Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Apr 5;72(Pt 5):616–619. doi: 10.1107/S2056989016005284

Crystal structure of 1,4-bis­(3-ammonio­prop­yl)piperazine-1,4-diium bis­[dichromate(VI)]

S Vetrivel a, E Vinoth a, R U Mullai a, R Aruljothi a, M NizamMohideen b,*
PMCID: PMC4908532  PMID: 27308002

The organic-inorganic title salt contains a cation with a chair conformation of the piperazine ring and an eclipsed dichromate anion. The entities are linked by N—H⋯O and C—H⋯O hydrogen bonds into a three-dimensional network structure.

Keywords: crystal structure, dichromate anion, piperazinediium cation, mol­ecular salt, hydrogen bonding.

Abstract

The asymmetric unit of the organic–inorganic title salt, (C10H28N4)[Cr2O7]2, comprises one half of an 1,4-bis­(3-ammonio­prop­yl)piperazinediium cation (the other half being generated by the application of inversion symmetry) and a dichromate anion. The piperazine ring of the cation adopts a chair conformation, and the two CrO4 tetra­hedra of the anion are in an almost eclipsed conformation. In the crystal, the cations and anions form a layered arrangement parallel to (001). N—H⋯O hydrogen bonds between the cations and anions and additional C—H⋯O inter­actions lead to the formation of a three-dimensional network structure.

Chemical context  

Chromium is usually found in trivalent and hexa­valent oxidation states in soil, ground water and seawater (Cespón-Romero et al., 1996). Trivalent chromium is an essential element in mammals for maintaining efficient glucose, lipid and protein metabolism. On the other hand, hexa­valent chromium is toxic and recognized as a carcinogen to humans and wildlife. Hence the dichromate ion is environmentally important due to its high toxicity (Yusof & Malek, 2009) and its use in many industrial processes (Goyal et al., 2003). Recently, the reactions between hexa­ureachromium(III) and inorganic oxoanions (such as Cr2O7 2− or CrO4 2−) in aqueous solution have been investigated (Moon et al., 2015). Numerous piperazine derivatives have shown a wide spectrum of biological activities, viz. anti­bacterial (Foroumadi et al., 2007), anti­fungal (Upadhayaya et al., 2004), anti­cancer (Chen et al., 2006), anti­parasitic (Cunico et al., 2009), anti­histamine (Smits et al., 2008) or anti­depressive activities (Becker et al., 2006). Anti­diabetic, anti-inflammatory, anti­tubercular, anti­malarial, anti­convulsant, anti­pyretic, anti­tumor, anthelmintic and analgesic activities (Gan et al., 2009a ,b ; Willems & Ilzerman, 2010) have also been found to be caused by this versatile moiety. In view of these important properties, we have undertaken the synthesis and X-ray diffraction study of the title compound.graphic file with name e-72-00616-scheme1.jpg

Structural commentary  

The mol­ecular entities of the title compound, consisting of a centrosymmetric 1,4-bis­(3-ammonio­prop­yl)piperazinediium cation and a dichromate anion, are shown in Fig. 1. In the cation, the central piperazine ring (N1/C1/C2/N1i/C1i/C2i; for symmetry operators, see Fig. 1) is substituted at the two N atoms by two ammonio­propyl moieties. The piperazine ring adopts a chair conformation, as is evident from the puckering parameters: Q = 0.599 (2) Å, τ = 180.0° and φ = 0°. Atoms N1 and N1i are on opposite sides of the C1/C1i/C2/C2i plane and are both displaced from it by 0.2446 (19) Å. The chair conformation of the cation in the title structure is very similar to those of the same cation in the crystal structures of the 2-hy­droxy­benzoate (Cukrowski et al., 2012), the nitrate (Junk & Smith, 2005) and the tetra­hydrogenpenta­borate (Jiang et al., 2009) salts, despite the differences in the size and shape of the anions in the various structures. The tetra­hedral CrO4 groups in the anion of the title structure are fused together by a common O atom (O8) and are in an almost eclipsed conformation (Brandon & Brown, 1968). The Cr—O bond lengths follow the characteristic distribution for dichromate anions, with two longer bridging Cr—O bonds of 1.7676 (16) and 1.7746 (15) Å and six shorter terminal Cr—O bonds [range 1.5909 (19)–1.6185 (15) Å]. The Cr1—O8—Cr2 bridging angle in the complex anion is 127.48 (10)°. The tetra­hedral O—Cr—O bond angles [range 106.52 (8) to 112.85 (12)°] indicate slight angular distortions.

Figure 1.

Figure 1

The entities of the organic–inorganic title salt. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) −x + 2, −y, −z + 1.]

Supra­molecular features  

The organic cations and inorganic anions are each arranged in rows parallel to [100] and alternate with each other along [010], forming a layered arrangement parallel to (001). N—H⋯O hydrogen bonds (Table 1) between the cations, involving both primary and tertiary ammonium groups, and the anions lead to a three-dimensional network structure (Figs. 2 and 3). Additional C—H⋯O inter­actions consolidate this arrangement.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O3i 0.97 2.28 3.176 (3) 152
C1—H1A⋯O4ii 0.97 2.61 3.248 (3) 123
C1—H1B⋯O6 0.97 2.53 3.353 (3) 143
C2—H2A⋯O2iii 0.97 2.49 3.298 (3) 141
C2—H2A⋯O4iii 0.97 2.59 3.061 (3) 110
C2—H2B⋯O7iv 0.97 2.59 3.232 (2) 124
C3—H3B⋯O3i 0.97 2.58 3.383 (3) 140
C4—H4A⋯O5v 0.97 2.38 3.208 (3) 143
C4—H4B⋯O7iii 0.97 2.64 3.309 (2) 127
N2—H6A⋯O2vi 0.89 2.18 3.040 (2) 161
N2—H6B⋯O7iii 0.89 2.05 2.854 (2) 149
N2—H6C⋯O2v 0.89 2.22 2.865 (2) 129
N2—H6C⋯O5iii 0.89 2.64 3.239 (3) 125
N1—H1⋯O4iii 0.98 2.43 3.113 (2) 126
N1—H1⋯O7 0.98 1.95 2.763 (2) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Figure 2.

Figure 2

The packing of the mol­ecular entities in the crystal structure of the title salt.

Figure 3.

Figure 3

A part of the crystal structure of the title salt in a view along [100] showing N—H⋯O hydrogen-bonding inter­actions as dashed lines. C—H⋯O inter­actions are omitted for clarity.

Synthesis and crystallization  

Potassium dichromate and 1,4-bis­(3-amino­prop­yl)piperazine (PDBP) were mixed in a molar ratio of 2:1 in water. Potassium dichromate was first dissolved in Millipore water of 18.2 MΩ·cm resistivity. Then the amount of PDBP was slowly added to the solution together with a few drops of concentrated hydro­chloric acid and the mixture stirred for 18 h. The solution was then filtered twice with Wattmann filter paper and poured into petri dishes to evaporate at room temperature for several days. Recrystallization from water improved the quality of the material and increased the size of the crystals (maximum crystal size 5×3×2 mm3 after 35 d). A specimen was cleaved for the present structure determination.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were placed geometrically and refined using a riding model: N—H = 0.89 Å for the primary ammonium group with U iso(H) = 1.5U eq(N); N—H = 0.98 Å for the tertiary ammonium group with U iso(H) = 1.2U eq(N); C—H = 0.97 Å with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula (C10H28N4)[Cr2O7]2
M r 636.36
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 8.5361 (3), 8.6272 (3), 8.8576 (3)
α, β, γ (°) 77.761 (1), 72.307 (1), 60.985 (1)
V3) 541.81 (3)
Z 1
Radiation type Mo Kα
μ (mm−1) 2.03
Crystal size (mm) 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004)
T min, T max 0.528, 0.649
No. of measured, independent and observed [I > 2σ(I)] reflections 10263, 1913, 1835
R int 0.020
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.023, 0.068, 1.06
No. of reflections 1913
No. of parameters 145
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.45

Computer programs: APEX2 and SAINT (Bruker, 2004), SHELXT (Sheldrick, 2015a ), SHELXL2014/7 (Sheldrick, 2015b ), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016005284/wm5281sup1.cif

e-72-00616-sup1.cif (487.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016005284/wm5281Isup2.hkl

e-72-00616-Isup2.hkl (153.7KB, hkl)

CCDC reference: 1471068

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the SAIF, IIT, Madras, India, for the data collection.

supplementary crystallographic information

Crystal data

(C10H28N4)[Cr2O7]2 Z = 1
Mr = 636.36 F(000) = 324
Triclinic, P1 Dx = 1.950 Mg m3
a = 8.5361 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.6272 (3) Å Cell parameters from 9982 reflections
c = 8.8576 (3) Å θ = 2.4–39.1°
α = 77.761 (1)° µ = 2.03 mm1
β = 72.307 (1)° T = 293 K
γ = 60.985 (1)° Needle, brown
V = 541.81 (3) Å3 0.35 × 0.30 × 0.25 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 1913 independent reflections
Radiation source: fine-focus sealed tube 1835 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
ω and φ scan θmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −10→10
Tmin = 0.528, Tmax = 0.649 k = −10→10
10263 measured reflections l = −10→10

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023 H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.4739P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
1913 reflections Δρmax = 0.44 e Å3
145 parameters Δρmin = −0.45 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.9278 (3) 0.1703 (3) 0.4169 (2) 0.0217 (4)
H1A 0.9548 0.2371 0.4721 0.026*
H1B 0.8679 0.2498 0.3344 0.026*
C2 0.8955 (3) −0.0195 (3) 0.6574 (2) 0.0209 (4)
H2A 0.8158 −0.0661 0.7319 0.025*
H2B 0.9217 0.0454 0.7154 0.025*
C3 0.6197 (3) 0.2538 (3) 0.5974 (3) 0.0247 (4)
H3A 0.5710 0.3344 0.5101 0.030*
H3B 0.6391 0.3191 0.6608 0.030*
C4 0.4805 (3) 0.1911 (3) 0.6986 (2) 0.0218 (4)
H4A 0.5194 0.1252 0.7946 0.026*
H4B 0.4723 0.1127 0.6407 0.026*
C5 0.2943 (3) 0.3494 (3) 0.7415 (3) 0.0259 (4)
H5A 0.3046 0.4315 0.7931 0.031*
H5B 0.2522 0.4109 0.6457 0.031*
N2 0.1592 (2) 0.2910 (2) 0.8492 (2) 0.0261 (4)
H6A 0.0501 0.3852 0.8736 0.039*
H6B 0.1488 0.2168 0.8012 0.039*
H6C 0.1973 0.2358 0.9376 0.039*
N1 0.8006 (2) 0.1028 (2) 0.53184 (19) 0.0183 (3)
H1 0.7772 0.0338 0.4742 0.022*
O2 0.1839 (2) 0.3536 (2) 0.14426 (19) 0.0359 (4)
O3 0.1272 (2) 0.5696 (2) 0.3451 (2) 0.0402 (4)
O4 0.2800 (2) 0.2224 (2) 0.41686 (19) 0.0359 (4)
O5 0.6705 (3) 0.1105 (3) −0.0133 (2) 0.0612 (6)
O6 0.8440 (3) 0.2646 (3) 0.0538 (3) 0.0564 (6)
O7 0.7517 (2) 0.0359 (2) 0.26223 (19) 0.0325 (4)
O8 0.4835 (2) 0.3730 (2) 0.1987 (2) 0.0370 (4)
Cr1 0.26337 (4) 0.37840 (4) 0.27693 (4) 0.02227 (12)
Cr2 0.69282 (5) 0.19141 (5) 0.11987 (4) 0.02748 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0192 (10) 0.0226 (9) 0.0222 (10) −0.0120 (8) −0.0008 (8) 0.0007 (8)
C2 0.0202 (10) 0.0260 (10) 0.0166 (9) −0.0124 (8) −0.0013 (7) −0.0014 (8)
C3 0.0179 (10) 0.0213 (10) 0.0303 (11) −0.0073 (8) 0.0011 (8) −0.0071 (8)
C4 0.0157 (9) 0.0230 (10) 0.0246 (10) −0.0080 (8) −0.0029 (8) −0.0026 (8)
C5 0.0200 (10) 0.0246 (10) 0.0281 (11) −0.0088 (8) 0.0008 (8) −0.0051 (8)
N2 0.0163 (8) 0.0313 (9) 0.0275 (9) −0.0091 (7) −0.0014 (7) −0.0056 (7)
N1 0.0155 (8) 0.0201 (8) 0.0190 (8) −0.0087 (7) −0.0006 (6) −0.0042 (6)
O2 0.0460 (10) 0.0430 (9) 0.0291 (8) −0.0252 (8) −0.0145 (7) −0.0021 (7)
O3 0.0322 (9) 0.0346 (9) 0.0514 (10) −0.0121 (7) −0.0011 (8) −0.0190 (8)
O4 0.0387 (9) 0.0418 (9) 0.0313 (8) −0.0217 (8) −0.0124 (7) 0.0042 (7)
O5 0.0591 (13) 0.0843 (15) 0.0348 (10) −0.0178 (12) −0.0145 (9) −0.0260 (10)
O6 0.0323 (10) 0.0645 (13) 0.0619 (13) −0.0286 (9) 0.0011 (9) 0.0150 (10)
O7 0.0384 (9) 0.0356 (9) 0.0321 (8) −0.0221 (7) −0.0120 (7) −0.0006 (7)
O8 0.0250 (8) 0.0364 (9) 0.0484 (10) −0.0163 (7) 0.0005 (7) −0.0085 (7)
Cr1 0.02026 (19) 0.0254 (2) 0.02321 (19) −0.01134 (15) −0.00346 (13) −0.00582 (13)
Cr2 0.02130 (19) 0.0382 (2) 0.0210 (2) −0.01414 (16) −0.00041 (14) −0.00334 (15)

Geometric parameters (Å, º)

C1—N1 1.498 (2) C5—N2 1.478 (3)
C1—C2i 1.502 (3) C5—H5A 0.9700
C1—H1A 0.9700 C5—H5B 0.9700
C1—H1B 0.9700 N2—H6A 0.8900
C2—N1 1.493 (2) N2—H6B 0.8900
C2—C1i 1.502 (3) N2—H6C 0.8900
C2—H2A 0.9700 N1—H1 0.9800
C2—H2B 0.9700 O2—Cr1 1.6185 (15)
C3—N1 1.498 (2) O3—Cr1 1.6035 (16)
C3—C4 1.509 (3) O4—Cr1 1.6070 (16)
C3—H3A 0.9700 O5—Cr2 1.5909 (19)
C3—H3B 0.9700 O6—Cr2 1.6068 (18)
C4—C5 1.511 (3) O7—Cr2 1.6299 (16)
C4—H4A 0.9700 O8—Cr2 1.7676 (16)
C4—H4B 0.9700 O8—Cr1 1.7746 (15)
N1—C1—C2i 111.02 (16) C4—C5—H5B 109.6
N1—C1—H1A 109.4 H5A—C5—H5B 108.1
C2i—C1—H1A 109.4 C5—N2—H6A 109.5
N1—C1—H1B 109.4 C5—N2—H6B 109.5
C2i—C1—H1B 109.4 H6A—N2—H6B 109.5
H1A—C1—H1B 108.0 C5—N2—H6C 109.5
N1—C2—C1i 110.02 (15) H6A—N2—H6C 109.5
N1—C2—H2A 109.7 H6B—N2—H6C 109.5
C1i—C2—H2A 109.7 C2—N1—C3 113.18 (15)
N1—C2—H2B 109.7 C2—N1—C1 108.55 (15)
C1i—C2—H2B 109.7 C3—N1—C1 110.86 (15)
H2A—C2—H2B 108.2 C2—N1—H1 108.0
N1—C3—C4 112.22 (16) C3—N1—H1 108.0
N1—C3—H3A 109.2 C1—N1—H1 108.0
C4—C3—H3A 109.2 Cr2—O8—Cr1 127.48 (10)
N1—C3—H3B 109.2 O3—Cr1—O4 110.80 (9)
C4—C3—H3B 109.2 O3—Cr1—O2 108.95 (9)
H3A—C3—H3B 107.9 O4—Cr1—O2 109.39 (8)
C3—C4—C5 109.66 (16) O3—Cr1—O8 106.52 (8)
C3—C4—H4A 109.7 O4—Cr1—O8 108.31 (8)
C5—C4—H4A 109.7 O2—Cr1—O8 112.85 (9)
C3—C4—H4B 109.7 O5—Cr2—O6 112.85 (12)
C5—C4—H4B 109.7 O5—Cr2—O7 107.91 (11)
H4A—C4—H4B 108.2 O6—Cr2—O7 109.68 (9)
N2—C5—C4 110.30 (16) O5—Cr2—O8 111.08 (10)
N2—C5—H5A 109.6 O6—Cr2—O8 106.39 (10)
C4—C5—H5A 109.6 O7—Cr2—O8 108.89 (8)
N2—C5—H5B 109.6
N1—C3—C4—C5 −171.94 (16) C2i—C1—N1—C3 −176.16 (16)
C3—C4—C5—N2 −176.35 (16) Cr2—O8—Cr1—O3 175.26 (12)
C1i—C2—N1—C3 178.15 (15) Cr2—O8—Cr1—O4 56.03 (15)
C1i—C2—N1—C1 −58.3 (2) Cr2—O8—Cr1—O2 −65.22 (15)
C4—C3—N1—C2 −64.5 (2) Cr1—O8—Cr2—O5 52.36 (17)
C4—C3—N1—C1 173.31 (16) Cr1—O8—Cr2—O6 175.53 (13)
C2i—C1—N1—C2 58.9 (2) Cr1—O8—Cr2—O7 −66.33 (14)

Symmetry code: (i) −x+2, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1A···O3ii 0.97 2.28 3.176 (3) 152
C1—H1A···O4iii 0.97 2.61 3.248 (3) 123
C1—H1B···O6 0.97 2.53 3.353 (3) 143
C2—H2A···O2iv 0.97 2.49 3.298 (3) 141
C2—H2A···O4iv 0.97 2.59 3.061 (3) 110
C2—H2B···O7i 0.97 2.59 3.232 (2) 124
C3—H3B···O3ii 0.97 2.58 3.383 (3) 140
C4—H4A···O5v 0.97 2.38 3.208 (3) 143
C4—H4B···O7iv 0.97 2.64 3.309 (2) 127
N2—H6A···O2vi 0.89 2.18 3.040 (2) 161
N2—H6B···O7iv 0.89 2.05 2.854 (2) 149
N2—H6C···O2v 0.89 2.22 2.865 (2) 129
N2—H6C···O5iv 0.89 2.64 3.239 (3) 125
N1—H1···O4iv 0.98 2.43 3.113 (2) 126
N1—H1···O7 0.98 1.95 2.763 (2) 139

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z; (iv) −x+1, −y, −z+1; (v) x, y, z+1; (vi) −x, −y+1, −z+1.

References

  1. Becker, O. M., Dhanoa, D. S., Marantz, Y., Chen, D., Shacham, S., Cheruku, S., Heifetz, A., Mohanty, P., Fichman, M., Sharadendu, A., Nudelman, R., Kauffman, M. & Noiman, S. (2006). J. Med. Chem. 49, 3116–3135. [DOI] [PubMed]
  2. Brandon, J. K. & Brown, I. D. (1968). Can. J. Chem. 46, 933–941.
  3. Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cespón-Romero, R. M., Yebra-Biurrun, M. C. & Bermejo-Barrera, M. P. (1996). Anal. Chim. Acta, 327, 37–45.
  5. Chen, J. J., Lu, M., Jing, Y. K. & Dong, J. H. (2006). Bioorg. Med. Chem. 14, 6539–6547. [DOI] [PubMed]
  6. Cukrowski, I., Adeyinka, A. S. & Liles, D. C. (2012). Acta Cryst. E68, o2387. [DOI] [PMC free article] [PubMed]
  7. Cunico, W., Gomes, C. R. B., Moreth, M., Manhanini, D. P., Figueiredo, I. H., Penido, C., Henriques, M. G. M. O., Varotti, F. P. & Krettli, A. U. (2009). Eur. J. Med. Chem. 44, 1363–1368. [DOI] [PubMed]
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Foroumadi, A., Emami, S., Mansouri, S., Javidnia, A., Saeid-Adeli, N., Shirazi, F. H. & Shafiee, A. (2007). Eur. J. Med. Chem. 42, 985–992. [DOI] [PubMed]
  10. Gan, L. L., Cai, J. L. & Zhou, C. H. (2009a). Chin. Pharm. J. 44, 1361–1368.
  11. Gan, L. L., Lu, Y. H. & Zhou, C. H. (2009b). Chin. J. Biochem. Pharm 30, 127–131.
  12. Goyal, N., Jain, S. C. & Banerjee, U. C. (2003). Adv. Environ. Res. 7, 311–319.
  13. Jiang, X., Liu, H.-X., Wu, S.-L. & Liang, Y.-X. (2009). Jiegou Huaxue (Chin. J. Struct. Chem.), 28, 723–729.
  14. Junk, P. C. & Smith, M. K. (2005). C. R. Chim. 8, 189–198.
  15. Moon, D., Tanaka, S., Akitsu, T. & Choi, J.-H. (2015). Acta Cryst. E71, 1336–1339. [DOI] [PMC free article] [PubMed]
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Smits, R. A., Lim, H. D., Hanzer, A., Zuiderveld, O. P., Guaita, E., Adami, M., Coruzzi, G., Leurs, R. & de Esch, I. J. P. (2008). J. Med. Chem. 51, 2457–2467. [DOI] [PubMed]
  19. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  20. Upadhayaya, R. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225–2238. [DOI] [PubMed]
  21. Willems, L. I. & Ilzerman, A. P. (2010). Med. Chem. Res 30, 778–817. [DOI] [PubMed]
  22. Yusof, A. M. & Malek, N. A. N. N. (2009). J. Hazard. Mater. 162, 1019–1024. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016005284/wm5281sup1.cif

e-72-00616-sup1.cif (487.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016005284/wm5281Isup2.hkl

e-72-00616-Isup2.hkl (153.7KB, hkl)

CCDC reference: 1471068

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES