Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Apr 8;72(Pt 5):643–647. doi: 10.1107/S2056989016005521

Crystal structure of bis­(tri­ethano­lamine-κ3 N,O,O′)nickel(II) bis­(3-hy­droxy­benzoate) tetra­hydrate

Aziz B Ibragimov a,*
PMCID: PMC4908535  PMID: 27308009

In the mol­ecular cation of the title compound, the NiII ion is located on an inversion centre and is coordinated by two tridentate tri­ethano­lamine ligands. Two 3-hy­droxy­benzoate counter-anions and four lattice water mol­ecules give rise to the formation on an intricate system of hydrogen bonds.

Keywords: crystal structure, 3-hy­droxy­benzoic acid, tri­ethano­lamine, hydrogen bonding

Abstract

The reaction of 3-hy­droxy­benzoic (m-hy­droxy­benzoic) acid (MHBA), tri­ethano­lamine (TEA) and Ni(NO3)2 in aqueous solution led to formation of the hydrated title salt, [Ni(C6H15NO3)2](C7H5O3)·4H2O. In the complex cation, the Ni2+ ion is located on an inversion centre. Two symmetry-related TEA ligands occupy all coordination sites in an N,O,O′-tridentate coordination, leading to a slightly distorted NiN2O4 octa­hedron. Two ethanol groups of each TEA ligand form two five-membered chelate rings around Ni2+, while the third ethanol group does not coordinate to the metal atom. Two MHBA anions in the benzoate form are situated in the outer coordination sphere for charge compensation. An intricate network of hydrogen bonds between the free and coordinating hy­droxy groups of the TEA ligands, the O atoms of the MHBA anions and the water mol­ecules leads to the formation of a two-dimensional structure extending parallel to (010).

Chemical context  

Tri­ethano­lamine (TEA) is a substance with relatively low anti­microbial (Zardini et al., 2014) and plant-growth-stimulating (Loginov et al., 2012) activities. However, it is a well-known compound owing to technical applications as a curing agent for ep­oxy and rubber polymers, adhesives and anti­static agents, and as a corrosion inhibitor in metal-cutting (Ashton Acton, 2013). The inter­action of metal ions with TEA can result in the formation of complexes in which it demonstrates monodentate (Kumar et al., 2014), bidentate (Long et al., 2004), tridentate (Mirskova et al., 2013; Haukka et al., 2005) or tetra­dentate (Zaitsev et al., 2014; Langley et al., 2011) binding modes. TEA ligands are also able to inter­act as bridging ligands between two metal cations (Sharma et al., 2014) or as bridging ligands to form one-dimensional polymeric structures (Custelcean & Jackson, 1998). Moreover, there are metal complexes in which TEA mol­ecules are non-coordinating and are consequently situated outside the actual coordination spheres (Ilyukhin et al., 2013; Manos et al., 2012).graphic file with name e-72-00643-scheme1.jpg

In contrast to the other two biologically active isomers of hy­droxy­benzoic acid, namely o-hy­droxy­benzoic (salicylic) and p-hy­droxy­benzoic (paraben) acid, m-hy­droxy­benzoic acid (MHBA) has no specific biological action. Nevertheless, MHBA is a component of castoreum, the exudate from the castor sacs of the mature North American beaver, used in perfumery and folk medicine (Müller-Schwarze & Houlihan, 1991). Most metal complexes of MHBA are in their mixed-ligand form in which mono- (Ma et al., 2013; Köse et al., 2012) or bidentate (Thompson et al., 2015; Zaman et al., 2012) coordination through the carb­oxy­lic oxygen atoms take place. The latter coordination mode may give rise to the generation of polymeric metal complexes (Koizumi et al., 1984; Koziol et al., 1990). There are also structures in which MHBA mol­ecules are non-coordinating (Zaman et al., 2013) or simultaneously coordinating and non-coordinating (Li et al., 2008).

To the best of our knowledge, metal complexes on the basis of MHBA and ethano­lamines have not yet been obtained and structurally characterized. Here, the synthesis and structure of [Ni(C6H15NO3)2](C7H5O3)2·4H2O is reported.

Structural commentary  

The asymmetric unit of the title compound contains one half of the complex nickel(II) cation (the other part being completed by inversion symmetry), one MHBA counter-anion and two water mol­ecules (Fig. 1). Two symmetry-related TEA ligand mol­ecules coordinate in a N,O,O′-tridentate binding mode to the metal cation, giving rise to a slightly distorted octa­hedral NiN2O4 coordination environment. One hydroxyl group of each ethanol substituent is not involved in the coordination and is directed away from the coordination centre. As a result of symmetry requirements, the nitro­gen atoms are in trans-positions of the coordination polyhedron, giving rise to a linear N—Ni—N angle. The Ni—N bond length is 2.1158 (13) Å, and the Ni—O4 and Ni—O5 bond lengths are 2.0734 (11) and 2.0636 (12) Å, respectively. The N—Ni—O angles range from 82.22 (5) to 97.78 (5)° and the O—Ni—O angles from 89.94 (5) to 90.06 (5)°. Since the TEA ligands coordinate in their neutral form, charge compensation is required by two MHBA anions. They are in their benzoate form and are located in the outer coordination sphere, with the carboxyl­ate group tilted by 14.1 (2)° relative to the aromatic ring. The water mol­ecules are also non-coordinating.

Figure 1.

Figure 1

The mol­ecular entities in the title structure, with displacement ellipsoids drawn at the 50% probability level. The parts of the asymmetric unit are identified by labelled atoms; all other atoms are generated by the symmetry operation (−x + 1, −y, −z + 1).

Supra­molecular features  

The supra­molecular structure features an intricate network of inter­molecular O—H⋯O hydrogen bonds (Table 1), including four cyclic motifs of different sizes. The MHBA anion is connected to the complex cation by a pair of rather strong hydrogen bonds [DA = 2.579 (2) and 2.638 (2) Å, respectively] within a Inline graphic(8) motif (Etter, 1990) (Fig. 2). This ‘cation–anion’ hydrogen-bonded unit is further associated to the other moieties through formation of an 11-membered ring between the non-coordinating hydroxyl group O6 and water mol­ecule O2W. Three additional hydrogen bonds, O2W⋯O1, O3⋯O1W and O2W⋯O1W, lead to the same Inline graphic(11) graph-set motif, in each case with hydrogen bonds of medium strength (Table 1). The fourth cyclic motif has graph-set notation Inline graphic(12) and consists of a centrosymmetric 12-membered cycle between two unique water mol­ecules and the non-coordinating hydroxyl group O6 (Fig. 3). Together, the above-mentioned hydrogen-bonding inter­actions give rise to a two-dimensional supra­molecular structure extending parallel to (010).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O2i 0.83 (3) 1.89 (3) 2.711 (2) 168 (3)
O1W—H1WB⋯O6ii 1.06 (5) 1.63 (3) 2.674 (2) 168 (4)
O2W—H2WA⋯O1iii 0.85 1.95 2.775 (2) 165
O2W—H2WB⋯O1W iii 0.85 2.07 2.830 (2) 149
O3—H3⋯O1W 0.82 1.96 2.775 (2) 177
O4—H4⋯O1iii 0.87 (2) 1.72 (2) 2.579 (2) 169 (2)
O5—H5⋯O2iii 0.74 (3) 1.90 (3) 2.638 (2) 175 (3)
O6—H6⋯O2W iii 0.82 1.93 2.728 (3) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

Different ring motifs generated by hydrogen bonds (shown as dashed lines). Symmetry codes refer to Table 1.

Figure 3.

Figure 3

The packing of the mol­ecular entities in the crystal structure (shown as dashed lines). For clarity, H atoms have been omitted.

Database survey  

A survey of the Cambridge Structural Database (CSD) (Groom & Allen, 2014) showed that coordination complexes of TEA or MHBA with many metals including those of the s-, d-, p-, and f-block elements have been documented. 50 entries correspond to structures in which TEA mol­ecules are ligating, including 21 examples in a tetra­dentate mode (e.g. AKEXET, GEGTIV, IBOCOR, JOMDAS, LAKYAX, RUQSUR, SUTZIQ) and two polymeric structures (GOCVEZ, CUMSAE, CUMSAE01). The combination of tri- and tetra­dentate coordination modes is observed in five cases (MEVQIN, MEVQOT, EYIPAD, LAKYAX, MUCBIV). There is only one structure with TEA in a monodentate mode (KISMUW) and one with a bidentate mode (QAJDIP). The most frequently encountered tridentate coordination mode is also observed in the title compound and reported for 22 entries (e.g. ASUGEA, CABTEF, DAYPOJ, FOVKIL, ETOLNI, GUQXEV, IGALOR).

There are 40 entries for MHBA coordination complexes in the CSD. For 14 entries, the MHBA mol­ecules occupy a coordination sphere in the form of mixed-ligand complexes in monodentate coordination (e.g. GIMLEU, MEZFIG, NESFOH, SEZJOX), while bidentate coordination (e.g. MIQYIV, SISTAQ, WINFIJ, YIQQIZ) is found in twelve cases and a combination of the two modes only for entries CIVGOF and KIDBEE. Polymeric metal complex formation is reported for seven structures (CIWPIH, COSLAX, COSLIF, KIDBOO, COSKUQ, COSLEB, KIDBII). It should be noted that the hydroxyl group of the MHBA mol­ecule is involved in coordination neither in discrete nor in polymeric complexes. For five entries, MHBA mol­ecules are situated in the outer spheres (GANZAY, LAMMOD, MEWBOH, NIWJAF and WEJNIJ), as is the case in the title compound.

Synthesis and crystallization  

To an aqueous solution (2.5 ml) of Ni(NO3)2 (0.091 g, 0.5 mmol) was slowly added an ethanol solution (5 ml) containing TEA (132 µl) and MHBA (0.138 g, 1 mmol) under constant stirring. A light-green crystalline product was obtained at room temperature by solvent evaporation after 25 days.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound hydrogen atoms were placed in calculated positions and refined in the riding-model approximation, with C—H = 0.93 and 0.97 Å for aromatic and methyl­ene hydrogen atoms, respectively, and with U iso(H) = 1.2U eq(C). O-bound hydrogen atoms were found from difference maps. Those attached to water mol­ecule O1W and to hy­droxy O atoms O4 and O5 were refined freely whereas those attached to water mol­ecule O2W and hy­droxy atoms O3 and O6 were refined with constrained O—H distances of 0.85 and 0.82 Å, respectively. For all O-bound hydrogen atoms, U iso(H) = 1.5U eq(O).

Table 2. Experimental details.

Crystal data
Chemical formula [Ni(C6H15NO3)2](C7H5O3)2·4H2O
M r 703.37
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 8.40515 (12), 21.4397 (3), 9.48944 (14)
β (°) 106.1835 (15)
V3) 1642.27 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.50
Crystal size (mm) 0.32 × 0.14 × 0.12
 
Data collection
Diffractometer Agilent Xcalibur Ruby
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014)
T min, T max 0.912, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12555, 3399, 3066
R int 0.030
(sin θ/λ)max−1) 0.629
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.115, 1.03
No. of reflections 3399
No. of parameters 226
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.44

Computer programs: CrysAlis PRO (Agilent, 2014), OLEX2 (Dolomanov et al., 2009) and SHELXL2014 (Sheldrick, 2015).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016005521/wm5282sup1.cif

e-72-00643-sup1.cif (25.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016005521/wm5282Isup2.hkl

e-72-00643-Isup2.hkl (186.6KB, hkl)

CCDC reference: 1471925

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Grants of the Center of Science and Technology, Uzbekistan

supplementary crystallographic information

Crystal data

[Ni(C6H15NO3)2](C7H5O3)2·4H2O F(000) = 748
Mr = 703.37 Dx = 1.422 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
a = 8.40515 (12) Å Cell parameters from 7605 reflections
b = 21.4397 (3) Å θ = 4.1–75.8°
c = 9.48944 (14) Å µ = 1.50 mm1
β = 106.1835 (15)° T = 293 K
V = 1642.27 (4) Å3 Prism, light-green
Z = 2 0.32 × 0.14 × 0.12 mm

Data collection

Agilent Xcalibur Ruby diffractometer 3399 independent reflections
Radiation source: Enhance (Cu) X-ray Source 3066 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
Detector resolution: 10.2576 pixels mm-1 θmax = 75.9°, θmin = 4.1°
ω scans h = −10→10
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) k = −23→26
Tmin = 0.912, Tmax = 1.000 l = −11→7
12555 measured reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0717P)2 + 0.3396P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.26 e Å3
3399 reflections Δρmin = −0.44 e Å3
226 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraints Extinction coefficient: 0.0013 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.5000 0.0000 0.5000 0.03393 (15)
O4 0.64514 (15) 0.07781 (5) 0.49590 (13) 0.0419 (3)
H4 0.658 (3) 0.0931 (8) 0.4149 (15) 0.063*
O5 0.34872 (15) 0.02307 (7) 0.29528 (13) 0.0436 (3)
O2 0.61445 (15) −0.13123 (6) 0.82440 (16) 0.0516 (3)
N1 0.38809 (17) 0.06100 (6) 0.61955 (15) 0.0393 (3)
O1 0.34416 (15) −0.11360 (6) 0.76086 (14) 0.0499 (3)
C7 0.4724 (2) −0.14099 (8) 0.83791 (18) 0.0404 (3)
O3 0.1335 (2) −0.23264 (8) 1.1285 (2) 0.0679 (4)
H3 0.0720 −0.2045 1.0868 0.102*
C3 0.2777 (2) −0.23037 (8) 1.0902 (2) 0.0470 (4)
C2 0.3022 (2) −0.18851 (8) 0.98698 (19) 0.0417 (4)
H2 0.2181 −0.1609 0.9419 0.050*
C10 0.4602 (3) 0.04530 (10) 0.77728 (19) 0.0513 (4)
H10A 0.3929 0.0133 0.8049 0.062*
H10B 0.4571 0.0820 0.8362 0.062*
C1 0.4506 (2) −0.18721 (7) 0.94995 (18) 0.0391 (3)
C9 0.6038 (3) 0.13094 (9) 0.5707 (3) 0.0576 (5)
H9A 0.6147 0.1687 0.5179 0.069*
H9B 0.6797 0.1337 0.6685 0.069*
C6 0.5756 (3) −0.22894 (9) 1.0159 (2) 0.0529 (5)
H6A 0.6756 −0.2287 0.9919 0.063*
C8 0.4288 (3) 0.12535 (9) 0.5813 (3) 0.0559 (5)
H8A 0.4134 0.1541 0.6552 0.067*
H8B 0.3526 0.1372 0.4880 0.067*
C4 0.4027 (3) −0.27183 (9) 1.1560 (2) 0.0576 (5)
H4A 0.3879 −0.3001 1.2257 0.069*
C11 0.6364 (3) 0.02244 (11) 0.8101 (2) 0.0569 (5)
H11A 0.7093 0.0573 0.8081 0.068*
H11B 0.6700 0.0043 0.9075 0.068*
O6 0.1021 (3) 0.06378 (8) 0.7862 (2) 0.0809 (6)
H6 0.0736 0.0271 0.7755 0.121*
C5 0.5489 (3) −0.27099 (10) 1.1178 (3) 0.0623 (5)
H5A 0.6319 −0.2993 1.1614 0.075*
C12 0.2050 (2) 0.05169 (10) 0.5721 (2) 0.0502 (4)
H12A 0.1833 0.0079 0.5847 0.060*
H12B 0.1663 0.0606 0.4679 0.060*
C13 0.1006 (3) 0.08968 (11) 0.6485 (3) 0.0642 (5)
H13A 0.1428 0.1320 0.6627 0.077*
H13B −0.0126 0.0914 0.5865 0.077*
O2W 0.9448 (2) 0.06186 (9) 0.2035 (2) 0.0775 (5)
H2WA 0.8479 0.0746 0.1994 0.116*
H2WB 0.9679 0.0715 0.1246 0.116*
O1W −0.06671 (19) −0.13462 (7) 0.99258 (17) 0.0543 (3)
H1WA −0.164 (4) −0.1390 (14) 0.942 (3) 0.079 (9)*
H1WB −0.092 (6) −0.103 (2) 1.070 (6) 0.164 (18)*
H5 0.359 (3) 0.0545 (13) 0.266 (3) 0.061 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0372 (2) 0.0332 (2) 0.0320 (2) −0.00273 (13) 0.01073 (15) −0.00022 (13)
O4 0.0463 (6) 0.0390 (6) 0.0429 (6) −0.0054 (5) 0.0164 (5) 0.0025 (5)
O5 0.0452 (6) 0.0453 (7) 0.0386 (6) −0.0013 (5) 0.0085 (5) 0.0060 (5)
O2 0.0403 (6) 0.0553 (7) 0.0605 (8) 0.0006 (5) 0.0163 (6) 0.0172 (6)
N1 0.0426 (7) 0.0375 (7) 0.0391 (7) −0.0020 (5) 0.0137 (6) −0.0040 (5)
O1 0.0419 (6) 0.0581 (7) 0.0514 (7) 0.0046 (5) 0.0161 (5) 0.0212 (6)
C7 0.0417 (8) 0.0388 (8) 0.0408 (8) −0.0003 (6) 0.0115 (6) 0.0049 (6)
O3 0.0679 (10) 0.0702 (10) 0.0772 (10) 0.0026 (7) 0.0396 (8) 0.0252 (8)
C3 0.0547 (10) 0.0437 (9) 0.0450 (9) −0.0046 (7) 0.0179 (8) 0.0048 (7)
C2 0.0446 (9) 0.0387 (8) 0.0408 (8) 0.0010 (6) 0.0100 (7) 0.0068 (6)
C10 0.0624 (11) 0.0543 (10) 0.0376 (9) −0.0011 (8) 0.0148 (8) −0.0101 (7)
C1 0.0427 (8) 0.0358 (8) 0.0375 (8) −0.0021 (6) 0.0088 (6) 0.0033 (6)
C9 0.0719 (13) 0.0399 (9) 0.0674 (12) −0.0155 (8) 0.0303 (10) −0.0105 (8)
C6 0.0481 (10) 0.0477 (10) 0.0625 (12) 0.0070 (8) 0.0145 (8) 0.0125 (8)
C8 0.0698 (13) 0.0356 (9) 0.0706 (12) 0.0017 (8) 0.0331 (10) −0.0030 (8)
C4 0.0707 (13) 0.0491 (10) 0.0519 (11) −0.0012 (9) 0.0154 (9) 0.0189 (8)
C11 0.0608 (12) 0.0601 (11) 0.0409 (9) −0.0055 (9) −0.0005 (8) −0.0077 (8)
O6 0.1092 (15) 0.0688 (10) 0.0874 (12) −0.0059 (10) 0.0650 (12) −0.0136 (9)
C5 0.0629 (12) 0.0523 (11) 0.0677 (13) 0.0123 (9) 0.0115 (10) 0.0233 (10)
C12 0.0419 (9) 0.0595 (11) 0.0515 (10) 0.0006 (8) 0.0169 (8) −0.0084 (8)
C13 0.0583 (12) 0.0652 (13) 0.0775 (14) 0.0078 (10) 0.0331 (11) −0.0063 (11)
O2W 0.0663 (10) 0.0802 (11) 0.0964 (14) 0.0154 (9) 0.0401 (10) 0.0171 (10)
O1W 0.0444 (7) 0.0649 (9) 0.0559 (8) 0.0029 (6) 0.0179 (6) −0.0039 (6)

Geometric parameters (Å, º)

Ni1—O4i 2.0735 (11) C1—C6 1.389 (2)
Ni1—O4 2.0734 (11) C9—H9A 0.9700
Ni1—O5 2.0636 (12) C9—H9B 0.9700
Ni1—O5i 2.0636 (12) C9—C8 1.507 (3)
Ni1—N1i 2.1158 (13) C6—H6A 0.9300
Ni1—N1 2.1158 (13) C6—C5 1.385 (3)
O4—H4 0.869 (9) C8—H8A 0.9700
O4—C9 1.435 (2) C8—H8B 0.9700
O5—C11i 1.427 (2) C4—H4A 0.9300
O5—H5 0.74 (3) C4—C5 1.375 (3)
O2—C7 1.253 (2) C11—O5i 1.427 (2)
N1—C10 1.488 (2) C11—H11A 0.9700
N1—C8 1.491 (2) C11—H11B 0.9700
N1—C12 1.491 (2) O6—H6 0.8200
O1—C7 1.266 (2) O6—C13 1.417 (3)
C7—C1 1.501 (2) C5—H5A 0.9300
O3—H3 0.8200 C12—H12A 0.9700
O3—C3 1.359 (2) C12—H12B 0.9700
C3—C2 1.386 (2) C12—C13 1.521 (3)
C3—C4 1.385 (3) C13—H13A 0.9700
C2—H2 0.9300 C13—H13B 0.9700
C2—C1 1.387 (2) O2W—H2WA 0.8498
C10—H10A 0.9700 O2W—H2WB 0.8500
C10—H10B 0.9700 O1W—H1WA 0.83 (3)
C10—C11 1.508 (3) O1W—H1WB 1.07 (5)
O4—Ni1—O4i 180.0 C2—C1—C6 119.57 (16)
O4i—Ni1—N1i 82.22 (5) C6—C1—C7 121.18 (16)
O4—Ni1—N1i 97.78 (5) O4—C9—H9A 109.6
O4—Ni1—N1 82.22 (5) O4—C9—H9B 109.6
O4i—Ni1—N1 97.78 (5) O4—C9—C8 110.20 (15)
O5—Ni1—O4i 89.95 (5) H9A—C9—H9B 108.1
O5i—Ni1—O4 89.94 (5) C8—C9—H9A 109.6
O5—Ni1—O4 90.05 (5) C8—C9—H9B 109.6
O5i—Ni1—O4i 90.06 (5) C1—C6—H6A 120.5
O5i—Ni1—O5 180.0 C5—C6—C1 118.99 (19)
O5—Ni1—N1 96.16 (5) C5—C6—H6A 120.5
O5—Ni1—N1i 83.84 (5) N1—C8—C9 112.60 (16)
O5i—Ni1—N1i 96.16 (5) N1—C8—H8A 109.1
O5i—Ni1—N1 83.84 (5) N1—C8—H8B 109.1
N1i—Ni1—N1 180.0 C9—C8—H8A 109.1
Ni1—O4—H4 122.6 (12) C9—C8—H8B 109.1
C9—O4—Ni1 113.85 (10) H8A—C8—H8B 107.8
C9—O4—H4 104.1 (12) C3—C4—H4A 120.2
Ni1—O5—H5 118 (2) C5—C4—C3 119.62 (17)
C11i—O5—Ni1 110.15 (11) C5—C4—H4A 120.2
C11i—O5—H5 108 (2) O5i—C11—C10 110.50 (15)
C10—N1—Ni1 106.39 (11) O5i—C11—H11A 109.5
C10—N1—C8 113.44 (15) O5i—C11—H11B 109.5
C10—N1—C12 111.71 (14) C10—C11—H11A 109.5
C8—N1—Ni1 105.96 (11) C10—C11—H11B 109.5
C8—N1—C12 109.74 (15) H11A—C11—H11B 108.1
C12—N1—Ni1 109.32 (10) C13—O6—H6 109.5
O2—C7—O1 123.06 (15) C6—C5—H5A 119.2
O2—C7—C1 119.38 (15) C4—C5—C6 121.53 (18)
O1—C7—C1 117.56 (14) C4—C5—H5A 119.2
C3—O3—H3 109.5 N1—C12—H12A 107.8
O3—C3—C2 122.12 (17) N1—C12—H12B 107.8
O3—C3—C4 118.51 (17) N1—C12—C13 117.92 (17)
C4—C3—C2 119.37 (18) H12A—C12—H12B 107.2
C3—C2—H2 119.5 C13—C12—H12A 107.8
C3—C2—C1 120.92 (16) C13—C12—H12B 107.8
C1—C2—H2 119.5 O6—C13—C12 111.83 (19)
N1—C10—H10A 109.1 O6—C13—H13A 109.2
N1—C10—H10B 109.1 O6—C13—H13B 109.2
N1—C10—C11 112.46 (15) C12—C13—H13A 109.2
H10A—C10—H10B 107.8 C12—C13—H13B 109.2
C11—C10—H10A 109.1 H13A—C13—H13B 107.9
C11—C10—H10B 109.1 H2WA—O2W—H2WB 109.4
C2—C1—C7 119.25 (14) H1WA—O1W—H1WB 97 (3)
Ni1—O4—C9—C8 −22.1 (2) C3—C2—C1—C7 −179.82 (16)
Ni1—N1—C10—C11 31.50 (18) C3—C2—C1—C6 0.8 (3)
Ni1—N1—C8—C9 −40.0 (2) C3—C4—C5—C6 0.9 (4)
Ni1—N1—C12—C13 177.98 (15) C2—C3—C4—C5 −0.2 (3)
O4—C9—C8—N1 42.1 (2) C2—C1—C6—C5 −0.1 (3)
O2—C7—C1—C2 166.38 (16) C10—N1—C8—C9 76.4 (2)
O2—C7—C1—C6 −14.2 (3) C10—N1—C12—C13 60.5 (2)
N1—C10—C11—O5i −46.7 (2) C1—C6—C5—C4 −0.7 (4)
N1—C12—C13—O6 −79.9 (2) C8—N1—C10—C11 −84.60 (19)
O1—C7—C1—C2 −13.7 (2) C8—N1—C12—C13 −66.2 (2)
O1—C7—C1—C6 165.70 (18) C4—C3—C2—C1 −0.6 (3)
C7—C1—C6—C5 −179.51 (19) C12—N1—C10—C11 150.73 (16)
O3—C3—C2—C1 180.00 (18) C12—N1—C8—C9 −157.89 (17)
O3—C3—C4—C5 179.2 (2)

Symmetry code: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H1WA···O2ii 0.83 (3) 1.89 (3) 2.711 (2) 168 (3)
O1W—H1WB···O6iii 1.06 (5) 1.63 (3) 2.674 (2) 168 (4)
O2W—H2WA···O1i 0.85 1.95 2.775 (2) 165
O2W—H2WB···O1Wi 0.85 2.07 2.830 (2) 149
O3—H3···O1W 0.82 1.96 2.775 (2) 177
O4—H4···O1i 0.87 (2) 1.72 (2) 2.579 (2) 169 (2)
O5—H5···O2i 0.74 (3) 1.90 (3) 2.638 (2) 175 (3)
O6—H6···O2Wi 0.82 1.93 2.728 (3) 165

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, y, z; (iii) −x, −y, −z+2.

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  2. Ashton Acton, Q. (2013). Editor. In Ethanolamines – Advances in Research and Application. Atlanta: Scholarly Editions.
  3. Custelcean, R. & Jackson, J. E. (1998). J. Am. Chem. Soc. 120, 12935–12941.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  6. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  7. Haukka, M., Kirillov, A. M., Kopylovich, M. N. & Pombeiro, A. J. L. (2005). Acta Cryst. E61, m2746–m2748.
  8. Ilyukhin, A. B., Koroteev, P. S., Kiskin, M. A., Dobrokhotova, Z. V. & Novotortsev, V. M. (2013). J. Mol. Struct. 1033, 187–199.
  9. Koizumi, Y., Sawase, H., Suzuki, Y., Takeuchi, T., Shimoi, M. & Ouchi, A. (1984). Bull. Chem. Soc. Jpn, 57, 1809–1817.
  10. Köse, D. A., Necefoğlu, H., Şahin, O. & Büyükgüngör, O. (2012). J. Therm. Anal. Calorim. 110, 1233–1241.
  11. Koziol, A. E., Brzyska, W., Klimek, B., Kula, A., Palenik, G. J. & Stepniak, K. (1990). J. Coord. Chem. 21, 183–191.
  12. Kumar, R., Obrai, S., Kaur, A., Hundal, M. S., Meehnian, H. & Jana, A. K. (2014). New J. Chem. 38, 1186–1198.
  13. Langley, S. K., Chilton, N. F., Moubaraki, B. & Murray, K. S. (2011). Dalton Trans. 40, 12201–12209. [DOI] [PubMed]
  14. Li, J.-H., Nie, J.-J., Su, J.-R. & Xu, D.-J. (2008). Acta Cryst. E64, m382–m383. [DOI] [PMC free article] [PubMed]
  15. Loginov, S. V., Kuznetsov, B. A. & Petrichenko, B. A. (2012). Patent of the Russian Federation, No. 2450516.
  16. Long, D.-L., Abbas, H., Kögerler, P. & Cronin, L. (2004). J. Am. Chem. Soc. 126, 13880–13881. [DOI] [PubMed]
  17. Ma, Z., Lu, W., Liang, B. & Pombeiro, A. J. L. (2013). New J. Chem. 37, 1529–1537.
  18. Manos, M. J., Moushi, E. E., Papaefstathiou, G. S. & Tasiopoulos, A. J. (2012). Cryst. Growth Des. 12, 5471–5480.
  19. Mirskova, A. N., Adamovich, S. N., Mirskov, R. G. & Schilde, U. (2013). Chem. Cent. J. 7, 34–38. [DOI] [PMC free article] [PubMed]
  20. Müller-Schwarze, D. & Houlihan, P. W. (1991). J. Chem. Ecol. 17, 715–734. [DOI] [PubMed]
  21. Sharma, R. P., Saini, A., Venugopalan, P., Ferretti, V., Spizzo, F., Angeli, C. & Calzado, C. J. (2014). New J. Chem. 38, 574–583.
  22. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  23. Thompson, D. J., Paredes, J. E. B., Villalobos, L., Ciclosi, M., Elsby, R. J., Liu, B., Fanwick, P. E. & Ren, T. (2015). Inorg. Chim. Acta, 424, 150–155.
  24. Zaitsev, K. V., Churakov, A. V., Poleshchuk, O. Kh., Oprunenko, Y. F., Zaitseva, G. S. & Karlov, S. S. (2014). Dalton Trans. 43, 6605–6609. [DOI] [PubMed]
  25. Zaman, I. G., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m198–m199. [DOI] [PMC free article] [PubMed]
  26. Zaman, İ. G., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2013). Acta Cryst. E69, m198–m199. [DOI] [PMC free article] [PubMed]
  27. Zardini, H. Z., Davarpanah, M., Shanbedi, M., Amiri, A., Maghrebi, M. & Ebrahimi, L. J. (2014). J. Biomed. Mater. Res. 102, 1774–1781. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016005521/wm5282sup1.cif

e-72-00643-sup1.cif (25.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016005521/wm5282Isup2.hkl

e-72-00643-Isup2.hkl (186.6KB, hkl)

CCDC reference: 1471925

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES