Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Apr 8;72(Pt 5):639–642. doi: 10.1107/S2056989016005259

Crystal structure of the co-crystal of 5-amino­isophthalic acid and 1,2-bis(pyridin-4-yl)ethene

Scott C McGuire a, Steven C Travis a, Daniel W Tuohey a, Thomas J Deering a, Bob Martin b, Jordan M Cox a, Jason B Benedict c,*
PMCID: PMC4908539  PMID: 27308008

The supra­molecular structure of the title 1:1 co-crystal consists of (100) sheets linked by O—H⋯N and N—H⋯O hydrogen bonds.

Keywords: crystal structure; 5-aminoisophthalic acid; 5AIA; 1,2-bis(pyridin-4-yl)ethene (BE); co-crystal; hydrogen bonding

Abstract

In the title 1:1 co-crystal, C12H10N2·C8H7NO4, the bi­pyridine moiety shows whole-mol­ecule disorder over two sets of sites in a 0.588 (3): 0.412 (3) ratio. In the crystal, the components form hydrogen-bonded sheets linked by N—H⋯O and O—H⋯N inter­actions, which stack along the a axis. A comparison to a related and previously published co-crystal of 5-amino-isophthalic acid and the shorter 4,4′-bipryidine is presented.

Chemical context  

5-Amino-isophthalic acid (5AIA) is an emerging secondary building unit for a wide variety of metal–organic frameworks (MOFs). (Zeng et al., 2009; Wang et al., 2011; Cox et al., 2015) This compound is also a convenient precursor for the synthesis of azo-derivatized framework ligands, a key component in the rapidly evolving field of photochromic MOFs. (Brown et al., 2013; Castellanos et al., 2016; Walton et al., 2013; Patel et al., 2014). Similarly, 1,2-bis(pyridin-4-yl)ethene (BE) is also commonly used in MOF synthesis; however, it is routinely used in co-crystal engineering as well (Kongshaug & Fjellvag, 2003; MacGillivray et al., 2008; Desiraju, 1995) The 5AIA–BE co-crystal presented herein was produced as part of an undergraduate physical chemistry laboratory experiment developed by Jason Benedict.graphic file with name e-72-00639-scheme1.jpg

Recently, the co-crystal structure of 5AIA and 4,4′-bi­pyridine (BP), a shorter analogue of BE, was reported (Zhang et al., 2009). Unlike many MOFs in which different length linkers lead to isorecticular structures (Eddaoudi et al., 2002), the 5AIA–BP co-crystal exhibits several notable similarities and differences when compared to 5AIA–BE. As shown in Figs. 4, 5AIA forms hydrogen bonds with two 5AIA mol­ecules and two BP mol­ecules. The 5AIA–BP inter­actions and one of the 5AIA–5AIA inter­actions are similar to those found in 5AIA–BE. The remaining 5AIA–5AIA inter­action in 5AIA–BP consists solely of an N(amine)–H⋯OH hydrogen bond, as opposed to the N(amine)—H⋯O=C inter­action found in 5AIA–BP. Inter­estingly, this results in a total of five hydrogen bonds in the 5AIA–BP structure compared to the six hydrogen bonds observed in 5AIA–BE.

Structural commentary  

The 5AIA–BE co-crystal crystallizes with one mol­ecule of 5AIA and one mol­ecule of BE in the asymmetric unit (Fig. 1). Both mol­ecules are effectively planar in the solid state (r.m.s. deviation for 5AIA = 0.155 Å). The BE moiety shows whole mol­ecule disorder over two sets of sites, consistent with a local C2 rotation about the long axis of the mol­ecule. The occupancy of the major and minor components was refined to be 0.588 (3) and 0.412 (3), respectively.

Figure 1.

Figure 1

The asymmetric unit of the title compound, showing the numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Supra­molecular features  

In this structure, the 5AIA mol­ecule forms hydrogen bonds to both itself and the BE moiety, forming extended sheets (Table 1 and Fig. 2). The 5AIA–5AIA inter­actions consist of N(amine)—H⋯O=C hydrogen bonds where each 5AIA makes two hydrogen bonds with two neighboring 5AIA mol­ecules. The 5AIA–BE inter­action consists of an O—H⋯N(pyrid­yl) hydrogen bond such that each 5AIA makes one hydrogen bond with two neighboring BE mol­ecules. The sheets formed by these inter­actions stack along the the a axis to produce a layered structure (Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.899 (17) 2.062 (17) 2.9540 (13) 171.0 (15)
N1—H1B⋯O3ii 0.894 (17) 2.157 (17) 3.0500 (13) 178.6 (13)
O2—H2⋯N3iii 0.989 (19) 1.70 (2) 2.688 (8) 173.4 (18)
O2—H2⋯N3A iii 0.989 (19) 1.63 (2) 2.619 (12) 177 (2)
O4—H4⋯N2iv 0.98 (2) 1.72 (2) 2.702 (7) 173.2 (19)
O4—H4⋯N2A iv 0.98 (2) 1.59 (2) 2.566 (11) 175 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

Diagram illustrating the hydrogen-bonding inter­actions present in the two-dimensional sheets found in the 5AIA–BE co-crystal.

Figure 3.

Figure 3

View down [001] showing the (100) sheets in the extended structure of the title compound.

Database survey  

Recently, the co-crystal structure of 5AIA and 4,4′-bi­pyridine (BP), a shorter analogue of BE, was reported (Zhang et al., 2009). Unlike many MOFs in which different length linkers lead to isorecticular structures (Eddaoudi et al., 2002), the 5AIA–BP co-crystal exhibits several notable similarites and differences when compared to 5AIA–BE. As shown in Figs. 4, 5AIA forms hydrogen bonds with two 5AIA mol­ecules and two BP mol­ecules. The 5AIA–BP inter­actions and one of the 5AIA–5AIA inter­actions are similar to those found in 5AIA–BE. The remaining 5AIA–5AIA inter­action in 5AIA–BP consists solely of an N(amine)—H⋯OH hydrogen bond, as opposed to the N(amine)—H⋯O=C inter­action found in 5AIA–BP. Inter­estingly, this results in a total of five hydrogen bonds in the 5AIA–BP structure compared to the six hydrogen bonds observed in 5AIA–BE.

Figure 4.

Figure 4

Diagram illustrating the hydrogen bonding inter­actions present in the previously reported 5AIA–BP co-crystal.

Synthesis and crystallization  

Solid BE (0.0119 g, 6.53 × 10−5 mol) and 5AIA (0.0109 g, 6.02 × 10−5 mol) were added to a 25 ml scintillation vial. To this was added approximately 15 ml of ethyl acetate followed by gentle heating. An additional 2 ml of methanol was added and all remaining solids dissolved. The loosely capped vial was then placed into a dark cabinet. After two weeks, yellow block-shaped crystals of the title compound suitable for single-crystal X-ray diffraction measurements were obtained.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Heteroatom hydrogen atoms were located in difference electron-density maps and freely refined. Hydrogen atoms attached to carbon atoms were refined using riding models with C—H = 0.95 Å and U iso(H) = 1.2U eq(C). The BE was found to be disordered over two sets of sites in a 0.588 (3): 0.412 (3) ratio.

Table 2. Experimental details.

Crystal data
Chemical formula C12H10N2·C8H7NO4
M r 363.36
Crystal system, space group Monoclinic, P21/n
Temperature (K) 90
a, b, c (Å) 10.1614 (10), 12.0782 (12), 14.0537 (14)
β (°) 95.027 (2)
V3) 1718.2 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.22 × 0.2 × 0.18
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.683, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 24372, 6546, 4519
R int 0.033
(sin θ/λ)max−1) 0.771
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.047, 0.143, 1.02
No. of reflections 6546
No. of parameters 378
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.24

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015), SHELXL2014 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016005259/hb7561sup1.cif

e-72-00639-sup1.cif (445.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016005259/hb7561Isup2.hkl

e-72-00639-Isup2.hkl (358.7KB, hkl)

CCDC reference: 1471029

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This material is based upon work supported by the National Science Foundation under grant No. DMR-1455039.

supplementary crystallographic information

Crystal data

C12H10N2·C8H7NO4 F(000) = 760
Mr = 363.36 Dx = 1.405 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.1614 (10) Å Cell parameters from 428 reflections
b = 12.0782 (12) Å θ = 2.8–22.0°
c = 14.0537 (14) Å µ = 0.10 mm1
β = 95.027 (2)° T = 90 K
V = 1718.2 (3) Å3 Block, yellow
Z = 4 0.22 × 0.2 × 0.18 mm

Data collection

Bruker SMART APEXII CCD diffractometer 6546 independent reflections
Radiation source: microfocus rotating anode, Incoatec Iµs 4519 reflections with I > 2σ(I)
Mirror optics monochromator Rint = 0.033
Detector resolution: 7.9 pixels mm-1 θmax = 33.2°, θmin = 2.2°
ω scans h = −15→15
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −16→18
Tmin = 0.683, Tmax = 0.747 l = −19→21
24372 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0727P)2 + 0.2884P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
6546 reflections Δρmax = 0.40 e Å3
378 parameters Δρmin = −0.24 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.21821 (10) 0.91797 (6) 0.42759 (6) 0.0299 (2)
O2 0.18838 (9) 0.81890 (6) 0.55840 (5) 0.02654 (18)
H2 0.1646 (19) 0.8932 (16) 0.5810 (13) 0.058 (5)*
O3 0.35542 (10) 0.33662 (6) 0.42624 (6) 0.0309 (2)
O4 0.35891 (9) 0.43117 (6) 0.56369 (5) 0.02640 (18)
H4 0.388 (2) 0.3606 (16) 0.5933 (14) 0.064 (6)*
N1 0.27113 (12) 0.63283 (8) 0.17186 (7) 0.0291 (2)
H1A 0.2656 (17) 0.5692 (14) 0.1385 (12) 0.043 (4)*
H1B 0.2351 (16) 0.6925 (14) 0.1424 (11) 0.040 (4)*
C1 0.27076 (11) 0.62966 (8) 0.26981 (7) 0.02010 (19)
C2 0.29909 (11) 0.53166 (8) 0.32097 (7) 0.02032 (19)
H2A 0.3164 0.4657 0.2874 0.024*
C3 0.30223 (10) 0.52951 (8) 0.42012 (7) 0.01921 (19)
C4 0.27368 (11) 0.62462 (8) 0.47130 (7) 0.01990 (19)
H4A 0.2728 0.6226 0.5388 0.024*
C5 0.24644 (10) 0.72289 (8) 0.42033 (7) 0.01881 (19)
C6 0.24657 (10) 0.72561 (8) 0.32144 (7) 0.01947 (19)
H6 0.2300 0.7935 0.2884 0.023*
C7 0.21669 (11) 0.82903 (8) 0.46877 (7) 0.0211 (2)
C8 0.34070 (11) 0.42315 (8) 0.46985 (7) 0.0215 (2)
C18 0.89056 (13) 0.89912 (9) 0.43551 (9) 0.0306 (3)
H18 0.8831 0.9091 0.5019 0.037* 0.588 (3)
H18A 0.8865 0.9167 0.5011 0.037* 0.412 (3)
N2 0.9309 (8) 0.2578 (6) 0.1571 (3) 0.0206 (8) 0.588 (3)
N3 0.8888 (10) 0.9864 (5) 0.3724 (9) 0.0203 (11) 0.588 (3)
C9 0.9283 (3) 0.3491 (2) 0.1046 (2) 0.0259 (5) 0.588 (3)
H9 0.9195 0.3426 0.0370 0.031* 0.588 (3)
C10 0.9382 (2) 0.45426 (16) 0.1453 (2) 0.0246 (4) 0.588 (3)
H10 0.9393 0.5181 0.1058 0.029* 0.588 (3)
C11 0.94634 (18) 0.46501 (16) 0.24375 (18) 0.0202 (4) 0.588 (3)
C12 0.9527 (2) 0.36771 (18) 0.29764 (18) 0.0260 (5) 0.588 (3)
H12 0.9624 0.3709 0.3654 0.031* 0.588 (3)
C13 0.9446 (4) 0.2666 (3) 0.2511 (2) 0.0240 (6) 0.588 (3)
H13 0.9491 0.2008 0.2883 0.029* 0.588 (3)
C14 0.9425 (2) 0.57258 (15) 0.29274 (13) 0.0245 (5) 0.588 (3)
H14 0.9538 0.5724 0.3606 0.029* 0.588 (3)
C15 0.9246 (2) 0.66976 (15) 0.24941 (15) 0.0241 (4) 0.588 (3)
H15 0.9170 0.6692 0.1816 0.029* 0.588 (3)
C16 0.9152 (3) 0.7790 (2) 0.2963 (2) 0.0182 (5) 0.588 (3)
C17 0.9045 (7) 0.7916 (5) 0.3934 (2) 0.0242 (8) 0.588 (3)
H17 0.9064 0.7278 0.4330 0.029* 0.588 (3)
C19 0.9010 (9) 0.9740 (6) 0.2814 (5) 0.0214 (8) 0.588 (3)
H19 0.8997 1.0381 0.2422 0.026* 0.588 (3)
C20 0.9153 (4) 0.8733 (3) 0.2402 (3) 0.0244 (6) 0.588 (3)
H20 0.9254 0.8678 0.1738 0.029* 0.588 (3)
C17A 0.9027 (10) 0.7907 (7) 0.4220 (4) 0.0258 (10) 0.412 (3)
H17A 0.9026 0.7388 0.4728 0.031* 0.412 (3)
C9A 0.9486 (4) 0.3433 (3) 0.0717 (3) 0.0219 (7) 0.412 (3)
H9A 0.9550 0.3259 0.0064 0.026* 0.412 (3)
C20A 0.9161 (6) 0.8429 (4) 0.2607 (4) 0.0260 (11) 0.412 (3)
H20A 0.9275 0.8265 0.1958 0.031* 0.412 (3)
N2A 0.9319 (11) 0.2579 (10) 0.1328 (4) 0.0202 (10) 0.412 (3)
N3A 0.8830 (15) 0.9861 (9) 0.3829 (13) 0.025 (2) 0.412 (3)
C19A 0.8995 (15) 0.9532 (9) 0.2902 (9) 0.034 (2) 0.412 (3)
H19A 0.8996 1.0094 0.2428 0.040* 0.412 (3)
C10A 0.9569 (3) 0.4532 (2) 0.0982 (3) 0.0243 (6) 0.412 (3)
H10A 0.9663 0.5087 0.0514 0.029* 0.412 (3)
C11A 0.9515 (3) 0.4826 (2) 0.1934 (3) 0.0195 (6) 0.412 (3)
C12A 0.9434 (3) 0.3974 (3) 0.2586 (3) 0.0250 (6) 0.412 (3)
H12A 0.9448 0.4125 0.3250 0.030* 0.412 (3)
C13A 0.9330 (6) 0.2880 (4) 0.2245 (4) 0.0293 (10) 0.412 (3)
H13A 0.9262 0.2309 0.2703 0.035* 0.412 (3)
C14A 0.9493 (3) 0.6007 (2) 0.21878 (19) 0.0235 (6) 0.412 (3)
H14A 0.9676 0.6526 0.1709 0.028* 0.412 (3)
C15A 0.9237 (3) 0.6405 (2) 0.3033 (2) 0.0226 (6) 0.412 (3)
H15A 0.9095 0.5884 0.3521 0.027* 0.412 (3)
C16A 0.9155 (4) 0.7585 (4) 0.3276 (3) 0.0186 (7) 0.412 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0508 (6) 0.0126 (3) 0.0286 (4) 0.0008 (3) 0.0170 (4) −0.0002 (3)
O2 0.0459 (5) 0.0155 (3) 0.0195 (3) 0.0059 (3) 0.0096 (3) −0.0016 (3)
O3 0.0510 (6) 0.0143 (3) 0.0270 (4) 0.0041 (3) 0.0012 (4) −0.0046 (3)
O4 0.0438 (5) 0.0149 (3) 0.0201 (3) 0.0063 (3) 0.0006 (3) −0.0003 (3)
N1 0.0510 (7) 0.0180 (4) 0.0186 (4) 0.0067 (4) 0.0058 (4) −0.0018 (3)
C1 0.0246 (5) 0.0175 (4) 0.0187 (4) 0.0010 (4) 0.0046 (4) −0.0022 (3)
C2 0.0255 (5) 0.0148 (4) 0.0210 (4) 0.0017 (4) 0.0039 (4) −0.0038 (3)
C3 0.0242 (5) 0.0130 (4) 0.0206 (4) 0.0003 (3) 0.0030 (4) −0.0012 (3)
C4 0.0269 (5) 0.0142 (4) 0.0191 (4) 0.0002 (4) 0.0047 (4) −0.0016 (3)
C5 0.0235 (5) 0.0130 (4) 0.0206 (4) −0.0001 (3) 0.0056 (4) −0.0026 (3)
C6 0.0236 (5) 0.0140 (4) 0.0213 (4) 0.0010 (3) 0.0050 (4) −0.0006 (3)
C7 0.0285 (5) 0.0142 (4) 0.0214 (4) 0.0004 (4) 0.0069 (4) −0.0025 (3)
C8 0.0285 (5) 0.0145 (4) 0.0217 (5) −0.0002 (4) 0.0025 (4) −0.0023 (3)
C18 0.0394 (7) 0.0178 (5) 0.0360 (6) 0.0017 (4) 0.0118 (5) −0.0001 (4)
N2 0.0261 (11) 0.0147 (9) 0.021 (2) −0.0007 (7) 0.0014 (18) −0.0088 (18)
N3 0.0306 (19) 0.0099 (16) 0.022 (3) 0.0050 (11) 0.0112 (14) −0.0001 (12)
C9 0.0351 (14) 0.0194 (9) 0.0238 (13) −0.0024 (8) 0.0066 (10) −0.0027 (10)
C10 0.0400 (12) 0.0158 (8) 0.0182 (11) −0.0012 (7) 0.0044 (9) −0.0006 (8)
C11 0.0232 (9) 0.0158 (10) 0.0219 (11) −0.0012 (6) 0.0037 (7) −0.0024 (7)
C12 0.0388 (12) 0.0170 (9) 0.0225 (10) 0.0016 (8) 0.0038 (9) −0.0012 (8)
C13 0.0341 (13) 0.0160 (13) 0.0225 (15) 0.0007 (10) 0.0055 (12) −0.0034 (9)
C14 0.0348 (11) 0.0173 (9) 0.0218 (8) 0.0012 (7) 0.0053 (7) −0.0064 (6)
C15 0.0325 (10) 0.0176 (8) 0.0223 (9) −0.0004 (7) 0.0021 (7) −0.0056 (7)
C16 0.0226 (9) 0.0109 (14) 0.0211 (13) 0.0001 (8) 0.0021 (10) 0.0004 (10)
C17 0.0346 (13) 0.0133 (9) 0.026 (2) 0.0011 (8) 0.0086 (18) −0.0038 (17)
C19 0.0301 (15) 0.0192 (19) 0.0155 (15) 0.0019 (14) 0.0054 (11) −0.0047 (15)
C20 0.0324 (12) 0.0204 (16) 0.0205 (14) 0.0012 (12) 0.0019 (10) −0.0034 (10)
C17A 0.0330 (18) 0.0195 (15) 0.027 (3) 0.0003 (12) 0.011 (3) −0.005 (2)
C9A 0.0281 (17) 0.0136 (11) 0.0247 (18) −0.0015 (10) 0.0065 (14) −0.0010 (13)
C20A 0.0378 (18) 0.019 (3) 0.021 (2) 0.0028 (19) 0.0022 (17) −0.0085 (17)
N2A 0.0234 (15) 0.0201 (13) 0.017 (3) 0.0010 (10) −0.001 (2) −0.010 (2)
N3A 0.026 (3) 0.033 (4) 0.016 (3) −0.001 (2) 0.008 (2) −0.011 (2)
C19A 0.039 (3) 0.029 (4) 0.032 (3) −0.002 (3) 0.0015 (19) 0.006 (2)
C10A 0.0320 (15) 0.0166 (11) 0.0243 (15) −0.0019 (10) 0.0035 (12) −0.0024 (10)
C11A 0.0250 (13) 0.0163 (11) 0.0170 (15) −0.0012 (9) 0.0008 (10) −0.0038 (11)
C12A 0.0386 (17) 0.0155 (16) 0.0209 (15) 0.0010 (11) 0.0017 (12) −0.0020 (11)
C13A 0.041 (2) 0.019 (2) 0.027 (3) 0.0004 (15) 0.0012 (19) 0.0024 (15)
C14A 0.0299 (14) 0.0125 (10) 0.0283 (13) −0.0003 (9) 0.0033 (10) −0.0035 (9)
C15A 0.0308 (14) 0.0119 (12) 0.0251 (14) 0.0007 (9) 0.0020 (10) −0.0013 (9)
C16A 0.0207 (13) 0.0107 (14) 0.024 (2) 0.0002 (10) 0.0012 (14) 0.0033 (15)

Geometric parameters (Å, º)

O1—C7 1.2209 (12) C12—H12 0.9500
O2—H2 0.990 (19) C12—C13 1.385 (4)
O2—C7 1.3222 (12) C13—H13 0.9500
O3—C8 1.2274 (12) C14—H14 0.9500
O4—H4 0.98 (2) C14—C15 1.327 (3)
O4—C8 1.3191 (12) C15—H15 0.9500
N1—H1A 0.899 (17) C15—C16 1.482 (3)
N1—H1B 0.894 (17) C16—C17 1.387 (4)
N1—C1 1.3775 (13) C16—C20 1.385 (3)
C1—C2 1.4017 (14) C17—H17 0.9500
C1—C6 1.4005 (13) C19—H19 0.9500
C2—H2A 0.9500 C19—C20 1.360 (7)
C2—C3 1.3912 (14) C20—H20 0.9500
C3—C4 1.3991 (13) C17A—H17A 0.9500
C3—C8 1.4979 (14) C17A—C16A 1.399 (6)
C4—H4A 0.9500 C9A—H9A 0.9500
C4—C5 1.4014 (13) C9A—N2A 1.361 (10)
C5—C6 1.3902 (14) C9A—C10A 1.379 (4)
C5—C7 1.4948 (13) C20A—H20A 0.9500
C6—H6 0.9500 C20A—C19A 1.410 (11)
C18—H18 0.9500 C20A—C16A 1.388 (5)
C18—H18A 0.9500 N2A—C13A 1.338 (7)
C18—N3 1.376 (9) N3A—C19A 1.39 (2)
C18—C17 1.439 (5) C19A—H19A 0.9500
C18—C17A 1.331 (9) C10A—H10A 0.9500
C18—N3A 1.283 (13) C10A—C11A 1.390 (5)
N2—C9 1.326 (7) C11A—C12A 1.385 (4)
N2—C13 1.320 (5) C11A—C14A 1.472 (4)
N3—C19 1.305 (13) C12A—H12A 0.9500
C9—H9 0.9500 C12A—C13A 1.406 (6)
C9—C10 1.392 (3) C13A—H13A 0.9500
C10—H10 0.9500 C14A—H14A 0.9500
C10—C11 1.386 (3) C14A—C15A 1.329 (4)
C11—C12 1.397 (3) C15A—H15A 0.9500
C11—C14 1.472 (2) C15A—C16A 1.469 (5)
C7—O2—H2 107.5 (11) C15—C14—C11 125.02 (18)
C8—O4—H4 111.7 (11) C15—C14—H14 117.5
H1A—N1—H1B 116.4 (15) C14—C15—H15 116.7
C1—N1—H1A 119.4 (11) C14—C15—C16 126.5 (2)
C1—N1—H1B 116.6 (10) C16—C15—H15 116.7
N1—C1—C2 121.17 (9) C17—C16—C15 123.3 (3)
N1—C1—C6 120.72 (9) C20—C16—C15 118.4 (3)
C6—C1—C2 118.07 (9) C20—C16—C17 118.3 (4)
C1—C2—H2A 119.5 C18—C17—H17 119.2
C3—C2—C1 121.01 (9) C16—C17—C18 121.5 (4)
C3—C2—H2A 119.5 C16—C17—H17 119.2
C2—C3—C4 120.80 (9) N3—C19—H19 118.6
C2—C3—C8 117.74 (8) N3—C19—C20 122.9 (6)
C4—C3—C8 121.44 (9) C20—C19—H19 118.6
C3—C4—H4A 120.9 C16—C20—H20 120.4
C3—C4—C5 118.24 (9) C19—C20—C16 119.2 (4)
C5—C4—H4A 120.9 C19—C20—H20 120.4
C4—C5—C7 122.17 (9) C18—C17A—H17A 122.4
C6—C5—C4 120.90 (9) C18—C17A—C16A 115.3 (5)
C6—C5—C7 116.93 (8) C16A—C17A—H17A 122.4
C1—C6—H6 119.5 N2A—C9A—H9A 117.7
C5—C6—C1 120.93 (9) N2A—C9A—C10A 124.5 (5)
C5—C6—H6 119.5 C10A—C9A—H9A 117.7
O1—C7—O2 123.09 (9) C19A—C20A—H20A 120.4
O1—C7—C5 121.82 (9) C16A—C20A—H20A 120.4
O2—C7—C5 115.09 (8) C16A—C20A—C19A 119.2 (6)
O3—C8—O4 123.31 (9) C13A—N2A—C9A 114.3 (9)
O3—C8—C3 122.38 (9) C18—N3A—C19A 107.5 (10)
O4—C8—C3 114.30 (8) C20A—C19A—H19A 117.5
N3—C18—H18 122.5 N3A—C19A—C20A 125.0 (9)
N3—C18—C17 115.0 (5) N3A—C19A—H19A 117.5
C17—C18—H18 122.5 C9A—C10A—H10A 120.1
C17A—C18—H18A 111.8 C9A—C10A—C11A 119.9 (3)
N3A—C18—H18A 111.8 C11A—C10A—H10A 120.1
N3A—C18—C17A 136.5 (8) C10A—C11A—C14A 118.9 (3)
C13—N2—C9 119.0 (5) C12A—C11A—C10A 117.2 (2)
C19—N3—C18 123.1 (6) C12A—C11A—C14A 123.8 (3)
N2—C9—H9 118.9 C11A—C12A—H12A 120.7
N2—C9—C10 122.3 (3) C11A—C12A—C13A 118.6 (3)
C10—C9—H9 118.9 C13A—C12A—H12A 120.7
C9—C10—H10 120.3 N2A—C13A—C12A 125.3 (6)
C11—C10—C9 119.4 (2) N2A—C13A—H13A 117.4
C11—C10—H10 120.3 C12A—C13A—H13A 117.4
C10—C11—C12 117.31 (16) C11A—C14A—H14A 117.4
C10—C11—C14 123.2 (2) C15A—C14A—C11A 125.2 (3)
C12—C11—C14 119.4 (2) C15A—C14A—H14A 117.4
C11—C12—H12 120.4 C14A—C15A—H15A 117.3
C13—C12—C11 119.2 (2) C14A—C15A—C16A 125.3 (3)
C13—C12—H12 120.4 C16A—C15A—H15A 117.3
N2—C13—C12 122.7 (4) C17A—C16A—C15A 120.1 (5)
N2—C13—H13 118.6 C20A—C16A—C17A 116.4 (5)
C12—C13—H13 118.6 C20A—C16A—C15A 123.5 (4)
C11—C14—H14 117.5
N1—C1—C2—C3 178.19 (10) C11—C14—C15—C16 177.6 (2)
N1—C1—C6—C5 −179.82 (10) C12—C11—C14—C15 −173.6 (2)
C1—C2—C3—C4 1.71 (16) C13—N2—C9—C10 −0.7 (9)
C1—C2—C3—C8 −176.64 (10) C14—C11—C12—C13 174.4 (3)
C2—C1—C6—C5 −2.05 (16) C14—C15—C16—C17 −10.0 (5)
C2—C3—C4—C5 −2.20 (16) C14—C15—C16—C20 170.8 (3)
C2—C3—C8—O3 −7.84 (17) C15—C16—C17—C18 −177.6 (3)
C2—C3—C8—O4 171.27 (10) C15—C16—C20—C19 177.1 (5)
C3—C4—C5—C6 0.59 (16) C17—C18—N3—C19 −1.1 (12)
C3—C4—C5—C7 −179.15 (10) C17—C18—C17A—C16A 1.4 (17)
C4—C3—C8—O3 173.81 (11) C17—C18—N3A—C19A −3.8 (15)
C4—C3—C8—O4 −7.07 (15) C17—C16—C20—C19 −2.0 (7)
C4—C5—C6—C1 1.56 (16) C20—C16—C17—C18 1.5 (7)
C4—C5—C7—O1 165.59 (11) C17A—C18—N3—C19 −0.5 (14)
C4—C5—C7—O2 −14.70 (15) C17A—C18—C17—C16 −179 (3)
C6—C1—C2—C3 0.43 (16) C17A—C18—N3A—C19A −4.3 (18)
C6—C5—C7—O1 −14.15 (16) C9A—N2A—C13A—C12A 3.1 (13)
C6—C5—C7—O2 165.55 (10) C9A—C10A—C11A—C12A 2.7 (4)
C7—C5—C6—C1 −178.69 (10) C9A—C10A—C11A—C14A −174.9 (3)
C8—C3—C4—C5 176.09 (10) N2A—C9A—C10A—C11A 1.6 (8)
C18—N3—C19—C20 0.6 (15) N3A—C18—N3—C19 −159 (11)
C18—C17A—C16A—C20A 0.9 (9) N3A—C18—C17—C16 2.5 (10)
C18—C17A—C16A—C15A −177.3 (5) N3A—C18—C17A—C16A 2.8 (15)
C18—N3A—C19A—C20A 2 (2) C19A—C20A—C16A—C17A −2.1 (11)
N2—C9—C10—C11 −2.3 (6) C19A—C20A—C16A—C15A 176.0 (8)
N3—C18—C17—C16 0.0 (8) C10A—C9A—N2A—C13A −4.4 (12)
N3—C18—C17A—C16A −0.3 (12) C10A—C11A—C12A—C13A −3.8 (5)
N3—C18—N3A—C19A 19 (9) C10A—C11A—C14A—C15A 168.9 (3)
N3—C19—C20—C16 1.0 (12) C11A—C12A—C13A—N2A 0.9 (9)
C9—N2—C13—C12 1.9 (9) C11A—C14A—C15A—C16A −177.1 (3)
C9—C10—C11—C12 4.0 (3) C12A—C11A—C14A—C15A −8.5 (5)
C9—C10—C11—C14 −173.2 (2) C14A—C11A—C12A—C13A 173.6 (4)
C10—C11—C12—C13 −2.9 (3) C14A—C15A—C16A—C17A −172.8 (5)
C10—C11—C14—C15 3.5 (3) C14A—C15A—C16A—C20A 9.1 (6)
C11—C12—C13—N2 −0.1 (6) C16A—C20A—C19A—N3A 0.5 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1i 0.899 (17) 2.062 (17) 2.9540 (13) 171.0 (15)
N1—H1B···O3ii 0.894 (17) 2.157 (17) 3.0500 (13) 178.6 (13)
O2—H2···N3iii 0.989 (19) 1.70 (2) 2.688 (8) 173.4 (18)
O2—H2···N3Aiii 0.989 (19) 1.63 (2) 2.619 (12) 177 (2)
O4—H4···N2iv 0.98 (2) 1.72 (2) 2.702 (7) 173.2 (19)
O4—H4···N2Aiv 0.98 (2) 1.59 (2) 2.566 (11) 175 (2)

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+1, −y+2, −z+1; (iv) x−1/2, −y+1/2, z+1/2.

References

  1. Brown, J. W., Henderson, B. L., Kiesz, M. D., Whalley, A. C., Morris, W., Grunder, S., Deng, H., Furukawa, H., Zink, J. I., Stoddart, J. F. & Yaghi, O. M. (2013). Chem. Sci. 4, 2858–2864.
  2. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Castellanos, S., Goulet-Hanssens, A., Zhao, F., Dikhtiarenko, A., Pustovarenko, A., Hecht, S., Gascon, J., Kapteijn, F. & Bléger, D. (2016). Chem. Eur. J. 22, 746–752. [DOI] [PubMed]
  4. Cox, J. M., Walton, I. M., Benson, C. A., Chen, Y.-S. & Benedict, J. B. (2015). J. Appl. Cryst. 48, 578–581.
  5. Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469–472. [DOI] [PubMed]
  8. Kongshaug, K. O. & Fjellvåg, H. (2003). J. Solid State Chem. 175, 182–187.
  9. MacGillivray, L. R., Papaefstathiou, G. S., Friščić, T., Hamilton, T. D., Bučar, D.-K., Chu, Q., Varshney, D. B. & Georgiev, I. G. (2008). Acc. Chem. Res. 41, 280–291. [DOI] [PubMed]
  10. Patel, D. G. (D.), Walton, I. M., Cox, J. M., Gleason, C. J., Butzer, D. R. & Benedict, J. B. (2014). Chem. Commun. 50, 2653–2656. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  12. Walton, I. M., Cox, J. M., Coppin, J. A., Linderman, C. M., Patel, D. G. (D.) & Benedict, J. B. (2013). Chem. Commun. 49, 8012–8014. [DOI] [PubMed]
  13. Wang, H.-N., Meng, X., Yang, G.-S., Wang, X.-L., Shao, K.-Z., Su, Z.-M. & Wang, C.-G. (2011). Chem. Commun. 47, 7128–7130. [DOI] [PubMed]
  14. Zeng, M.-H., Hu, S., Chen, Q., Xie, G., Shuai, Q., Gao, S.-L. & Tang, L.-Y. (2009). Inorg. Chem. 48, 7070–7079. [DOI] [PubMed]
  15. Zhang, X., Zhu, B. & Guo, F. (2009). Asian J. Chem. 21, 7072–7076.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016005259/hb7561sup1.cif

e-72-00639-sup1.cif (445.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016005259/hb7561Isup2.hkl

e-72-00639-Isup2.hkl (358.7KB, hkl)

CCDC reference: 1471029

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES