27 1.258 (4) C1—C2 1.398 (5)
O4—C27 1.276 (4) C9—C8 1.401 (5)
O5—C54 1.252 (4) C24—C25 1.499 (5)
O1—C24 1.221 (4) C54—C55 1.504 (5)
O2—C24 1.309 (5) C33—C34 1.380 (5)
O2—H2O 0.8400 C33—C32 1.393 (5)
O22—C3 1.369 (4) C19—H19A 0.9800
O22—C23 1.429 (4) C19—H19B 0.9800
O7—C57 1.227 (4) C19—H19C 0.9800
O6—C54 1.277 (4) C3—C4 1.389 (5)
N48—C50 1.491 (4) C3—C2 1.397 (5)
N48—C49 1.494 (4) C26—C25 1.343 (5)
N48—C47 1.504 (4) C26—H26 0.9500
N48—H48N 1.0000 C6—C5 1.409 (5)
N18—C20 1.487 (4) C55—C56 1.346 (5)
N18—C19 1.496 (4) C55—H55 0.9500
N18—C17 1.504 (4) C57—C56 1.490 (5)
N18—H18N 1.0000 C39—C38 1.401 (5)
O8—C57 1.293 (5) C39—C44 1.402 (5)
O8—H8O 0.8400 C31—C32 1.393 (5)
N10—C1 1.425 (4) C8—C11 1.382 (5)
N10—C9 1.426 (4) C4—C5 1.372 (5)
N10—C15 1.463 (4) C4—H4 0.9500
C16—C21 1.520 (5) C34—C35 1.392 (5)
C16—C17 1.527 (4) C34—H34 0.9500
C16—C15 1.544 (4) C5—H5 0.9500
C16—H16 1.0000 C38—C41 1.383 (5)
C20—H20A 0.9800 C13—C12 1.383 (6)
C20—H20B 0.9800 C13—H13 0.9500
C20—H20C 0.9800 C2—H2 0.9500
C27—C26 1.494 (5) C25—H25 0.9500
C17—H17A 0.9900 C51—H51A 0.9800
C17—H17B 0.9900 C51—H51B 0.9800
N40—C31 1.406 (4) C51—H51C 0.9800
N40—C39 1.426 (4) C56—H56 0.9500
N40—C45 1.453 (4) C32—H32 0.9500
C36—C35 1.396 (5) C23—H23A 0.9800
C36—C31 1.406 (5) C23—H23B 0.9800
C46—C47 1.519 (4) C23—H23C 0.9800
C46—C51 1.525 (5) C49—H49A 0.9800
C46—C45 1.543 (5) C49—H49B 0.9800
C46—H46 1.0000 C49—H49C 0.9800
C45—H45A 0.9900 C35—H35 0.9500
C45—H45B 0.9900 C12—C11 1.387 (6)
C47—H47A 0.9900 C12—H12 0.9500
C47—H47B 0.9900 C11—H11 0.9500
C50—H50A 0.9800 C42—C43 1.379 (8)
C50—H50B 0.9800 C42—C41 1.388 (7)
C50—H50C 0.9800 C42—H42 0.9500
C14—C9 1.391 (5) C43—C44 1.399 (6)
C14—C13 1.401 (5) C43—H43 0.9500
C14—H14 0.9500 C44—H44 0.9500
C21—H21A 0.9800 C41—H41 0.9500
C21—H21B 0.9800 C53—H53A 0.9800
C21—H21C 0.9800 C53—H53B 0.9800
O52—C33 1.369 (4) C53—H53C 0.9800
C6—S7—C8 97.88 (16) N18—C19—H19A 109.5
C38—S37—C36 97.47 (17) N18—C19—H19B 109.5
C24—O2—H2O 109.5 H19A—C19—H19B 109.5
C3—O22—C23 117.5 (2) N18—C19—H19C 109.5
C50—N48—C49 109.7 (3) H19A—C19—H19C 109.5
C50—N48—C47 110.5 (3) H19B—C19—H19C 109.5
C49—N48—C47 112.8 (2) O22—C3—C4 116.6 (3)
C50—N48—H48N 107.9 O22—C3—C2 123.5 (3)
C49—N48—H48N 107.9 C4—C3—C2 119.9 (3)
C47—N48—H48N 107.9 C25—C26—C27 130.8 (3)
C20—N18—C19 110.9 (3) C25—C26—H26 114.6
C20—N18—C17 109.6 (3) C27—C26—H26 114.6
C19—N18—C17 112.0 (2) C1—C6—C5 119.5 (3)
C20—N18—H18N 108.1 C1—C6—S7 119.1 (3)
C19—N18—H18N 108.1 C5—C6—S7 121.2 (3)
C17—N18—H18N 108.1 C56—C55—C54 130.1 (4)
C57—O8—H8O 109.5 C56—C55—H55 114.9
C1—N10—C9 117.4 (3) C54—C55—H55 114.9
C1—N10—C15 119.4 (3) O7—C57—O8 122.2 (3)
C9—N10—C15 118.0 (3) O7—C57—C56 117.5 (4)
C21—C16—C17 114.1 (3) O8—C57—C56 120.2 (3)
C21—C16—C15 111.4 (3) C38—C39—C44 119.1 (3)
C17—C16—C15 106.0 (2) C38—C39—N40 119.1 (3)
C21—C16—H16 108.4 C44—C39—N40 121.7 (4)
C17—C16—H16 108.4 C32—C31—N40 121.7 (3)
C15—C16—H16 108.4 C32—C31—C36 118.7 (3)
N18—C20—H20A 109.5 N40—C31—C36 119.5 (3)
N18—C20—H20B 109.5 C11—C8—C9 120.9 (3)
H20A—C20—H20B 109.5 C11—C8—S7 120.6 (3)
N18—C20—H20C 109.5 C9—C8—S7 118.5 (3)
H20A—C20—H20C 109.5 C5—C4—C3 120.0 (3)
H20B—C20—H20C 109.5 C5—C4—H4 120.0
O3—C27—O4 123.0 (3) C3—C4—H4 120.0
O3—C27—C26 116.2 (3) C33—C34—C35 119.1 (3)
O4—C27—C26 120.8 (3) C33—C34—H34 120.5
N18—C17—C16 114.6 (3) C35—C34—H34 120.5
N18—C17—H17A 108.6 C4—C5—C6 120.7 (3)
C16—C17—H17A 108.6 C4—C5—H5 119.7
N18—C17—H17B 108.6 C6—C5—H5 119.7
C16—C17—H17B 108.6 C41—C38—C39 120.2 (4)
H17A—C17—H17B 107.6 C41—C38—S37 121.3 (3)
C31—N40—C39 117.2 (3) C39—C38—S37 118.5 (2)
C31—N40—C45 121.6 (3) C12—C13—C14 120.7 (4)
C39—N40—C45 118.9 (3) C12—C13—H13 119.7
C35—C36—C31 120.1 (3) C14—C13—H13 119.7
C35—C36—S37 121.7 (3) C3—C2—C1 120.2 (3)
C31—C36—S37 118.1 (2) C3—C2—H2 119.9
C47—C46—C51 112.9 (3) C1—C2—H2 119.9
C47—C46—C45 108.6 (3) C26—C25—C24 130.5 (3)
C51—C46—C45 110.1 (3) C26—C25—H25 114.8
C47—C46—H46 108.4 C24—C25—H25 114.8
C51—C46—H46 108.4 C46—C51—H51A 109.5
C45—C46—H46 108.4 C46—C51—H51B 109.5
N40—C45—C46 110.0 (3) H51A—C51—H51B 109.5
N40—C45—H45A 109.7 C46—C51—H51C 109.5
C46—C45—H45A 109.7 H51A—C51—H51C 109.5
N40—C45—H45B 109.7 H51B—C51—H51C 109.5
C46—C45—H45B 109.7 C55—C56—C57 130.5 (4)
H45A—C45—H45B 108.2 C55—C56—H56 114.7
N48—C47—C46 113.8 (3) C57—C56—H56 114.7
N48—C47—H47A 108.8 C33—C32—C31 120.4 (3)
C46—C47—H47A 108.8 C33—C32—H32 119.8
N48—C47—H47B 108.8 C31—C32—H32 119.8
C46—C47—H47B 108.8 O22—C23—H23A 109.5
H47A—C47—H47B 107.7 O22—C23—H23B 109.5
N48—C50—H50A 109.5 H23A—C23—H23B 109.5
N48—C50—H50B 109.5 O22—C23—H23C 109.5
H50A—C50—H50B 109.5 H23A—C23—H23C 109.5
N48—C50—H50C 109.5 H23B—C23—H23C 109.5
H50A—C50—H50C 109.5 N48—C49—H49A 109.5
H50B—C50—H50C 109.5 N48—C49—H49B 109.5
C9—C14—C13 119.6 (3) H49A—C49—H49B 109.5
C9—C14—H14 120.2 N48—C49—H49C 109.5
C13—C14—H14 120.2 H49A—C49—H49C 109.5
C16—C21—H21A 109.5 H49B—C49—H49C 109.5
C16—C21—H21B 109.5 C34—C35—C36 120.6 (3)
H21A—C21—H21B 109.5 C34—C35—H35 119.7
C16—C21—H21C 109.5 C36—C35—H35 119.7
H21A—C21—H21C 109.5 C13—C12—C11 119.7 (3)
H21B—C21—H21C 109.5 C13—C12—H12 120.1
C33—O52—C53 114.9 (3) C11—C12—H12 120.1
N10—C15—C16 111.9 (3) C8—C11—C12 120.0 (4)
N10—C15—H15A 109.2 C8—C11—H11 120.0
C16—C15—H15A 109.2 C12—C11—H11 120.0
N10—C15—H15B 109.2 C43—C42—C41 119.6 (4)
C16—C15—H15B 109.2 C43—C42—H42 120.2
H15A—C15—H15B 107.9 C41—C42—H42 120.2
C6—C1—C2 119.6 (3) C42—C43—C44 120.7 (4)
C6—C1—N10 118.6 (3) C42—C43—H43 119.7
C2—C1—N10 121.9 (3) C44—C43—H43 119.7
C14—C9—C8 119.1 (3) C43—C44—C39 119.6 (4)
C14—C9—N10 122.3 (3) C43—C44—H44 120.2
C8—C9—N10 118.6 (3) C39—C44—H44 120.2
O1—C24—O2 121.8 (3) C38—C41—C42 120.7 (4)
O1—C24—C25 118.3 (3) C38—C41—H41 119.7
O2—C24—C25 119.9 (3) C42—C41—H41 119.7
O5—C54—O6 123.5 (3) O52—C53—H53A 109.5
O5—C54—C55 115.8 (3) O52—C53—H53B 109.5
O6—C54—C55 120.6 (3) H53A—C53—H53B 109.5
O52—C33—C34 124.6 (3) O52—C53—H53C 109.5
O52—C33—C32 114.3 (3) H53A—C53—H53C 109.5
C34—C33—C32 121.1 (3) H53B—C53—H53C 109.5

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C31–C36 ring.

D—H···A D—H H···A D···A D—H···A
O2—H2O···O4 0.84 1.61 2.452 (3) 178
O8—H8O···O6 0.84 1.61 2.443 (4) 174
N18—H18N···O3i 1.00 1.73 2.716 (3) 170
N48—H48N···O5ii 1.00 1.74 2.710 (3) 164
N48—H48N···O6ii 1.00 2.63 3.332 (4) 128
C11—H11···O3iii 0.95 2.52 3.316 (5) 141
C14—H14···O1 0.95 2.53 3.466 (5) 167
C17—H17A···O1 0.99 2.43 3.340 (4) 153
C19—H19B···O7iii 0.99 2.49 3.449 (5) 166
C23—H23A···O52iv 0.98 2.56 3.518 (5) 167
C23—H23C···Cg 0.98 2.47 3.421 (4) 145
C47—H47A···O7v 0.99 2.34 3.296 (4) 161
C49—H49B···O1 0.98 2.39 3.333 (5) 163
C50—H50B···O3vi 0.98 2.55 3.278 (4) 131
C53—H53C···O4vii 0.98 2.56 3.479 (5) 156

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1/2, −y+1, z+1/2; (iii) x+1/2, −y+3/2, −z+1; (iv) x+1/2, −y+1/2, −z+1; (v) x−1/2, −y+3/2, −z+1; (vi) −x, y−1/2, −z+3/2; (vii) −x+1/2, −y+1, z−1/2.

References

  1. Dahl, S. G., Hjorth, M. & Hough, E. (1982). Mol. Pharmacol. 21, 409–414. [PubMed]
  2. Froimowitz, M. & Cody, V. (1993). J. Med. Chem. 36, 2219–2227. [DOI] [PubMed]
  3. Higashi, T. (2002). NUMABS. Rigaku/MSC Inc., Tokyo, Japan.
  4. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  5. Marsau, P. & Gauthier, J. (1973). Acta Cryst. B29, 992–998.
  6. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  7. Rigaku/MSC (2007). CrystalClear. Rigaku/MSC Inc., Tokyo, Japan.
  8. Sato, M., Miki, K., Tanaka, N., Kasai, N., Ishimaru, T. & Munakata, T. (1980). Acta Cryst. B36, 2176–2178.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016004916/gk2652sup1.cif

e-72-00612-sup1.cif (3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016004916/gk2652Isup2.hkl

e-72-00612-Isup2.hkl (567.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016004916/gk2652Isup3.cml

CCDC reference: 1470232

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES