Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Apr 15;72(Pt 5):675–682. doi: 10.1107/S2056989016005958

Crystal structures of three 3,4,5-tri­meth­oxy­benzamide-based derivatives

Ligia R Gomes a,b, John Nicolson Low c,*, Catarina Oliveira d, Fernando Cagide d, Fernanda Borges d
PMCID: PMC4908538  PMID: 27308017

These benzamide derivatives differ only in the substituent that terminates the hexyl chain and the nature of these substituents determines the differences in hydrogen bonding between the mol­ecules.

Keywords: crystal structure, benzamide, hydrogen bonding

Abstract

The crystal structures of three benzamide derivatives, viz. N-(6-hy­droxy­hex­yl)-3,4,5-tri­meth­oxy­benzamide, C16H25NO5, (1), N-(6-anilinohex­yl)-3,4,5-tri­meth­oxy­benzamide, C22H30N2O4, (2), and N-(6,6-di­eth­oxy­hex­yl)-3,4,5-tri­meth­oxy­benzamide, C20H33NO6, (3), are described. These compounds differ only in the substituent at the end of the hexyl chain and the nature of these substituents determines the differences in hydrogen bonding between the mol­ecules. In each mol­ecule, the m-meth­oxy substituents are virtually coplanar with the benzyl ring, while the p-meth­oxy substituent is almost perpendicular. The carbonyl O atom of the amide rotamer is trans related with the amidic H atom. In each structure, the benzamide N—H donor group and O acceptor atoms link the mol­ecules into C(4) chains. In 1, a terminal –OH group links the mol­ecules into a C(3) chain and the combined effect of the C(4) and C(3) chains is a ribbon made up of screw related R 2 2(17) rings in which the ⋯O—H⋯ chain lies in the centre of the ribbon and the tri­meth­oxy­benzyl groups forms the edges. In 2, the combination of the benzamide C(4) chain and the hydrogen bond formed by the terminal N—H group to an O atom of the 4-meth­oxy group link the mol­ecules into a chain of R 2 2(17) rings. In 3, the mol­ecules are linked only by C(4) chains.

Chemical context  

Phenolic acids are widely distributed in the plant kingdom and exist in significant qu­anti­ties in the human diet (e.g. in fruits and vegetables). Like other phenolic compounds they are recognized for their health benefits, which are linked to their biological properties, particularly anti-oxidant, anti-inflammatory and anti­cancer properties (Benfeito et al., 2013, Roleira et al., 2015, Garrido et al., 2013, Teixeira et al., 2013). Within this framework, our project has been focused on the synthesis of new mol­ecules based on the benzoic acid scaffold. Accordingly, herein we describe the syntheses and structures of three new benzamide derivatives, viz. N-(6-hy­droxy­hex­yl)-3,4,5-tri­meth­oxy­benzamide (1) N-(6-anilinohex­yl)-3,4,5-tri­meth­oxy­benzamide (2) and N-(6,6-di­eth­oxy­hex­yl)-3,4,5-tri­meth­oxy­benzamide (3).

Structural commentary  

The mol­ecular structures of compounds 1, 2 and 3 are shown in Figs. 1–3 . The mol­ecules consist of a tri­meth­oxy­benzamide ‘head’ that is linked to a six-carbon-atom alkyl chain ‘tail’ that ends with different functional groups: a hydroxyl group for 1, a phenyl­amino group for 2 and a dieth­oxy group for 3. In spite of having the same ‘head’ and ‘tail’, the differences observed for their mol­ecular conformations are not only due to the different ‘end tail’ functional groups. Thus, the analysis of the mol­ecular conformations will be performed on a comparative basis encompassing the following: (i) the relative positions of the meth­oxy substituents on the aromatic ring; (ii) the conformation of the amide unit and (iii) the conformation of the alkyl chain. The specifics of the substituents at the end of the alkyl chain determine the differences in the supra­molecular structures, as discussed in the next section.graphic file with name e-72-00675-scheme1.jpg

Figure 1.

Figure 1

A view of the asymmetric unit of (1) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 70% probability level.

Figure 2.

Figure 2

A view of the asymmetric unit of (2) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 70% probability level.

Figure 3.

Figure 3

A view of the asymmetric unit of (3) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 70% probability level.

The m-meth­oxy substituents are virtually co-planar with the benzene ring and are trans related with respect to the p-carbon atom of the ring [the maximum deviation of the meth­oxy carbon atom to the best plane of the phenyl ring is 0.238 (1) Å in 2], while the p-meth­oxy group is nearly perpendicular [the minimum deviation of the meth­oxy carbon atom to the best plane of the benzene ring being 0.923 (2) Å, also in 2]. These relative positions agree with previous predictions of theoret­ical calculations for the stabilization energies for meth­oxy-group conformations attached to aromatic rings (Tsuzuki et al., 2002), which suggested that, while co-planarity is the most stable conformation when there is only one meth­oxy substit­uent on the aromatic ring, the perpendicular conformation may appear as an alternative one when two vicinal meth­oxy groups are present. According to these authors, this spatial arrangement is stabilized by a short C—H⋯O contact between the neighbouring groups. As can be seen in Tables 4, 5 and 6, the shortest distances between a methyl H atom and a vicinal meth­oxy O atom are 2.44, 2.33 and 2.37 Å for 1, 2 and 3, respectively, which do suggest the possibility of a very weak inter­action.

Table 4. Hydrogen-bond geometry (Å, °) for 1 .

D—H⋯A D—H H⋯A DA D—H⋯A
O19—H19⋯O19i 0.92 (4) 1.86 (4) 2.7799 (14) 176 (4)
N12—H12⋯O11ii 0.77 (3) 2.15 (3) 2.859 (3) 153 (3)
C18—H18B⋯O11iii 0.99 2.64 3.614 (3) 168
C41—H41B⋯O3 0.98 2.44 3.010 (3) 117

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 5. Hydrogen-bond geometry (Å, °) for 2 .

Cg is the centroid of the C111–C116 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12⋯O11i 0.867 (17) 2.052 (17) 2.9051 (14) 167.9 (15)
N19—H19⋯O4i 0.855 (17) 2.106 (17) 2.9436 (15) 166.3 (15)
C6—H6⋯O11i 0.95 2.33 3.2356 (15) 159
C41—H41C⋯O3 0.98 2.33 2.9287 (18) 119
C112—H112⋯O4i 0.95 2.65 3.3845 (16) 134
C13—H13ACg ii 0.99 2.64 3.5272 (15) 148
C31—H31CCg iii 0.98 2.62 3.5205 (16) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 6. Hydrogen-bond geometry (Å, °) for 3 .

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12⋯O11i 0.856 (16) 2.169 (16) 2.9890 (13) 160.2 (14)
C6—H6⋯O11i 0.95 2.34 3.2549 (14) 162
C15—H15B⋯O18ii 0.99 2.49 3.4239 (14) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

In the amide rotamer, the carbonyl oxygen atom is in a trans position with respect to the hydrogen atom of the amidic nitro­gen atom for all compounds, and so, the trimeth­oxy phenyl group is also trans related to the alkyl chain. The rotation of the trimeth­oxy phenyl substituent with respect to the amide rotamer around the C11—C1 bond may be evaluated by the N12—C11—C1—C6 torsion angle, whose values are given in Tables 1–3 . The mean planes between the C1 benzene ring and the mean plane of the three atoms O11, C11 and N12 are 35.1 (3), 12.00 (16) and 20.19 (14)°, respectively, for 1, 2 and 3, showing that the substituent in 2 is significantly less distorted than in the others. In 1 and in 2, the sense of rotation is anti­clockwise.

Table 1. Selected torsion angles (°) for 1 .

C31—O3—C3—C4 176.7 (2) C6—C1—C11—N12 35.6 (3)
C31—O3—C3—C2 −3.5 (4) C11—N12—C13—C14 129.1 (3)
C41—O4—C4—C5 108.9 (3) N12—C13—C14—C15 177.5 (2)
C41—O4—C4—C3 −74.4 (3) C13—C14—C15—C16 65.7 (3)
C51—O5—C5—C4 −175.7 (2) C14—C15—C16—C17 173.9 (2)
C51—O5—C5—C6 3.6 (4) C15—C16—C17—C18 −174.4 (2)
C13—N12—C11—C1 −171.3 (2) C16—C17—C18—O19 177.9 (2)
C2—C1—C11—N12 −149.3 (2)    

Table 2. Selected torsion angles (°) for 2 .

C31—O3—C3—C2 −0.16 (17) C2—C1—C11—N12 −167.30 (11)
C31—O3—C3—C4 178.57 (11) C11—N12—C13—C14 −112.80 (13)
C41—O4—C4—C3 67.59 (16) N12—C13—C14—C15 66.85 (14)
C41—O4—C4—C5 −118.62 (13) C13—C14—C15—C16 −179.75 (11)
C51—O5—C5—C6 −11.14 (18) C14—C15—C16—C17 −175.06 (11)
C51—O5—C5—C4 170.38 (11) C15—C16—C17—C18 175.02 (11)
C13—N12—C11—C1 179.22 (10) C111—N19—C18—C17 172.76 (11)
C6—C1—C11—N12 13.05 (17) C16—C17—C18—N19 67.90 (15)

Table 3. Selected torsion angles (°) for 3 .

C31—O3—C3—C2 9.59 (16) C2—C1—C11—N12 158.58 (10)
C31—O3—C3—C4 −171.49 (10) C6—C1—C11—N12 −19.07 (15)
C41—O4—C4—C5 61.51 (15) C11—N12—C13—C14 114.65 (12)
C41—O4—C4—C3 −124.05 (12) N12—C13—C14—C15 175.72 (9)
C51—O5—C5—C6 9.66 (17) C13—C14—C15—C16 67.27 (13)
C51—O5—C5—C4 −171.35 (11) C14—C15—C16—C17 175.71 (10)
C13—N12—C11—C1 −170.25 (10) C15—C16—C17—C18 −177.76 (10)

The freedom of rotation around the N—C(alk­yl) bond together with the regular tetra­hedral geometry of the sp 3-hybridized carbon atoms allows the mol­ecules to acquire very different conformational profiles for the alkyl chain as is observed in the C11—N12—C13—C14 torsion angles [129.1 (3) for 1, −112.80 (13) for 2 and 114.65 (12)° for 3], as well as the direction of the alkyl chain with respect to the N12—C13 bond, which primarily affects the relative position of the alkyl ‘tail’ with respect to the benzamide moiety. Considering the disposition of the amide rotamer: in 1 and in 3 the alkyl chain is directed backwards from the amide plane and in 2 forward from that plane. This affects the general shape of the mol­ecules, as can be better visualized in Figs. 7–9 . So, in spite of the consistent zigzag shape of the remaining alkyl chain those mol­ecules have entirely different spatial arrangements.

Figure 7.

Figure 7

View of the Hirshfeld surface mapped over d norm for 1.

Figure 8.

Figure 8

View of the Hirshfeld surface mapped over d norm for 2.

Figure 9.

Figure 9

View of the Hirshfeld surface mapped over d norm for 3.

Supra­molecular features  

Hydrogen Bonding and short contacts  

Tables 4, 5 and 6 show the hydrogen-bonding details for 1, 2 and 3, respectively. In each compound, the amide group forms the common C(4) chain motif by an N—H⋯O hydrogen bond. In 1, the N12—-H12⋯O11 chain runs parallel to the b axis and adjacent mol­ecules are at unit translation along this axis. The O19—-H19⋯O19 hydrogen bond links the mol­ecules into a C(3) chain formed by the action of the twofold screw axis at (Inline graphic, y, Inline graphic). These two chains link the mol­ecules to form a ribbon made up of screw-related Inline graphic(17) rings, which runs parallel to the b axis with the ⋯O—H⋯ chain running up the centre of the ribbon and the tri­meth­oxy­benzyl groups forming the edges (Fig. 4). In 2, both the N12—H12⋯O11 and N19—H19⋯O4 hydrogen bonds link the mol­ecules into a chain of Inline graphic(17) rings, which are bridged by the C11—N12 bond. This chain runs parallel to the c axis and is formed by the action of the c-glide plane at 1/4 along the b axis (Fig. 5). In 3, the N12—H12⋯O11 hydrogen bond links the mol­ecules into a C(4) chain, which runs parallel to the c axis and which is formed by the action of the c-glide plane at 3/4 along the b axis, Fig. 6. Possible weak C—H⋯O inter­actions are detailed in the relevant Tables 4–6 .

Figure 4.

Figure 4

Compound 1: view of the ribbon structure formed by the N12—H12⋯O11 and O19—H19⋯O19 hydrogen bonds. Hydrogen atoms not involved in the hydrogen bonding are omitted. Symmetry codes: (i) −x + 1, −y + Inline graphic, −z + Inline graphic; (ii) −x, −y − 1, −z + 1; (iii) −x + 1, −y − Inline graphic, −z + Inline graphic; (iv) −x + 1, −y + 1, −z + 1; (v) −x + 1, −y + Inline graphic, −z + Inline graphic.

Figure 5.

Figure 5

Compound 2: the chain of rings formed by the inter­action of the N12—H12⋯O11 and N19—H19⋯O4 hydrogen bonds. This chain extends along the c axis and is generated by the c-glideplane at y = Inline graphic. Hydrogen atoms not involved in the hydrogen bonding are omitted. Symmetry codes: (i) x, −y − Inline graphic, z − Inline graphic; (ii) x, −y + Inline graphic, z + Inline graphic.

Figure 6.

Figure 6

Compound 2: the simple C(4) chain formed by the N12—H12⋯O11 hydrogen bond. This chain extends along the c axis and is generated by the c glideplane at y = Inline graphic. Hydrogen atoms not involved in the hydrogen bonding are omitted. Symmetry codes: (i) x, −y − Inline graphic, z − Inline graphic; (ii) x, −y − Inline graphic, z + Inline graphic.

Hirshfeld Surfaces  

Hirshfeld surfaces were generated using Crystal Explorer 3.1 (Wolff et al., 2012) mapped over d norm for the title compounds. The contact distances d i and d e from the Hirshfeld surface to the nearest atom inside and outside, respectively, were used to analyse the inter­molecular inter­actions through the mapping of d norm and the plot of d i versus d e provides two-dimensional fingerprint plots (Rohl et al., 2008) that are used to summarize those contacts. Figs. 7–9 are views of the Hirshfeld surfaces mapped over d norm for 1, 2 and 3 respectively. Since the mol­ecules have a six-atom alkyl chain, most of the contacts are H⋯H contacts. Leaving these aside, the remaining surface highlights the red areas that indicate contact points for the atoms participating in the (O/N/C)—H⋯O inter­molecular inter­actions. There are also significant contributions of C—H⋯C contacts, as can be visualized in the figures for each compound. The percentages of (O/N/C)—H⋯O and C—H⋯C contacts are listed in Table 7.

Table 7. The percentages of (O/N/C)–H⋯O and C—H⋯C contacts.

Contact 1 2 3
H⋯H 60.0 60.8 68.9
H⋯O/O⋯H 25.4 16.0 19.0
H⋯C/C⋯H 13.0 21.4 10.1
H⋯N/N⋯H 0.03 1.7 0.8

In all three compounds, red spots near the amide indicate the N(amide)—H⋯O hydrogen bonds that connect the amide groups in the classic fashion, making a C(4) chain for all compounds. In 2 and 3, there are two pairs of red spots at the amide environment indicating that, in these structures, the carbonyl oxygen atom acts as the receptor for another H contact (the C6—H6⋯O11 contact).

The classical O(hy­droxy)–H⋯O hydrogen bond is located at the chain ‘tail’ in 1 and is identified by two red spots indicating that the oxygen atom O19 acts as donor and acceptor making the C(3) chain. The red spots in structure 2 show another two hydrogen bonds: one of these involves the amine nitro­gen atom of the end ‘tail’ phenyl­amine residue and the other also indicates the involvement of the p-meth­oxy group located at the tri­meth­oxy­benzamide ‘head’. This behaviour contrasts with that observed for 1 and 3, in which the meth­oxy groups are not involved in classical hydrogen bonding.

The full fingerprint (FP) plots showing various crystal packing inter­actions are given in Figs. 10–12 ; the contributions from various contacts, listed in Table 7, were selected by the partial analysis of these plots. The FP plots show, for all compounds, a pair of long sharp spikes characteristic of a strong hydrogen bond, in an area near 1.7–1.8 Å. The symmetry of the upper left/down right spikes is an indication for the balance between the donor and acceptor character of the atoms involved in the hydrogen bonding, as seen before. They correspond to the N—H⋯O and O—H⋯O contacts. The d e/d i points corresponding to H⋯H inter­actions appear around the hydrogen atom van der Waals radius of 1.20 Å. The wings in the graphical representation of 2 indicate that C—H⋯π inter­actions are more relevant in this crystal structure, highlighting the contribution of the C—H⋯π inter­action (Table 5) involving the phenyl­amide residue of the ‘tail’. Structure 2 also displays the biggest percentage of H⋯C/C⋯H contacts: besides the C—H⋯π contacts with the aromatic ring that define the supra­molecular structure for all compounds, in 2 the benzene ring of the phenyl­amine forms an extra inter­action of this kind

Figure 10.

Figure 10

The full fingerprint (FP) plot showing various crystal packing inter­actions for 1. Dark blue corresponds to the low frequency of occurrence of a d i/d e pair, while light blue indicates a higher frequency for the occurrence.

Figure 11.

Figure 11

The full fingerprint (FP) plot showing various crystal packing inter­actions for 2. Dark blue corresponds to the low frequency of occurrence of a d i/d e pair, while light blue indicates a higher frequency for the occurrence.

Figure 12.

Figure 12

The full fingerprint (FP) plot showing various crystal packing inter­actions for 3. Dark blue corresponds to the low frequency of occurrence of a d i/d e pair, while light blue indicates a higher frequency for the occurrence.

Database survey  

A search made in the February 2016 version of the Cambridge Structural Database, (Groom et al., 2016), revealed the existence of 37 structures (containing 48 unique mol­ecules) featuring the 3,4,5-trisubstituted benzamide scaffold.

ortho-C atom C2 was selected such that the amino N atom N12 was trans to it and in the following survey it is trans-related torsion angles which are discussed. The analysis of the torsion angles for the o-C atoms of the benzyl ring and the N atom of the benzamide group showed two distinct populations about 180° in the angular ranges −180 to −145° with a median value of −152.5° and 136–171° with a median value of 149.2°. The value of −179.3° for HESLEX, N,N-(heptane-2,6-di­yl)-N′-(3,4,5-meth­oxy­benzo­yl)thio­urea (Dillen et al., 2006) is unusual: if this is excluded, then the lower limit for the negative range is −172°. The methyl groups attached to atoms C3 and C5 are inclined to the benzyl ring in the range −20 to 24° with a median values close to 0°. This excludes a mol­ecule with a C5 meth­oxy torsion angle of −85.9°: PIDTEC, 4-hy­droxy-3,5-di­eth­oxy­benzaldehyde-3,4,5-tri­meth­oxy­benzoylhydrazone monohydrate (Sun et al., 2007). The methyl groups attached to atoms C4 are inclined to the benzyl ring in the ranges ±63 to ±122° with a median values close to ±90°. Of these 48 mol­ecules, 16 participate in N—H⋯O C(4) chains similar to those in the present compounds. In these structures, the torsion angles for the trans o-C atoms of the benzyl ring and the N atom of the benzamide group showed that, as above, the torsion angles lie in two populations: one in the range −153 to −145° and the other in the very similar positive range 142 to 165° with median values of −147.6° and 148.1°, respectively. The value for this torsion angle for 1, −149.3 (3)° lies within the negative range, those for 2, −167.27 (12)° and 3, −158.58 (10)° lie outside this range.The results of the database searches are included in the supporting information.

Synthesis and crystallization  

The title benzoic derivatives were obtained in moderate-to-high yields via the synthetic strategy described in the Scheme below. Compound 1 was obtained from 3,4,5-tri­meth­oxy­benz­oic acid by an amidation reaction using ethyl­chloro­formate as coupling agent. After oxidation of compound 1 alcohol function to an aldehyde, compounds (2) and (3) could be obtained. Compound 2 was synthesized by a reductive amination reaction using sodium tri­acet­oxy­boro­hydride as reducing agent. Compound 3 was synthesized using an ethano­lic solution of N-benzyl­hydroxyl­amine hydro­chlor­ide. graphic file with name e-72-00675-scheme2.jpg

1: N-(6-hy­droxy­hex­yl)-3,4,5-tri­meth­oxy­benzamide (1). Overall yield 82%; m.p. 393–399 K; crystallization solvent: ethyl acetate, to yield colourless needles.

2: N-(6-anilinohex­yl)-3,4,5-tri­meth­oxy­benzamide (2). Overall yield 51%; m.p. 376–388 K; crystallization solvent: ethyl acetate to yield colourless laths

3: N-(6,6-di­eth­oxy­hex­yl)-3,4,5-tri­meth­oxy­benzamide (3). Overall yield 50%; m.p. 364–374 K; crystallization solvents: chloro­form/n-hexane to yield colourless needles.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 8. The N—H and O—H hydrogen atoms were located in difference Fourier maps and freely refined. The C-bound H atoms were included in calculated positions and treated as riding: C—H(aromatic) = 0.95 Å and C—H2(methyl­ene) = 0.99 Å with U iso = 1.2U eq(C), C—H(meth­yl) = 0.98 Å with U iso = 1.5U eq(C).

Table 8. Experimental details.

  1 2 3
Crystal data
Chemical formula C16H25NO5 C22H30N2O4 C20H33NO6
M r 311.37 386.48 383.47
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 100 100 100
a, b, c (Å) 22.3351 (18), 5.0467 (4), 14.2265 (10) 11.5626 (8), 19.5328 (9), 9.5488 (7) 24.6345 (18), 8.4646 (5), 10.0598 (7)
β (°) 99.956 (7) 109.369 (8) 100.851 (2)
V3) 1579.4 (2) 2034.5 (2) 2060.2 (2)
Z 4 4 4
Radiation type Mo Kα Mo Kα Cu Kα
μ (mm−1) 0.10 0.09 0.74
Crystal size (mm) 0.15 × 0.02 × 0.01 0.25 × 0.08 × 0.02 0.80 × 0.05 × 0.02
 
Data collection
Diffractometer Rigaku AFC12 Rigaku AFC12 Rigaku Saturn944+
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014) Multi-scan (CrysAlis PRO; Agilent, 2014) Multi-scan (CrystalClear-SM Expert; Rigaku, 2012)
T min, T max 0.803, 1.000 0.384, 1.000 0.814, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 19396, 3627, 2039 26057, 4655, 3869 18993, 3706, 3362
R int 0.123 0.040 0.037
(sin θ/λ)max−1) 0.649 0.649 0.602
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.062, 0.133, 0.97 0.041, 0.105, 1.04 0.035, 0.095, 1.05
No. of reflections 3626 4652 3706
No. of parameters 210 264 253
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.33 0.32, −0.18 0.23, −0.28

Computer programs: CrystalClear-SM Expert (Rigaku, 2012), CrysAlis PRO (Agilent, 2014), SHELXT (Sheldrick, 2015a ), Flipper 25 (Oszlányi & Sütő, 2004), OLEX2 (Dolomanov et al., 2009), OSCAIL (McArdle et al., 2004), ShelXle (Hübschle et al., 2011), SHELXL2014 (Sheldrick, 2015b ), Mercury (Macrae et al., 2006) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) 1, 2, 3, global. DOI: 10.1107/S2056989016005958/hb7575sup1.cif

e-72-00675-sup1.cif (2.9MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989016005958/hb75751sup2.hkl

e-72-00675-1sup2.hkl (289.4KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989016005958/hb75752sup3.hkl

e-72-00675-2sup3.hkl (370.5KB, hkl)

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989016005958/hb75753sup4.hkl

e-72-00675-3sup4.hkl (295.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016005958/hb75751sup5.cml

Supporting information file. DOI: 10.1107/S2056989016005958/hb75752sup6.cml

Supporting information file. DOI: 10.1107/S2056989016005958/hb75753sup7.cml

Supporting information file. DOI: 10.1107/S2056989016005958/hb7575sup8.pdf

e-72-00675-sup8.pdf (73.8KB, pdf)

Supporting information file. DOI: 10.1107/S2056989016005958/hb7575sup9.pdf

e-72-00675-sup9.pdf (131.4KB, pdf)

CCDC references: 1473261, 1473260, 1473259

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the staff at the National Crystallographic Service, University of Southampton, for the data collection, help and advice (Coles & Gale, 2012), and the Foundation for Science and Technology (FCT) of Portugal (QUI/UI0081/2015) for financial support. Grants to CO (SFRH/BD/88773/2012) and FC (SFRH/BPD/72923/2010) are supported by FCT, POPH and QREN.

supplementary crystallographic information

(1) N-(6-Hydroxyhexyl)-3,4,5-trimethoxybenzamide . Crystal data

C16H25NO5 F(000) = 672
Mr = 311.37 Dx = 1.309 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 22.3351 (18) Å Cell parameters from 4347 reflections
b = 5.0467 (4) Å θ = 2.8–27.5°
c = 14.2265 (10) Å µ = 0.10 mm1
β = 99.956 (7)° T = 100 K
V = 1579.4 (2) Å3 Needle, colourless
Z = 4 0.15 × 0.02 × 0.01 mm

(1) N-(6-Hydroxyhexyl)-3,4,5-trimethoxybenzamide . Data collection

Rigaku AFC12 diffractometer 3627 independent reflections
Radiation source: Rotating Anode 2039 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1 Rint = 0.123
profile data from ω–scans θmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) h = −29→28
Tmin = 0.803, Tmax = 1.000 k = −6→6
19396 measured reflections l = −18→18

(1) N-(6-Hydroxyhexyl)-3,4,5-trimethoxybenzamide . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.062 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0434P)2 + 1.2336P] where P = (Fo2 + 2Fc2)/3
S = 0.97 (Δ/σ)max = 0.003
3626 reflections Δρmax = 0.25 e Å3
210 parameters Δρmin = −0.33 e Å3

(1) N-(6-Hydroxyhexyl)-3,4,5-trimethoxybenzamide . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(1) N-(6-Hydroxyhexyl)-3,4,5-trimethoxybenzamide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 0.14707 (8) 0.7309 (4) −0.17742 (12) 0.0226 (5)
O4 0.06131 (7) 0.3824 (4) −0.14864 (12) 0.0192 (4)
O5 0.07387 (7) 0.0830 (4) 0.00766 (11) 0.0182 (4)
O11 0.29716 (8) 0.7024 (4) 0.14247 (12) 0.0199 (4)
O19 0.49154 (9) 0.5665 (4) 0.70885 (12) 0.0239 (5)
H19 0.4980 (17) 0.729 (8) 0.738 (3) 0.071 (13)*
N12 0.29857 (10) 0.2623 (5) 0.17360 (15) 0.0178 (5)
H12 0.2877 (13) 0.124 (6) 0.154 (2) 0.026 (9)*
C1 0.22016 (11) 0.4387 (5) 0.05130 (16) 0.0139 (6)
C2 0.21185 (11) 0.6062 (5) −0.02766 (16) 0.0156 (6)
H2 0.2420 0.7331 −0.0355 0.019*
C3 0.15876 (11) 0.5858 (5) −0.09520 (16) 0.0160 (6)
C4 0.11325 (11) 0.4077 (5) −0.08137 (16) 0.0157 (6)
C5 0.12136 (11) 0.2437 (5) −0.00138 (17) 0.0144 (6)
C6 0.17580 (11) 0.2542 (5) 0.06407 (17) 0.0152 (6)
H6 0.1825 0.1363 0.1169 0.018*
C11 0.27558 (11) 0.4775 (5) 0.12591 (17) 0.0143 (6)
C13 0.34700 (11) 0.2710 (6) 0.25675 (17) 0.0186 (6)
H13A 0.3551 0.4575 0.2766 0.022*
H13B 0.3847 0.1966 0.2397 0.022*
C14 0.32987 (11) 0.1155 (6) 0.33872 (17) 0.0188 (6)
H14A 0.3197 −0.0682 0.3172 0.023*
H14B 0.2930 0.1951 0.3568 0.023*
C15 0.38004 (12) 0.1073 (5) 0.42678 (17) 0.0187 (6)
H15A 0.3676 −0.0165 0.4739 0.022*
H15B 0.4175 0.0357 0.4078 0.022*
C16 0.39460 (12) 0.3745 (5) 0.47458 (18) 0.0183 (6)
H16A 0.3566 0.4557 0.4879 0.022*
H16B 0.4116 0.4932 0.4304 0.022*
C17 0.43995 (11) 0.3505 (5) 0.56771 (17) 0.0178 (6)
H17A 0.4248 0.2175 0.6090 0.021*
H17B 0.4792 0.2856 0.5533 0.021*
C18 0.45040 (12) 0.6094 (6) 0.62129 (17) 0.0200 (6)
H18A 0.4676 0.7416 0.5820 0.024*
H18B 0.4113 0.6787 0.6348 0.024*
C31 0.19093 (12) 0.9255 (6) −0.19180 (19) 0.0230 (7)
H31A 0.1762 1.0234 −0.2508 0.034*
H31B 0.2294 0.8380 −0.1968 0.034*
H31C 0.1972 1.0487 −0.1377 0.034*
C41 0.01986 (12) 0.6026 (6) −0.14884 (19) 0.0222 (6)
H41A −0.0146 0.5805 −0.2011 0.033*
H41B 0.0410 0.7684 −0.1577 0.033*
H41C 0.0051 0.6081 −0.0879 0.033*
C51 0.07898 (12) −0.0741 (6) 0.09227 (18) 0.0216 (6)
H51A 0.0404 −0.1652 0.0935 0.032*
H51B 0.0887 0.0406 0.1484 0.032*
H51C 0.1114 −0.2053 0.0929 0.032*

(1) N-(6-Hydroxyhexyl)-3,4,5-trimethoxybenzamide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0264 (10) 0.0215 (12) 0.0182 (9) −0.0036 (9) −0.0009 (8) 0.0066 (8)
O4 0.0197 (10) 0.0133 (11) 0.0209 (9) 0.0013 (8) −0.0071 (8) −0.0020 (8)
O5 0.0166 (9) 0.0164 (11) 0.0200 (9) −0.0060 (8) −0.0013 (7) 0.0035 (8)
O11 0.0216 (10) 0.0107 (10) 0.0249 (10) −0.0038 (8) −0.0031 (8) 0.0000 (8)
O19 0.0322 (11) 0.0154 (12) 0.0186 (10) 0.0008 (9) −0.0110 (8) −0.0003 (9)
N12 0.0202 (12) 0.0120 (14) 0.0181 (12) −0.0017 (11) −0.0055 (9) −0.0032 (10)
C1 0.0166 (13) 0.0096 (15) 0.0150 (12) 0.0015 (11) 0.0018 (10) −0.0025 (10)
C2 0.0198 (14) 0.0115 (14) 0.0161 (12) −0.0012 (12) 0.0052 (11) 0.0001 (11)
C3 0.0215 (14) 0.0137 (15) 0.0122 (12) 0.0035 (12) 0.0017 (10) 0.0014 (11)
C4 0.0175 (14) 0.0141 (14) 0.0136 (12) 0.0019 (12) −0.0020 (10) −0.0027 (11)
C5 0.0161 (13) 0.0105 (14) 0.0166 (13) −0.0005 (11) 0.0028 (10) −0.0014 (11)
C6 0.0192 (13) 0.0100 (14) 0.0164 (13) 0.0010 (11) 0.0031 (11) 0.0003 (11)
C11 0.0154 (13) 0.0102 (14) 0.0168 (13) −0.0002 (11) 0.0015 (10) −0.0022 (11)
C13 0.0187 (14) 0.0178 (16) 0.0166 (13) −0.0016 (12) −0.0045 (11) 0.0020 (11)
C14 0.0209 (14) 0.0163 (15) 0.0178 (13) −0.0032 (12) −0.0001 (11) −0.0010 (12)
C15 0.0261 (15) 0.0130 (15) 0.0155 (13) −0.0023 (12) −0.0004 (11) −0.0004 (11)
C16 0.0217 (14) 0.0140 (15) 0.0183 (13) 0.0001 (12) 0.0005 (11) 0.0004 (11)
C17 0.0205 (14) 0.0146 (16) 0.0175 (13) −0.0004 (12) 0.0006 (11) −0.0011 (11)
C18 0.0217 (14) 0.0203 (16) 0.0161 (13) 0.0000 (13) −0.0018 (11) −0.0006 (12)
C31 0.0238 (15) 0.0230 (17) 0.0229 (14) 0.0000 (13) 0.0064 (12) 0.0075 (13)
C41 0.0232 (15) 0.0157 (16) 0.0251 (14) 0.0015 (13) −0.0031 (12) 0.0028 (12)
C51 0.0226 (14) 0.0184 (16) 0.0229 (14) −0.0044 (13) 0.0017 (11) 0.0055 (12)

(1) N-(6-Hydroxyhexyl)-3,4,5-trimethoxybenzamide . Geometric parameters (Å, º)

O3—C3 1.366 (3) C14—C15 1.530 (3)
O3—C31 1.427 (3) C14—H14A 0.9900
O4—C4 1.376 (3) C14—H14B 0.9900
O4—C41 1.446 (3) C15—C16 1.520 (4)
O5—C5 1.359 (3) C15—H15A 0.9900
O5—C51 1.429 (3) C15—H15B 0.9900
O11—C11 1.240 (3) C16—C17 1.527 (3)
O19—C18 1.431 (3) C16—H16A 0.9900
O19—H19 0.92 (4) C16—H16B 0.9900
N12—C11 1.335 (3) C17—C18 1.510 (4)
N12—C13 1.459 (3) C17—H17A 0.9900
N12—H12 0.77 (3) C17—H17B 0.9900
C1—C2 1.393 (3) C18—H18A 0.9900
C1—C6 1.394 (3) C18—H18B 0.9900
C1—C11 1.498 (3) C31—H31A 0.9800
C2—C3 1.395 (3) C31—H31B 0.9800
C2—H2 0.9500 C31—H31C 0.9800
C3—C4 1.396 (4) C41—H41A 0.9800
C4—C5 1.393 (3) C41—H41B 0.9800
C5—C6 1.399 (3) C41—H41C 0.9800
C6—H6 0.9500 C51—H51A 0.9800
C13—C14 1.509 (4) C51—H51B 0.9800
C13—H13A 0.9900 C51—H51C 0.9800
C13—H13B 0.9900
C3—O3—C31 117.22 (19) C16—C15—H15A 108.7
C4—O4—C41 113.10 (19) C14—C15—H15A 108.7
C5—O5—C51 117.44 (18) C16—C15—H15B 108.7
C18—O19—H19 107 (2) C14—C15—H15B 108.7
C11—N12—C13 123.6 (2) H15A—C15—H15B 107.6
C11—N12—H12 119 (2) C15—C16—C17 112.1 (2)
C13—N12—H12 117 (2) C15—C16—H16A 109.2
C2—C1—C6 120.8 (2) C17—C16—H16A 109.2
C2—C1—C11 118.1 (2) C15—C16—H16B 109.2
C6—C1—C11 120.9 (2) C17—C16—H16B 109.2
C1—C2—C3 119.3 (2) H16A—C16—H16B 107.9
C1—C2—H2 120.3 C18—C17—C16 113.0 (2)
C3—C2—H2 120.3 C18—C17—H17A 109.0
O3—C3—C4 115.4 (2) C16—C17—H17A 109.0
O3—C3—C2 124.3 (2) C18—C17—H17B 109.0
C4—C3—C2 120.2 (2) C16—C17—H17B 109.0
O4—C4—C5 119.2 (2) H17A—C17—H17B 107.8
O4—C4—C3 120.6 (2) O19—C18—C17 109.2 (2)
C5—C4—C3 120.2 (2) O19—C18—H18A 109.8
O5—C5—C4 116.0 (2) C17—C18—H18A 109.8
O5—C5—C6 124.2 (2) O19—C18—H18B 109.8
C4—C5—C6 119.8 (2) C17—C18—H18B 109.8
C1—C6—C5 119.6 (2) H18A—C18—H18B 108.3
C1—C6—H6 120.2 O3—C31—H31A 109.5
C5—C6—H6 120.2 O3—C31—H31B 109.5
O11—C11—N12 123.1 (2) H31A—C31—H31B 109.5
O11—C11—C1 120.1 (2) O3—C31—H31C 109.5
N12—C11—C1 116.9 (2) H31A—C31—H31C 109.5
N12—C13—C14 111.1 (2) H31B—C31—H31C 109.5
N12—C13—H13A 109.4 O4—C41—H41A 109.5
C14—C13—H13A 109.4 O4—C41—H41B 109.5
N12—C13—H13B 109.4 H41A—C41—H41B 109.5
C14—C13—H13B 109.4 O4—C41—H41C 109.5
H13A—C13—H13B 108.0 H41A—C41—H41C 109.5
C13—C14—C15 113.5 (2) H41B—C41—H41C 109.5
C13—C14—H14A 108.9 O5—C51—H51A 109.5
C15—C14—H14A 108.9 O5—C51—H51B 109.5
C13—C14—H14B 108.9 H51A—C51—H51B 109.5
C15—C14—H14B 108.9 O5—C51—H51C 109.5
H14A—C14—H14B 107.7 H51A—C51—H51C 109.5
C16—C15—C14 114.3 (2) H51B—C51—H51C 109.5
C6—C1—C2—C3 −0.9 (4) C3—C4—C5—C6 −1.3 (4)
C11—C1—C2—C3 −175.9 (2) C2—C1—C6—C5 −2.3 (4)
C31—O3—C3—C4 176.7 (2) C11—C1—C6—C5 172.6 (2)
C31—O3—C3—C2 −3.5 (4) O5—C5—C6—C1 −175.8 (2)
C1—C2—C3—O3 −176.8 (2) C4—C5—C6—C1 3.4 (4)
C1—C2—C3—C4 3.0 (4) C13—N12—C11—O11 7.0 (4)
C41—O4—C4—C5 108.9 (3) C13—N12—C11—C1 −171.3 (2)
C41—O4—C4—C3 −74.4 (3) C2—C1—C11—O11 32.3 (4)
O3—C3—C4—O4 1.2 (4) C6—C1—C11—O11 −142.8 (3)
C2—C3—C4—O4 −178.6 (2) C2—C1—C11—N12 −149.3 (2)
O3—C3—C4—C5 177.9 (2) C6—C1—C11—N12 35.6 (3)
C2—C3—C4—C5 −1.9 (4) C11—N12—C13—C14 129.1 (3)
C51—O5—C5—C4 −175.7 (2) N12—C13—C14—C15 177.5 (2)
C51—O5—C5—C6 3.6 (4) C13—C14—C15—C16 65.7 (3)
O4—C4—C5—O5 −5.3 (4) C14—C15—C16—C17 173.9 (2)
C3—C4—C5—O5 178.0 (2) C15—C16—C17—C18 −174.4 (2)
O4—C4—C5—C6 175.5 (2) C16—C17—C18—O19 177.9 (2)

(1) N-(6-Hydroxyhexyl)-3,4,5-trimethoxybenzamide . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O19—H19···O19i 0.92 (4) 1.86 (4) 2.7799 (14) 176 (4)
N12—H12···O11ii 0.77 (3) 2.15 (3) 2.859 (3) 153 (3)
C18—H18B···O11iii 0.99 2.64 3.614 (3) 168
C41—H41B···O3 0.98 2.44 3.010 (3) 117

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, y−1, z; (iii) x, −y+3/2, z+1/2.

(2) N-(6-Anilinohexyl)-3,4,5-trimethoxybenzamide . Crystal data

C22H30N2O4 F(000) = 832
Mr = 386.48 Dx = 1.262 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71075 Å
a = 11.5626 (8) Å Cell parameters from 12007 reflections
b = 19.5328 (9) Å θ = 2.2–27.6°
c = 9.5488 (7) Å µ = 0.09 mm1
β = 109.369 (8)° T = 100 K
V = 2034.5 (2) Å3 Lath, colourless
Z = 4 0.25 × 0.08 × 0.02 mm

(2) N-(6-Anilinohexyl)-3,4,5-trimethoxybenzamide . Data collection

Rigaku AFC12 diffractometer 4655 independent reflections
Radiation source: Rotating Anode 3869 reflections with I > 2σ(I)
Confocal mirrors, VHF Varimax monochromator Rint = 0.040
Detector resolution: 28.5714 pixels mm-1 θmax = 27.5°, θmin = 1.9°
profile data from ω–scans h = −15→15
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) k = −25→25
Tmin = 0.384, Tmax = 1.000 l = −12→11
26057 measured reflections

(2) N-(6-Anilinohexyl)-3,4,5-trimethoxybenzamide . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.7227P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
4652 reflections Δρmax = 0.32 e Å3
264 parameters Δρmin = −0.17 e Å3

(2) N-(6-Anilinohexyl)-3,4,5-trimethoxybenzamide . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(2) N-(6-Anilinohexyl)-3,4,5-trimethoxybenzamide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O5 0.23589 (9) 0.06242 (5) 0.65347 (10) 0.0233 (2)
O11 0.49022 (8) 0.29229 (5) 1.06168 (10) 0.0206 (2)
O3 0.13699 (8) 0.14104 (5) 1.05838 (10) 0.0199 (2)
O4 0.11195 (8) 0.05052 (4) 0.83767 (11) 0.0214 (2)
N12 0.52046 (9) 0.27467 (5) 0.84328 (12) 0.0166 (2)
H12 0.5016 (15) 0.2521 (8) 0.7605 (19) 0.025 (4)*
N19 0.23085 (10) 0.58041 (6) 0.45509 (13) 0.0219 (2)
H19 0.2032 (14) 0.5397 (9) 0.4356 (17) 0.024 (4)*
C1 0.36942 (11) 0.20559 (6) 0.90565 (14) 0.0161 (2)
C2 0.29676 (11) 0.20182 (6) 0.99581 (14) 0.0165 (2)
H2 0.3076 0.2341 1.0735 0.020*
C3 0.20868 (11) 0.15115 (6) 0.97263 (14) 0.0167 (3)
C4 0.19028 (11) 0.10503 (6) 0.85609 (14) 0.0171 (3)
C5 0.26120 (11) 0.10992 (6) 0.76358 (14) 0.0174 (3)
C6 0.35187 (11) 0.15967 (6) 0.78929 (14) 0.0170 (3)
H6 0.4015 0.1623 0.7277 0.020*
C11 0.46561 (11) 0.26090 (6) 0.94280 (14) 0.0158 (2)
C13 0.61401 (11) 0.32767 (6) 0.86549 (14) 0.0179 (3)
H13A 0.6882 0.3072 0.8527 0.021*
H13B 0.6367 0.3450 0.9685 0.021*
C14 0.57161 (11) 0.38743 (6) 0.75829 (14) 0.0180 (3)
H14A 0.6426 0.4178 0.7688 0.022*
H14B 0.5435 0.3694 0.6556 0.022*
C15 0.46909 (11) 0.42972 (6) 0.78092 (14) 0.0182 (3)
H15A 0.4970 0.4483 0.8832 0.022*
H15B 0.3978 0.3996 0.7704 0.022*
C16 0.42906 (11) 0.48867 (6) 0.67131 (14) 0.0186 (3)
H16A 0.5016 0.5166 0.6756 0.022*
H16B 0.3942 0.4700 0.5695 0.022*
C17 0.33424 (12) 0.53406 (7) 0.70390 (15) 0.0220 (3)
H17A 0.2597 0.5065 0.6917 0.026*
H17B 0.3669 0.5487 0.8090 0.026*
C18 0.29791 (12) 0.59736 (6) 0.60736 (14) 0.0206 (3)
H18A 0.2467 0.6272 0.6468 0.025*
H18B 0.3726 0.6232 0.6116 0.025*
C31 0.15479 (12) 0.18615 (7) 1.18125 (15) 0.0213 (3)
H31A 0.1426 0.2335 1.1457 0.032*
H31B 0.2383 0.1808 1.2510 0.032*
H31C 0.0957 0.1751 1.2315 0.032*
C41 −0.01587 (12) 0.06541 (8) 0.79790 (18) 0.0299 (3)
H41A −0.0621 0.0225 0.7856 0.045*
H41B −0.0427 0.0911 0.7045 0.045*
H41C −0.0305 0.0928 0.8764 0.045*
C51 0.29185 (13) 0.07190 (7) 0.54292 (15) 0.0270 (3)
H51A 0.2716 0.1175 0.4990 0.040*
H51B 0.2615 0.0371 0.4655 0.040*
H51C 0.3810 0.0676 0.5881 0.040*
C111 0.17742 (11) 0.62986 (6) 0.35170 (14) 0.0182 (3)
C112 0.10342 (11) 0.61135 (7) 0.20818 (14) 0.0207 (3)
H112 0.0895 0.5643 0.1826 0.025*
C113 0.05055 (12) 0.66108 (7) 0.10363 (15) 0.0237 (3)
H113 0.0006 0.6478 0.0067 0.028*
C114 0.06936 (12) 0.73016 (7) 0.13832 (16) 0.0248 (3)
H114 0.0320 0.7642 0.0664 0.030*
C115 0.14307 (12) 0.74837 (7) 0.27873 (16) 0.0241 (3)
H115 0.1571 0.7955 0.3033 0.029*
C116 0.19717 (12) 0.69942 (6) 0.38473 (15) 0.0206 (3)
H116 0.2482 0.7132 0.4808 0.025*

(2) N-(6-Anilinohexyl)-3,4,5-trimethoxybenzamide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O5 0.0305 (5) 0.0196 (5) 0.0232 (5) −0.0041 (4) 0.0135 (4) −0.0067 (4)
O11 0.0256 (5) 0.0205 (5) 0.0192 (5) −0.0044 (4) 0.0119 (4) −0.0032 (4)
O3 0.0215 (4) 0.0213 (5) 0.0210 (5) −0.0044 (4) 0.0123 (4) −0.0027 (4)
O4 0.0191 (4) 0.0145 (4) 0.0320 (5) −0.0016 (3) 0.0101 (4) −0.0009 (4)
N12 0.0199 (5) 0.0155 (5) 0.0164 (6) −0.0004 (4) 0.0087 (4) 0.0000 (4)
N19 0.0273 (6) 0.0138 (5) 0.0216 (6) −0.0013 (4) 0.0039 (5) 0.0010 (4)
C1 0.0176 (5) 0.0150 (6) 0.0162 (6) 0.0027 (4) 0.0062 (5) 0.0036 (5)
C2 0.0188 (6) 0.0154 (6) 0.0159 (6) 0.0014 (5) 0.0066 (5) 0.0002 (5)
C3 0.0176 (6) 0.0168 (6) 0.0175 (6) 0.0030 (5) 0.0083 (5) 0.0036 (5)
C4 0.0171 (6) 0.0125 (6) 0.0213 (7) 0.0004 (4) 0.0059 (5) 0.0028 (5)
C5 0.0210 (6) 0.0146 (6) 0.0165 (6) 0.0035 (5) 0.0060 (5) −0.0001 (5)
C6 0.0198 (6) 0.0169 (6) 0.0165 (6) 0.0025 (5) 0.0091 (5) 0.0022 (5)
C11 0.0175 (5) 0.0148 (6) 0.0161 (6) 0.0033 (4) 0.0068 (5) 0.0025 (5)
C13 0.0170 (6) 0.0175 (6) 0.0212 (7) 0.0002 (5) 0.0090 (5) 0.0029 (5)
C14 0.0194 (6) 0.0165 (6) 0.0203 (7) −0.0004 (5) 0.0095 (5) 0.0029 (5)
C15 0.0186 (6) 0.0174 (6) 0.0202 (7) 0.0003 (5) 0.0085 (5) 0.0019 (5)
C16 0.0202 (6) 0.0180 (6) 0.0184 (7) 0.0012 (5) 0.0076 (5) 0.0017 (5)
C17 0.0237 (6) 0.0231 (6) 0.0212 (7) 0.0053 (5) 0.0098 (5) 0.0044 (5)
C18 0.0229 (6) 0.0183 (6) 0.0207 (7) 0.0029 (5) 0.0075 (5) 0.0000 (5)
C31 0.0209 (6) 0.0254 (7) 0.0213 (7) −0.0025 (5) 0.0120 (5) −0.0036 (5)
C41 0.0184 (6) 0.0284 (7) 0.0415 (9) −0.0027 (5) 0.0082 (6) −0.0028 (6)
C51 0.0351 (7) 0.0280 (7) 0.0206 (7) −0.0021 (6) 0.0130 (6) −0.0066 (6)
C111 0.0177 (6) 0.0175 (6) 0.0217 (7) 0.0013 (5) 0.0097 (5) 0.0019 (5)
C112 0.0218 (6) 0.0207 (6) 0.0217 (7) 0.0000 (5) 0.0100 (5) −0.0014 (5)
C113 0.0205 (6) 0.0330 (7) 0.0195 (7) 0.0026 (5) 0.0090 (5) 0.0014 (6)
C114 0.0241 (6) 0.0274 (7) 0.0270 (8) 0.0075 (5) 0.0139 (6) 0.0109 (6)
C115 0.0277 (7) 0.0175 (6) 0.0316 (8) 0.0030 (5) 0.0157 (6) 0.0049 (5)
C116 0.0224 (6) 0.0179 (6) 0.0229 (7) 0.0004 (5) 0.0093 (5) −0.0001 (5)

(2) N-(6-Anilinohexyl)-3,4,5-trimethoxybenzamide . Geometric parameters (Å, º)

O5—C5 1.3594 (15) C15—H15B 0.9900
O5—C51 1.4214 (16) C16—C17 1.5204 (17)
O11—C11 1.2374 (15) C16—H16A 0.9900
O3—C3 1.3590 (14) C16—H16B 0.9900
O3—C31 1.4266 (15) C17—C18 1.5159 (18)
O4—C4 1.3709 (14) C17—H17A 0.9900
O4—C41 1.4286 (15) C17—H17B 0.9900
N12—C11 1.3332 (15) C18—H18A 0.9900
N12—C13 1.4610 (15) C18—H18B 0.9900
N12—H12 0.867 (17) C31—H31A 0.9800
N19—C111 1.3729 (17) C31—H31B 0.9800
N19—C18 1.4412 (17) C31—H31C 0.9800
N19—H19 0.855 (17) C41—H41A 0.9800
C1—C6 1.3894 (17) C41—H41B 0.9800
C1—C2 1.3901 (16) C41—H41C 0.9800
C1—C11 1.5061 (17) C51—H51A 0.9800
C2—C3 1.3842 (17) C51—H51B 0.9800
C2—H2 0.9500 C51—H51C 0.9800
C3—C4 1.3922 (17) C111—C116 1.3963 (17)
C4—C5 1.3937 (17) C111—C112 1.4011 (18)
C5—C6 1.3903 (17) C112—C113 1.3816 (19)
C6—H6 0.9500 C112—H112 0.9500
C13—C14 1.5224 (17) C113—C114 1.389 (2)
C13—H13A 0.9900 C113—H113 0.9500
C13—H13B 0.9900 C114—C115 1.376 (2)
C14—C15 1.5179 (16) C114—H114 0.9500
C14—H14A 0.9900 C115—C116 1.3821 (19)
C14—H14B 0.9900 C115—H115 0.9500
C15—C16 1.5212 (17) C116—H116 0.9500
C15—H15A 0.9900
C5—O5—C51 116.83 (10) C17—C16—H16B 109.2
C3—O3—C31 117.08 (10) C15—C16—H16B 109.2
C4—O4—C41 117.21 (10) H16A—C16—H16B 107.9
C11—N12—C13 122.94 (11) C18—C17—C16 115.11 (11)
C11—N12—H12 120.8 (11) C18—C17—H17A 108.5
C13—N12—H12 116.3 (11) C16—C17—H17A 108.5
C111—N19—C18 121.81 (11) C18—C17—H17B 108.5
C111—N19—H19 116.8 (10) C16—C17—H17B 108.5
C18—N19—H19 118.1 (10) H17A—C17—H17B 107.5
C6—C1—C2 120.20 (11) N19—C18—C17 111.97 (11)
C6—C1—C11 123.51 (11) N19—C18—H18A 109.2
C2—C1—C11 116.29 (11) C17—C18—H18A 109.2
C3—C2—C1 120.18 (11) N19—C18—H18B 109.2
C3—C2—H2 119.9 C17—C18—H18B 109.2
C1—C2—H2 119.9 H18A—C18—H18B 107.9
O3—C3—C2 124.83 (11) O3—C31—H31A 109.5
O3—C3—C4 115.18 (11) O3—C31—H31B 109.5
C2—C3—C4 119.98 (11) H31A—C31—H31B 109.5
O4—C4—C3 121.63 (11) O3—C31—H31C 109.5
O4—C4—C5 118.32 (11) H31A—C31—H31C 109.5
C3—C4—C5 119.75 (11) H31B—C31—H31C 109.5
O5—C5—C6 124.75 (11) O4—C41—H41A 109.5
O5—C5—C4 114.99 (11) O4—C41—H41B 109.5
C6—C5—C4 120.24 (11) H41A—C41—H41B 109.5
C1—C6—C5 119.60 (11) O4—C41—H41C 109.5
C1—C6—H6 120.2 H41A—C41—H41C 109.5
C5—C6—H6 120.2 H41B—C41—H41C 109.5
O11—C11—N12 122.34 (11) O5—C51—H51A 109.5
O11—C11—C1 119.91 (11) O5—C51—H51B 109.5
N12—C11—C1 117.74 (11) H51A—C51—H51B 109.5
N12—C13—C14 112.83 (10) O5—C51—H51C 109.5
N12—C13—H13A 109.0 H51A—C51—H51C 109.5
C14—C13—H13A 109.0 H51B—C51—H51C 109.5
N12—C13—H13B 109.0 N19—C111—C116 121.42 (12)
C14—C13—H13B 109.0 N19—C111—C112 120.33 (12)
H13A—C13—H13B 107.8 C116—C111—C112 118.23 (12)
C15—C14—C13 114.46 (10) C113—C112—C111 120.38 (12)
C15—C14—H14A 108.6 C113—C112—H112 119.8
C13—C14—H14A 108.6 C111—C112—H112 119.8
C15—C14—H14B 108.6 C112—C113—C114 120.91 (13)
C13—C14—H14B 108.6 C112—C113—H113 119.5
H14A—C14—H14B 107.6 C114—C113—H113 119.5
C14—C15—C16 112.81 (10) C115—C114—C113 118.74 (12)
C14—C15—H15A 109.0 C115—C114—H114 120.6
C16—C15—H15A 109.0 C113—C114—H114 120.6
C14—C15—H15B 109.0 C114—C115—C116 121.23 (13)
C16—C15—H15B 109.0 C114—C115—H115 119.4
H15A—C15—H15B 107.8 C116—C115—H115 119.4
C17—C16—C15 112.09 (10) C115—C116—C111 120.49 (13)
C17—C16—H16A 109.2 C115—C116—H116 119.8
C15—C16—H16A 109.2 C111—C116—H116 119.8
C6—C1—C2—C3 1.73 (18) C13—N12—C11—C1 179.22 (10)
C11—C1—C2—C3 −177.93 (11) C6—C1—C11—O11 −167.75 (11)
C31—O3—C3—C2 −0.16 (17) C2—C1—C11—O11 11.89 (17)
C31—O3—C3—C4 178.57 (11) C6—C1—C11—N12 13.05 (17)
C1—C2—C3—O3 176.80 (11) C2—C1—C11—N12 −167.30 (11)
C1—C2—C3—C4 −1.87 (18) C11—N12—C13—C14 −112.80 (13)
C41—O4—C4—C3 67.59 (16) N12—C13—C14—C15 66.85 (14)
C41—O4—C4—C5 −118.62 (13) C13—C14—C15—C16 −179.75 (11)
O3—C3—C4—O4 −4.78 (17) C14—C15—C16—C17 −175.06 (11)
C2—C3—C4—O4 174.01 (11) C15—C16—C17—C18 175.02 (11)
O3—C3—C4—C5 −178.49 (11) C111—N19—C18—C17 172.76 (11)
C2—C3—C4—C5 0.30 (18) C16—C17—C18—N19 67.90 (15)
C51—O5—C5—C6 −11.14 (18) C18—N19—C111—C116 7.44 (18)
C51—O5—C5—C4 170.38 (11) C18—N19—C111—C112 −174.08 (11)
O4—C4—C5—O5 6.04 (16) N19—C111—C112—C113 −179.39 (12)
C3—C4—C5—O5 179.96 (11) C116—C111—C112—C113 −0.86 (18)
O4—C4—C5—C6 −172.51 (11) C111—C112—C113—C114 −0.06 (19)
C3—C4—C5—C6 1.41 (18) C112—C113—C114—C115 0.76 (19)
C2—C1—C6—C5 −0.02 (18) C113—C114—C115—C116 −0.52 (19)
C11—C1—C6—C5 179.62 (11) C114—C115—C116—C111 −0.41 (19)
O5—C5—C6—C1 −179.95 (11) N19—C111—C116—C115 179.61 (12)
C4—C5—C6—C1 −1.55 (18) C112—C111—C116—C115 1.09 (18)
C13—N12—C11—O11 0.05 (18)

(2) N-(6-Anilinohexyl)-3,4,5-trimethoxybenzamide . Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C111–C116 ring.

D—H···A D—H H···A D···A D—H···A
N12—H12···O11i 0.867 (17) 2.052 (17) 2.9051 (14) 167.9 (15)
N19—H19···O4i 0.855 (17) 2.106 (17) 2.9436 (15) 166.3 (15)
C6—H6···O11i 0.95 2.33 3.2356 (15) 159
C41—H41C···O3 0.98 2.33 2.9287 (18) 119
C112—H112···O4i 0.95 2.65 3.3845 (16) 134
C13—H13A···Cgii 0.99 2.64 3.5272 (15) 148
C31—H31C···Cgiii 0.98 2.62 3.5205 (16) 152

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) −x, y−1/2, −z+3/2.

(3) N-(6,6-Diethoxyhexyl)-3,4,5-trimethoxybenzamide . Crystal data

C20H33NO6 F(000) = 832
Mr = 383.47 Dx = 1.236 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.5418 Å
a = 24.6345 (18) Å Cell parameters from 18993 reflections
b = 8.4646 (5) Å θ = 3.7–68.3°
c = 10.0598 (7) Å µ = 0.74 mm1
β = 100.851 (2)° T = 100 K
V = 2060.2 (2) Å3 Needle, colourless
Z = 4 0.80 × 0.05 × 0.02 mm

(3) N-(6,6-Diethoxyhexyl)-3,4,5-trimethoxybenzamide . Data collection

Rigaku Saturn944+ diffractometer 3706 independent reflections
Radiation source: Sealed Tube 3362 reflections with I > 2σ(I)
Confocal monochromator Rint = 0.037
Detector resolution: 22.2222 pixels mm-1 θmax = 68.2°, θmin = 3.7°
profile data from ω–scans h = −29→28
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2012) k = −10→10
Tmin = 0.814, Tmax = 1.000 l = −8→11
18993 measured reflections

(3) N-(6,6-Diethoxyhexyl)-3,4,5-trimethoxybenzamide . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.704P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.004
3706 reflections Δρmax = 0.23 e Å3
253 parameters Δρmin = −0.28 e Å3

(3) N-(6,6-Diethoxyhexyl)-3,4,5-trimethoxybenzamide . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(3) N-(6,6-Diethoxyhexyl)-3,4,5-trimethoxybenzamide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 0.06047 (3) 1.01933 (10) 0.47561 (8) 0.0216 (2)
O4 0.04431 (3) 1.17888 (10) 0.24751 (9) 0.0238 (2)
O5 0.11083 (4) 1.13704 (10) 0.06165 (9) 0.0262 (2)
O11 0.23438 (3) 0.69400 (9) 0.48281 (8) 0.01775 (19)
O18 0.38282 (3) 0.03224 (10) 0.56738 (8) 0.0217 (2)
O19 0.38224 (3) −0.19607 (9) 0.43634 (8) 0.0226 (2)
N12 0.23993 (4) 0.67500 (11) 0.26098 (10) 0.0171 (2)
H12 0.2298 (6) 0.7133 (18) 0.1814 (16) 0.026 (4)*
C1 0.17484 (4) 0.85971 (13) 0.32763 (11) 0.0151 (2)
C2 0.14072 (4) 0.88484 (13) 0.42145 (11) 0.0161 (2)
H2 0.1476 0.8305 0.5056 0.019*
C3 0.09662 (5) 0.98949 (13) 0.39175 (12) 0.0171 (2)
C4 0.08646 (5) 1.07014 (13) 0.26822 (12) 0.0189 (3)
C5 0.12200 (5) 1.04740 (13) 0.17665 (12) 0.0192 (3)
C6 0.16583 (5) 0.94151 (13) 0.20520 (12) 0.0171 (2)
H6 0.1894 0.9251 0.1418 0.020*
C11 0.21940 (4) 0.73742 (13) 0.36342 (11) 0.0144 (2)
C13 0.27693 (5) 0.53875 (13) 0.27617 (12) 0.0179 (2)
H13A 0.2870 0.5098 0.3730 0.021*
H13B 0.3113 0.5663 0.2437 0.021*
C14 0.24913 (5) 0.39825 (14) 0.19562 (12) 0.0191 (3)
H14A 0.2363 0.4312 0.1005 0.023*
H14B 0.2162 0.3672 0.2328 0.023*
C15 0.28700 (5) 0.25481 (13) 0.19823 (12) 0.0191 (3)
H15A 0.2683 0.1758 0.1327 0.023*
H15B 0.3211 0.2882 0.1675 0.023*
C16 0.30308 (5) 0.17604 (13) 0.33596 (12) 0.0200 (3)
H16A 0.2693 0.1481 0.3705 0.024*
H16B 0.3248 0.2510 0.4005 0.024*
C17 0.33722 (5) 0.02709 (14) 0.32709 (12) 0.0201 (3)
H17A 0.3159 −0.0450 0.2591 0.024*
H17B 0.3715 0.0566 0.2952 0.024*
C18 0.35258 (5) −0.06007 (13) 0.46037 (12) 0.0195 (3)
H18 0.3176 −0.0952 0.4882 0.023*
C31 0.07377 (5) 0.95685 (17) 0.60957 (12) 0.0262 (3)
H31A 0.0722 0.8412 0.6058 0.039*
H31B 0.0472 0.9961 0.6629 0.039*
H31C 0.1111 0.9903 0.6520 0.039*
C41 0.00213 (5) 1.15608 (16) 0.12914 (13) 0.0277 (3)
H41A 0.0158 1.1922 0.0489 0.042*
H41B −0.0308 1.2168 0.1384 0.042*
H41C −0.0073 1.0437 0.1195 0.042*
C51 0.14099 (6) 1.10167 (16) −0.04275 (13) 0.0270 (3)
H51A 0.1373 0.9890 −0.0651 0.041*
H51B 0.1801 1.1273 −0.0114 0.041*
H51C 0.1263 1.1644 −0.1234 0.041*
C110 0.38838 (6) −0.30686 (15) 0.54572 (13) 0.0267 (3)
H11A 0.3517 −0.3427 0.5601 0.032*
H11B 0.4081 −0.2572 0.6303 0.032*
C111 0.42100 (6) −0.44433 (16) 0.50818 (15) 0.0331 (3)
H11C 0.4018 −0.4900 0.4227 0.050*
H11D 0.4248 −0.5245 0.5796 0.050*
H11E 0.4578 −0.4081 0.4978 0.050*
C181 0.43434 (5) 0.09299 (16) 0.54379 (13) 0.0272 (3)
H18A 0.4279 0.1870 0.4843 0.033*
H18B 0.4536 0.0120 0.4988 0.033*
C182 0.46903 (6) 0.13715 (18) 0.67851 (15) 0.0368 (3)
H18C 0.5043 0.1814 0.6645 0.055*
H18D 0.4760 0.0429 0.7357 0.055*
H18E 0.4493 0.2159 0.7229 0.055*

(3) N-(6,6-Diethoxyhexyl)-3,4,5-trimethoxybenzamide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0169 (4) 0.0288 (5) 0.0197 (4) 0.0044 (3) 0.0051 (3) −0.0042 (3)
O4 0.0213 (4) 0.0219 (4) 0.0258 (5) 0.0092 (3) −0.0019 (4) −0.0044 (3)
O5 0.0329 (5) 0.0246 (4) 0.0216 (5) 0.0120 (4) 0.0065 (4) 0.0075 (3)
O11 0.0182 (4) 0.0221 (4) 0.0131 (4) 0.0027 (3) 0.0032 (3) 0.0022 (3)
O18 0.0215 (4) 0.0241 (4) 0.0199 (4) 0.0029 (3) 0.0046 (3) −0.0016 (3)
O19 0.0260 (5) 0.0182 (4) 0.0241 (5) 0.0061 (3) 0.0057 (4) 0.0015 (3)
N12 0.0197 (5) 0.0192 (5) 0.0127 (5) 0.0055 (4) 0.0035 (4) 0.0021 (4)
C1 0.0139 (5) 0.0148 (5) 0.0158 (6) −0.0014 (4) 0.0005 (4) −0.0028 (4)
C2 0.0157 (5) 0.0174 (5) 0.0146 (6) −0.0016 (4) 0.0014 (4) −0.0022 (4)
C3 0.0146 (5) 0.0181 (5) 0.0185 (6) −0.0017 (4) 0.0029 (4) −0.0067 (4)
C4 0.0173 (6) 0.0153 (5) 0.0228 (6) 0.0027 (4) 0.0002 (5) −0.0039 (4)
C5 0.0229 (6) 0.0160 (5) 0.0174 (6) 0.0012 (4) 0.0003 (5) 0.0003 (4)
C6 0.0184 (6) 0.0170 (5) 0.0159 (6) 0.0004 (4) 0.0035 (4) −0.0012 (4)
C11 0.0141 (5) 0.0148 (5) 0.0144 (6) −0.0029 (4) 0.0031 (4) −0.0001 (4)
C13 0.0185 (6) 0.0195 (6) 0.0159 (6) 0.0056 (4) 0.0035 (4) 0.0014 (4)
C14 0.0193 (6) 0.0206 (6) 0.0170 (6) 0.0028 (5) 0.0027 (4) 0.0020 (5)
C15 0.0220 (6) 0.0181 (6) 0.0176 (6) 0.0016 (5) 0.0047 (5) −0.0002 (4)
C16 0.0230 (6) 0.0192 (6) 0.0184 (6) 0.0023 (5) 0.0052 (5) 0.0012 (5)
C17 0.0220 (6) 0.0195 (6) 0.0197 (6) 0.0021 (5) 0.0057 (5) −0.0003 (5)
C18 0.0192 (6) 0.0183 (6) 0.0215 (6) 0.0031 (4) 0.0047 (5) 0.0000 (5)
C31 0.0202 (6) 0.0405 (7) 0.0187 (6) 0.0043 (5) 0.0056 (5) −0.0041 (5)
C41 0.0209 (6) 0.0321 (7) 0.0272 (7) 0.0078 (5) −0.0029 (5) −0.0017 (5)
C51 0.0333 (7) 0.0288 (6) 0.0192 (6) 0.0083 (5) 0.0057 (5) 0.0070 (5)
C110 0.0304 (7) 0.0231 (6) 0.0253 (7) 0.0039 (5) 0.0021 (5) 0.0056 (5)
C111 0.0338 (8) 0.0244 (7) 0.0391 (8) 0.0077 (6) 0.0014 (6) 0.0037 (6)
C181 0.0264 (7) 0.0269 (6) 0.0292 (7) −0.0011 (5) 0.0078 (5) −0.0020 (5)
C182 0.0327 (8) 0.0382 (8) 0.0360 (8) −0.0058 (6) −0.0028 (6) 0.0007 (6)

(3) N-(6,6-Diethoxyhexyl)-3,4,5-trimethoxybenzamide . Geometric parameters (Å, º)

O3—C3 1.3606 (14) C15—H15A 0.9900
O3—C31 1.4272 (15) C15—H15B 0.9900
O4—C4 1.3738 (14) C16—C17 1.5274 (15)
O4—C41 1.4385 (15) C16—H16A 0.9900
O5—C5 1.3675 (14) C16—H16B 0.9900
O5—C51 1.4279 (15) C17—C18 1.5146 (16)
O11—C11 1.2438 (14) C17—H17A 0.9900
O18—C18 1.4220 (14) C17—H17B 0.9900
O18—C181 1.4302 (15) C18—H18 1.0000
O19—C18 1.4085 (14) C31—H31A 0.9800
O19—C110 1.4319 (15) C31—H31B 0.9800
N12—C11 1.3390 (15) C31—H31C 0.9800
N12—C13 1.4602 (14) C41—H41A 0.9800
N12—H12 0.856 (16) C41—H41B 0.9800
C1—C2 1.3932 (16) C41—H41C 0.9800
C1—C6 1.3938 (16) C51—H51A 0.9800
C1—C11 1.5024 (15) C51—H51B 0.9800
C2—C3 1.3901 (16) C51—H51C 0.9800
C2—H2 0.9500 C110—C111 1.5023 (18)
C3—C4 1.3986 (17) C110—H11A 0.9900
C4—C5 1.3985 (17) C110—H11B 0.9900
C5—C6 1.3909 (16) C111—H11C 0.9800
C6—H6 0.9500 C111—H11D 0.9800
C13—C14 1.5268 (16) C111—H11E 0.9800
C13—H13A 0.9900 C181—C182 1.507 (2)
C13—H13B 0.9900 C181—H18A 0.9900
C14—C15 1.5284 (15) C181—H18B 0.9900
C14—H14A 0.9900 C182—H18C 0.9800
C14—H14B 0.9900 C182—H18D 0.9800
C15—C16 1.5214 (16) C182—H18E 0.9800
C3—O3—C31 117.13 (9) C18—C17—H17A 108.9
C4—O4—C41 116.31 (9) C16—C17—H17A 108.9
C5—O5—C51 117.14 (9) C18—C17—H17B 108.9
C18—O18—C181 115.25 (9) C16—C17—H17B 108.9
C18—O19—C110 112.74 (9) H17A—C17—H17B 107.7
C11—N12—C13 123.36 (10) O19—C18—O18 111.37 (9)
C11—N12—H12 118.9 (10) O19—C18—C17 107.31 (9)
C13—N12—H12 117.7 (10) O18—C18—C17 114.24 (9)
C2—C1—C6 120.44 (10) O19—C18—H18 107.9
C2—C1—C11 116.72 (10) O18—C18—H18 107.9
C6—C1—C11 122.80 (10) C17—C18—H18 107.9
C3—C2—C1 119.90 (10) O3—C31—H31A 109.5
C3—C2—H2 120.0 O3—C31—H31B 109.5
C1—C2—H2 120.0 H31A—C31—H31B 109.5
O3—C3—C2 124.15 (10) O3—C31—H31C 109.5
O3—C3—C4 115.58 (10) H31A—C31—H31C 109.5
C2—C3—C4 120.26 (10) H31B—C31—H31C 109.5
O4—C4—C5 122.78 (11) O4—C41—H41A 109.5
O4—C4—C3 117.74 (10) O4—C41—H41B 109.5
C5—C4—C3 119.25 (10) H41A—C41—H41B 109.5
O5—C5—C6 123.85 (11) O4—C41—H41C 109.5
O5—C5—C4 115.44 (10) H41A—C41—H41C 109.5
C6—C5—C4 120.70 (11) H41B—C41—H41C 109.5
C5—C6—C1 119.40 (10) O5—C51—H51A 109.5
C5—C6—H6 120.3 O5—C51—H51B 109.5
C1—C6—H6 120.3 H51A—C51—H51B 109.5
O11—C11—N12 122.70 (10) O5—C51—H51C 109.5
O11—C11—C1 120.36 (10) H51A—C51—H51C 109.5
N12—C11—C1 116.88 (10) H51B—C51—H51C 109.5
N12—C13—C14 110.54 (9) O19—C110—C111 107.35 (11)
N12—C13—H13A 109.5 O19—C110—H11A 110.2
C14—C13—H13A 109.5 C111—C110—H11A 110.2
N12—C13—H13B 109.5 O19—C110—H11B 110.2
C14—C13—H13B 109.5 C111—C110—H11B 110.2
H13A—C13—H13B 108.1 H11A—C110—H11B 108.5
C13—C14—C15 113.47 (9) C110—C111—H11C 109.5
C13—C14—H14A 108.9 C110—C111—H11D 109.5
C15—C14—H14A 108.9 H11C—C111—H11D 109.5
C13—C14—H14B 108.9 C110—C111—H11E 109.5
C15—C14—H14B 108.9 H11C—C111—H11E 109.5
H14A—C14—H14B 107.7 H11D—C111—H11E 109.5
C16—C15—C14 114.66 (9) O18—C181—C182 108.10 (11)
C16—C15—H15A 108.6 O18—C181—H18A 110.1
C14—C15—H15A 108.6 C182—C181—H18A 110.1
C16—C15—H15B 108.6 O18—C181—H18B 110.1
C14—C15—H15B 108.6 C182—C181—H18B 110.1
H15A—C15—H15B 107.6 H18A—C181—H18B 108.4
C15—C16—C17 111.13 (9) C181—C182—H18C 109.5
C15—C16—H16A 109.4 C181—C182—H18D 109.5
C17—C16—H16A 109.4 H18C—C182—H18D 109.5
C15—C16—H16B 109.4 C181—C182—H18E 109.5
C17—C16—H16B 109.4 H18C—C182—H18E 109.5
H16A—C16—H16B 108.0 H18D—C182—H18E 109.5
C18—C17—C16 113.51 (10)
C6—C1—C2—C3 1.44 (16) C11—C1—C6—C5 176.84 (10)
C11—C1—C2—C3 −176.27 (10) C13—N12—C11—O11 7.15 (17)
C31—O3—C3—C2 9.59 (16) C13—N12—C11—C1 −170.25 (10)
C31—O3—C3—C4 −171.49 (10) C2—C1—C11—O11 −18.88 (15)
C1—C2—C3—O3 178.65 (10) C6—C1—C11—O11 163.47 (10)
C1—C2—C3—C4 −0.23 (16) C2—C1—C11—N12 158.58 (10)
C41—O4—C4—C5 61.51 (15) C6—C1—C11—N12 −19.07 (15)
C41—O4—C4—C3 −124.05 (12) C11—N12—C13—C14 114.65 (12)
O3—C3—C4—O4 4.74 (15) N12—C13—C14—C15 175.72 (9)
C2—C3—C4—O4 −176.30 (10) C13—C14—C15—C16 67.27 (13)
O3—C3—C4—C5 179.37 (10) C14—C15—C16—C17 175.71 (10)
C2—C3—C4—C5 −1.66 (17) C15—C16—C17—C18 −177.76 (10)
C51—O5—C5—C6 9.66 (17) C110—O19—C18—O18 67.61 (12)
C51—O5—C5—C4 −171.35 (11) C110—O19—C18—C17 −166.69 (10)
O4—C4—C5—O5 −2.29 (16) C181—O18—C18—O19 62.01 (12)
C3—C4—C5—O5 −176.64 (10) C181—O18—C18—C17 −59.76 (13)
O4—C4—C5—C6 176.74 (10) C16—C17—C18—O19 178.26 (9)
C3—C4—C5—C6 2.39 (17) C16—C17—C18—O18 −57.77 (13)
O5—C5—C6—C1 177.74 (10) C18—O19—C110—C111 −179.38 (10)
C4—C5—C6—C1 −1.20 (17) C18—O18—C181—C182 −160.85 (10)
C2—C1—C6—C5 −0.72 (16)

(3) N-(6,6-Diethoxyhexyl)-3,4,5-trimethoxybenzamide . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N12—H12···O11i 0.856 (16) 2.169 (16) 2.9890 (13) 160.2 (14)
C6—H6···O11i 0.95 2.34 3.2549 (14) 162
C15—H15B···O18ii 0.99 2.49 3.4239 (14) 157

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+1/2, z−1/2.

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.
  2. Benfeito, S., Oliveira, C., Soares, P., Fernandes, C., Silva, T., Teixeira, J. & Borges, F. (2013). Mitochondrion, 13, 427–435. [DOI] [PubMed]
  3. Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.
  4. Dillen, J., Woldu, M. G. & Koch, K. R. (2006). Acta Cryst. E62, o5225–o5227.
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Garrido, J. & Borges, F. (2013). Food. Res. Int. 54, 1844–1858.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 303–309.
  11. Oszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134–141. [DOI] [PubMed]
  12. Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.
  13. Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517–4525.
  14. Roleira, F. M. F., Tavares-da-Silva, E. J., Varela, C. L., Costa, S. C., Silva, T., Garrido, J. & Borges, F. (2015). Food Chem. 183, 235–258. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Sun, Y.-F., Sun, X.-Z., Li, J.-K. & Zheng, Z.-B. (2007). Acta Cryst. E63, o2180–o2181.
  19. Teixeira, J., Silva, T., Andrade, P. B. & Borges, F. (2013). Curr. Med. Chem. 20, 2939–2952. [DOI] [PubMed]
  20. Tsuzuki, S., Houjou, H., Nagawa, & Hiratani, K. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 1271–1273.
  21. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2, 3, global. DOI: 10.1107/S2056989016005958/hb7575sup1.cif

e-72-00675-sup1.cif (2.9MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989016005958/hb75751sup2.hkl

e-72-00675-1sup2.hkl (289.4KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989016005958/hb75752sup3.hkl

e-72-00675-2sup3.hkl (370.5KB, hkl)

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989016005958/hb75753sup4.hkl

e-72-00675-3sup4.hkl (295.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016005958/hb75751sup5.cml

Supporting information file. DOI: 10.1107/S2056989016005958/hb75752sup6.cml

Supporting information file. DOI: 10.1107/S2056989016005958/hb75753sup7.cml

Supporting information file. DOI: 10.1107/S2056989016005958/hb7575sup8.pdf

e-72-00675-sup8.pdf (73.8KB, pdf)

Supporting information file. DOI: 10.1107/S2056989016005958/hb7575sup9.pdf

e-72-00675-sup9.pdf (131.4KB, pdf)

CCDC references: 1473261, 1473260, 1473259

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES