Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Apr 15;72(Pt 5):699–703. doi: 10.1107/S2056989016006162

Different N—H⋯π inter­actions in two indole derivatives

Jamie R Kerr a, Laurent Trembleau a, John M D Storey a, James L Wardell a,b, William T A Harrison a,*
PMCID: PMC4908542  PMID: 27308022

The most important inter­molecular inter­actions in the two indole derivatives described here are N—H⋯π bonds, which lead to chains in one case and inversion dimers in the other; C—H⋯π inter­actions appear to reinforce the N—H⋯π bonds in each case.

Keywords: crystal structure, indole, N—H⋯π inter­action, chains, inversion dimers

Abstract

We describe the syntheses and crystal structures of two indole derivatives, namely 6-isopropyl-3-(2-nitro-1-phenyl­eth­yl)-1H-indole, C19H20N2O2, (I), and 2-(4-meth­oxy­phen­yl)-3-(2-nitro-1-phenyl­eth­yl)-1H-indole, C23H20N2O3, (II); the latter crystallizes with two mol­ecules (A and B) with similar conformations (r.m.s. overlay fit = 0.139 Å) in the asymmetric unit. Despite the presence of O atoms as potential acceptors for classical hydrogen bonds, the dominant inter­molecular inter­action in each crystal is an N—H⋯π bond, which generates chains in (I) and A+A and B+B inversion dimers in (II). A different aromatic ring acts as the acceptor in each case. The packing is consolidated by C—H⋯π inter­actions in each case but aromatic π–π stacking inter­actions are absent.

Chemical context  

N—H⋯π inter­actions are now a well-recognised type of ‘non-classical’ weak bond (Desiraju & Steiner, 1999). They are of special significance in biological systems (Burley & Petsko, 1986; Levitt & Perutz, 1998) and are thought to play an important role in establishing protein secondary structures (Lavanya et al., 2014). They may even influence the charge-transport properties of organic semiconductors (Zhao et al., 2009). The presence of N—H⋯π inter­actions in indole complexes with aromatic species has been investigated by IR spectroscopy (Muñoz et al., 2004), and such bonds have also been observed in many crystal structures of indole derivatives (e.g. Krishna et al., 1999; Cordes et al., 2011).graphic file with name e-72-00699-scheme1.jpg

As part of our ongoing synthetic, biological (Kerr, 2013) and structural studies (Kerr et al., 2015, 2016) of variously substituted indole derivatives, we now report the syntheses and crystal structures of 6-isopropyl-3-(2-nitro-1-phenyl­eth­yl)-1H-indole, C19H20N2O2, (I), and 2-(4-meth­oxy­phen­yl)-3-(2-nitro-1-phenyl­eth­yl)-1H-indole, C23H20N2O3, (II), in which N—H⋯π bonds are the most important inter­molecular inter­actions, but result in quite different structures.

Structural commentary  

Compound (I) crystallizes in a Sohncke space group with one mol­ecule in the asymmetric unit (Fig. 1). The absolute structure was indeterminate in the present study and C9 was assigned an arbitrary S configuration (given the synthesis, we presume that the bulk sample consists of a statistical mixture of enanti­omers). The dihedral angle between the mean plane of the N1/C1–C8 indole ring system (r.m.s. deviation = 0.018 Å) and the C11–C16 phenyl ring is 83.59 (11)°. Atom C17 of the 6-isopropyl substituent deviates slightly from the indole plane, by −0.092 (6) Å. In terms of the terminal carbon atoms of this group, C18 and C19 deviate from the indole plane by −1.461 (6) and 1.030 (6) Å, respectively. Atom C9 shows a relatively large deviation from the indole plane of −0.084 (6) Å, perhaps because of steric crowding. In terms of the orientation of the substituents attached to C9, the C6—C7—C9—C10 torsion angle of 174.6 (5)° (anti about C7—C9) indicates that the C10 atom of the CH2NO2 group lies roughly in the plane of the indole ring, whereas the C6—C7—C9—C11 angle of −61.6 (7)° (gauche about C7—C9) indicates that the pendant ring lies to one side of the indole plane. Finally, the C7—C9—C10—N2 torsion angle of −176.5 (4)° indicates a near anti conformation about the C9—C10 bond.

Figure 1.

Figure 1

The mol­ecular structure of (I), showing 50% probability displacement ellipsoids.

There are two mol­ecules, A (Fig. 2) and B, in the asymmetric unit of (II). The space group for (II) is centrosymmetric and the stereogenic centres (C9 in mol­ecule A and C32 in mol­ecule B) were arbitrarily assigned an S configuration for ease of comparison with compound (I).

Figure 2.

Figure 2

The mol­ecular structure of the N1 mol­ecule in (II), showing 50% probability displacement ellipsoids. The mol­ecular structure of the N3 mol­ecule is very similar.

In mol­ecule A, the dihedral angles between the indole (N1/C1–C8) mean plane (r.m.s. deviation = 0.012 Å) and the C11–C16 and C17–C22 rings are 65.49 (4) and 66.26 (4)°, respectively. The deviations of C9 and C17 from the indole plane are 0.017 (2) and 0.0168 (19) Å, respectively; C23 deviates from the C17–C22 plane by 0.322 (3) Å. The equivalent data for mol­ecule B are 0.005 Å (N3/C24–C31 r.m.s. deviation), 64.92 (4)° (C34 ring), 58.31 (5)° (C40 ring), −0.071 (2) Å (C32), −0.014 (2) Å (C40), −0.214 (3) Å (C46). These data indicate that mol­ecules A and B have similar but not quite identical conformations: the unweighted r.m.s. overlay fit for the 28 non-hydrogen atoms is 0.139 Å (Fig. 3).

Figure 3.

Figure 3

Overlay plot of the conformations of the N1 mol­ecules (black) and N3 mol­ecules (red) in the crystal of (II).

As just noted, mol­ecules A and B in (II) have similar conformations, but the local geometry about the stereogenic atoms C9 and C32 are completely different from the corresponding local geometry about C9 in (I). This can be seen in the following data for the N1 mol­ecule in (II): the C6—C7—C9—C10 torsion angle is −42.9 (2)° (compressed gauche about C7—C9) and the C6—C7—C9—C11 angle is 83.76 (19)° (expanded gauche about C7—C9); the C7—C9—C10—N2 torsion angle of −58.42 (17)° (gauche about C9—C10) is also completely different from the corresponding angle in (I). The corresponding torsion angles for the N3 mol­ecule in (II) are −38.4 (2), 87.50 (19) and −56.24 (19)°, respectively. In essence, the 2-nitro 1-phenyl ethyl substituent has rotated around the C7—C9 bond, so that the H atom attached to C9 and C32 in (II) lies approximately above C8 whereas in (I) the CH2NO2 group takes on this role.

Supra­molecular features  

In the crystal of (I), the mol­ecules are linked by N—H⋯π inter­actions (Table 1, Fig. 4) to generate [010] chains, in which adjacent mol­ecules are related by the 21 screw axis. The acceptor ring is the C1–C6 benzene ring of the indole system; the dihedral angle between any adjacent pair of indole ring systems in the chain is 68.89 (8)°. The chain appears to be reinforced by a C—H⋯π bond from the C2—H2 group of the benzene ring syn to the N—H group to the five-membered ring of the same adjacent mol­ecule; the H⋯π separation is actually marginally shorter for this bond than for the N—H⋯π bond. Two further C—H⋯π inter­actions (Fig. 5) also occur in the crystal of (I): based on their lengths, these are presumably significantly weaker than the C2—H2 bond. They arise from adjacent C—H groups on the pendant C11–C16 benzene ring with the acceptor rings being another C11–C16 ring and the C1–C6 indole ring of the same adjacent mol­ecule. Taken together, the inter­molecular inter­actions lead to (100) sheets in the crystal of (I).

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg1, Cg2 and Cg3 are the centroids of the N1/C1/C6–C8, C1–C6 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cg2i 0.84 (6) 2.64 (6) 3.386 (5) 148 (6)
C2—H2⋯Cg1i 0.95 2.63 3.468 (6) 147
C14—H14⋯Cg2ii 0.95 2.79 3.638 (6) 148
C15—H15⋯Cg3ii 0.95 2.87 3.551 (7) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 4.

Figure 4

Partial packing diagram for (I), showing the formation of [010] chains linked by N—H⋯π and C—H⋯π inter­actions (double-dashed lines). [Symmetry codes: (i) 1 − x, y − Inline graphic, 1 − z; (ii) 1 − x, y + Inline graphic, 1 − z.] All H atoms, except H1 and H2, have been omitted for clarity. The orange circles indicate ring centroids.

Figure 5.

Figure 5

Fragment of the packing for (I), showing C—H⋯π bonds arising from adjacent C—H groups of the pendant benzene ring. All H atoms, except H14 and H15, have been omitted for clarity. [Symmetry code: (i) 1 − x, y + Inline graphic, −z.] The orange circles indicate ring centroids.

In the crystal of (II), inversion dimers linked by pairs of N—H⋯π inter­actions (Table 2, Fig. 6) occur for both independent mol­ecules. In this case, the acceptor ring is the pendant C11–C16 or C34–C39 benzene ring for mol­ecules A and B, respectively. This bonding mode possibly correlates with the different orientation of the substituents attached to C9 and C32, as described above. Again, the N—H⋯π bonds appear to be reinforced, but this time by two pairs of C—H⋯π inter­actions. As for (I), they arise from adjacent C—H groups in a benzene ring but this time they are part of the pendant 4-meth­oxy­benzene ring at the indole 2-position. Further C—H⋯π bonds link the A+A and B+B dimers into a three-dimensional network in the crystal of (II).

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

Cg1, Cg2, Cg3, Cg6, Cg7 and Cg8 are the centroids of the N1/C1/C6–C8, C1–C6, C11–C16, N3/C24/C29–C34--C31, C24–C29 and C34–C39 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cg3i 0.886 (19) 2.640 (19) 3.3631 (15) 139.6 (15)
N3—H3⋯Cg8ii 0.875 (18) 2.582 (19) 3.3364 (15) 144.9 (16)
C14—H14⋯Cg2iii 0.95 2.58 3.4228 (18) 149
C21—H21⋯Cg2i 0.95 2.69 3.4133 (17) 134
C22—H22⋯Cg1i 0.95 2.68 3.4543 (17) 138
C23—H23BCg3iv 0.98 2.79 3.6739 (18) 150
C37—H37⋯Cg6v 0.95 2.86 3.7660 (18) 160
C41—H41⋯Cg6ii 0.95 2.70 3.3793 (17) 129
C42—H42⋯Cg7ii 0.95 2.67 3.3627 (17) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 6.

Figure 6

An inversion dimer of N1 mol­ecules in the crystal of (II) linked by pairs of N—H⋯π and C—H⋯π inter­actions (double-dashed lines). [Symmetry code: (i) 1 − x, −y, −z.] The N3 mol­ecules associate into similar dimers. The orange circles indicate ring centroids.

Database survey  

There are over 7000 crystal structures of indole derivatives in the Cambridge Structural Database (CSD; Groom et al., 2016), but none of them have an iso-propyl group at the 6-position. Six structures contain a p-meth­oxy­benzene grouping at the 2-position and four contain a 2-nitro-1-phenyl­ethyl grouping at the 3-position; these latter structures are the ones recently described by us (Kerr et al., 2015).

Synthesis and crystallization  

To prepare (I), 6-iso­propyl­indole (452 mg, 2.84 mmol), trans-β-nitro­styrene (28, 429 mg, 2.88 mmol) and sulfamic acid (57 mg, 0.59 mmol) were stirred in EtOH (10 ml) at 323 K for 48 h. Evaporation of the solvent and flash chromatography (1:6 EtOAc, hexa­nes) gave 6-isopropyl-3-(2-nitro-1-phenyl­eth­yl)-1H-indole as an orange solid (550 mg, 63%). Red blades of (I) were recrystallized from methanol solution. δC (101 MHz; CDCl3) 144.0 (Cq), 139.3 (Cq), 136.9 (Cq), 127.9 (Cq), 127.8 (CH), 127.5 (CH), 124.3 (CH), 121.1 (CH), 119.4 (CH), 118.6 (CH), 114.3 (Cq), 108.5 (CH), 79.5 (CH2), 41.6 (CH), 34.3 (CH) and 24.4 (CH3); δH (400 MHz; CDCl3) 7.89 (1 H, br s), 7.30–7.21 (5 H, m), 7.18–7.15 (1 H, m), 7.12 (1 H, t, J 0.6), 6.90 (2 H, td, J, 1.5, 8.8), 5.08 (1 H, t, J 8.0), 4.97 (1 H, dd, J 7.4, 12.2), 4.85 (1 H, dd, J 8.4, 12.4), 2.91 (1 H, sp, J 6.9) and 1.20 (6 H, d, J 6.8); R f 0.16 (1:6 ethyl acetate, hexa­nes); m.p. 374–376 K; IR (KBr, cm−1) 3433, 3007, 2924,1550, 1429, 1377, 1089 and 750; HRMS (ESI) for C19H21N2O2 [M + H]+ calculated 309.1604, found 309.1619.

To prepare (II), 2-bromo-3-(2-nitro-1-phenyl­eth­yl)-1H-indole (Kerr et al., 2015) (90 mg, 0.26 mmol), 4-meth­oxy­phenyl­boronic acid (53 mg, 0.35 mmol), Na2CO3 (29 mg, 0.27 mmol), LiCl (22 mg, 0.52 mmol) and tetra­kis­(tri­phenyl­phosphine)palladium(0) (12 mg, 0.01 mmol) were placed in a microwave reactor vessel under argon. Degassed water (4 ml), toluene (6 ml) and ethanol (6 ml) were added and the reaction was heated to 373 K (high absorbance mode, 30 W, 8 bar) for 2 h. The mixture was acidified to pH 2 with 10% HCl(aq) then extracted into EtOAc (10 ml × 3). The combined organic phases were washed with water (10 ml) and saturated NaCl(aq) (10 ml) then dried (magnesium sulfate), filtered and evaporated under reduced pressure. Flash chromatography of the isolated solid (1:5 ethyl acetate, hexa­nes) afforded 2-(4-meth­oxy­phen­yl)-3-(2-nitro-1-phenyl­eth­yl)-1H-indole as a colourless solid (48 mg, 50%). Colourless chunks of (II) were recrystallized from methanol solution. δC (63 MHz; CDCl3) 159.9 (Cq), 140.0 (Cq), 136.9 (Cq), 135.9 (CH), 130.1 (CH), 128.9 (Cq), 127.1 (CH), 125.0 (CH), 124.5 (Cq), 122.2 (Cq), 120.2 (CH), 119.8 (CH), 114.4 (CH), 111.3 (CH), 110.0 (CH), 109.1 (Cq), 79.1 (CH2), 55.4 (CH3) and 40.9 (CH); δH (250 MHz; CDCl3) 8.08 (1 H, br s), 7.45–7.25 (9 H, m), 7.19–6.90 (4 H, m), 5.19 (1 H, t, J 6.9) 5.10–5.01 (2 H, m) and 3.76 (3 H, s); R f 0.09 (1:5 EtOAc, hexa­nes); m.p. 472 K (EtOH); IR (Nujol, cm−1) 3401, 3013, 2854, 1616, 1548, 1324, 1250, 1203, 1099, 870 and 746; HRMS (ESI) for C23H21N2O3 [M + H]+ calculated 373.1553, found 373.1546.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The N-bound H atoms were located in difference maps and their positions were freely refined. The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding atoms. The constraint U iso(H) = 1.2U eq(C, N carrier) or 1.5U eq(methyl carrier) was applied in all cases. The –CH3 groups were allowed to rotate, but not to tip, to best fit the electron density. Due to the similarity in the a and c unit-cell parameters for (I), twinning models were applied, but no improvement in fit resulted.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C19H20N2O2 C23H20N2O3
M r 308.37 372.41
Crystal system, space group Monoclinic, P21 Triclinic, P Inline graphic
Temperature (K) 100 100
a, b, c (Å) 12.4525 (9), 5.7360 (4), 12.5896 (9) 9.2014 (5), 9.4543 (7), 21.6201 (14)
α, β, γ (°) 90, 116.081 (6), 90 98.563 (4), 93.416 (4), 98.354 (4)
V3) 807.68 (11) 1833.7 (2)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.09
Crystal size (mm) 0.28 × 0.05 × 0.01 0.10 × 0.06 × 0.06
 
Data collection
Diffractometer Rigaku Mercury CCD Rigaku Mercury CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 7830, 3498, 2259 24774, 8621, 6769
R int 0.107 0.038
(sin θ/λ)max−1) 0.649 0.668
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.081, 0.164, 1.12 0.046, 0.124, 1.03
No. of reflections 3498 8621
No. of parameters 213 513
No. of restraints 1 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.24 0.62, −0.31

Computer programs: CrystalClear (Rigaku, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989016006162/pk2578sup1.cif

e-72-00699-sup1.cif (2.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016006162/pk2578Isup2.hkl

e-72-00699-Isup2.hkl (279.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989016006162/pk2578IIsup3.hkl

e-72-00699-IIsup3.hkl (684.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016006162/pk2578Isup4.cml

Supporting information file. DOI: 10.1107/S2056989016006162/pk2578IIsup5.cml

CCDC references: 1473664, 1473663

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the EPSRC National Crystallography Service (University of Southampton) for the data collections and the EPSRC National Mass Spectrometry Service (University of Swansea) for the HRMS data.

supplementary crystallographic information

(I) 6-Isopropyl-3-(2-nitro-1-phenylethyl)-1H-indole . Crystal data

C19H20N2O2 F(000) = 328
Mr = 308.37 Dx = 1.268 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 12.4525 (9) Å Cell parameters from 6780 reflections
b = 5.7360 (4) Å θ = 3.1–27.5°
c = 12.5896 (9) Å µ = 0.08 mm1
β = 116.081 (6)° T = 100 K
V = 807.68 (11) Å3 Blade, light red
Z = 2 0.28 × 0.05 × 0.01 mm

(I) 6-Isopropyl-3-(2-nitro-1-phenylethyl)-1H-indole . Data collection

Rigaku Mercury CCD diffractometer Rint = 0.107
ω scans θmax = 27.5°, θmin = 3.1°
7830 measured reflections h = −13→16
3498 independent reflections k = −7→7
2259 reflections with I > 2σ(I) l = −16→13

(I) 6-Isopropyl-3-(2-nitro-1-phenylethyl)-1H-indole . Refinement

Refinement on F2 1 restraint
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.081 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0357P)2 + 0.4188P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max < 0.001
3498 reflections Δρmax = 0.28 e Å3
213 parameters Δρmin = −0.24 e Å3

(I) 6-Isopropyl-3-(2-nitro-1-phenylethyl)-1H-indole . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(I) 6-Isopropyl-3-(2-nitro-1-phenylethyl)-1H-indole . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5003 (5) 0.1427 (9) 0.3881 (4) 0.0226 (13)
C2 0.3850 (5) 0.0617 (12) 0.3609 (4) 0.0254 (13)
H2 0.3737 −0.0752 0.3972 0.031*
C3 0.2883 (5) 0.1850 (11) 0.2804 (5) 0.0264 (13)
C4 0.3092 (5) 0.3871 (10) 0.2291 (4) 0.0257 (14)
H4 0.2422 0.4726 0.1747 0.031*
C5 0.4222 (5) 0.4675 (10) 0.2538 (4) 0.0241 (13)
H5 0.4329 0.6061 0.2183 0.029*
C6 0.5208 (5) 0.3389 (10) 0.3329 (4) 0.0239 (12)
C7 0.6491 (5) 0.3646 (10) 0.3796 (4) 0.0245 (13)
C8 0.6977 (5) 0.1894 (10) 0.4586 (5) 0.0256 (13)
H8 0.7811 0.1642 0.5038 0.031*
C9 0.7126 (5) 0.5512 (11) 0.3434 (4) 0.0232 (12)
H9 0.6848 0.7063 0.3577 0.028*
C10 0.8468 (5) 0.5371 (11) 0.4194 (4) 0.0263 (13)
H10A 0.8643 0.5484 0.5040 0.032*
H10B 0.8771 0.3851 0.4067 0.032*
C11 0.6842 (4) 0.5377 (10) 0.2123 (4) 0.0222 (12)
C12 0.7189 (5) 0.3446 (10) 0.1683 (4) 0.0264 (13)
H12 0.7558 0.2160 0.2187 0.032*
C13 0.6998 (5) 0.3383 (11) 0.0510 (5) 0.0293 (14)
H13 0.7245 0.2066 0.0216 0.035*
C14 0.6451 (5) 0.5229 (11) −0.0224 (5) 0.0288 (14)
H14 0.6323 0.5190 −0.1025 0.035*
C15 0.6086 (5) 0.7141 (11) 0.0200 (5) 0.0280 (13)
H15 0.5692 0.8400 −0.0315 0.034*
C16 0.6298 (5) 0.7225 (11) 0.1384 (5) 0.0258 (13)
H16 0.6065 0.8558 0.1680 0.031*
C17 0.1618 (5) 0.0955 (10) 0.2462 (5) 0.0294 (14)
H17 0.1681 −0.0383 0.2995 0.035*
C18 0.1043 (5) 0.0033 (12) 0.1182 (5) 0.0405 (17)
H18A 0.1532 −0.1237 0.1106 0.061*
H18B 0.0994 0.1298 0.0639 0.061*
H18C 0.0238 −0.0547 0.0986 0.061*
C19 0.0831 (6) 0.2786 (12) 0.2629 (6) 0.0420 (18)
H19A 0.0047 0.2109 0.2449 0.063*
H19B 0.0732 0.4100 0.2096 0.063*
H19C 0.1205 0.3334 0.3450 0.063*
N1 0.6094 (4) 0.0531 (9) 0.4643 (4) 0.0260 (11)
N2 0.9084 (4) 0.7309 (9) 0.3883 (4) 0.0267 (11)
H1 0.625 (5) −0.056 (11) 0.514 (5) 0.032*
O1 0.9829 (4) 0.6817 (8) 0.3538 (4) 0.0414 (11)
O2 0.8825 (4) 0.9308 (7) 0.4015 (4) 0.0376 (11)

(I) 6-Isopropyl-3-(2-nitro-1-phenylethyl)-1H-indole . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.035 (3) 0.016 (3) 0.020 (3) 0.006 (2) 0.015 (2) 0.000 (2)
C2 0.035 (3) 0.022 (3) 0.026 (3) −0.003 (3) 0.020 (3) −0.002 (3)
C3 0.033 (3) 0.026 (4) 0.023 (3) −0.003 (3) 0.015 (2) −0.005 (3)
C4 0.033 (3) 0.023 (4) 0.022 (3) 0.002 (3) 0.013 (2) −0.002 (2)
C5 0.037 (3) 0.017 (3) 0.022 (3) 0.001 (3) 0.017 (3) 0.000 (2)
C6 0.033 (3) 0.019 (3) 0.023 (3) 0.002 (3) 0.016 (2) 0.000 (3)
C7 0.034 (3) 0.022 (3) 0.020 (3) 0.002 (3) 0.015 (2) −0.002 (2)
C8 0.025 (3) 0.027 (3) 0.028 (3) 0.004 (3) 0.015 (2) −0.002 (3)
C9 0.031 (3) 0.016 (3) 0.025 (3) 0.000 (3) 0.015 (2) 0.003 (3)
C10 0.032 (3) 0.023 (3) 0.028 (3) 0.000 (3) 0.016 (2) 0.003 (3)
C11 0.027 (3) 0.017 (3) 0.023 (3) −0.003 (3) 0.013 (2) −0.001 (3)
C12 0.035 (3) 0.019 (3) 0.024 (3) −0.004 (3) 0.012 (2) 0.003 (3)
C13 0.040 (3) 0.023 (3) 0.029 (3) −0.003 (3) 0.019 (3) −0.004 (3)
C14 0.042 (4) 0.024 (3) 0.025 (3) −0.007 (3) 0.019 (3) −0.005 (3)
C15 0.033 (3) 0.024 (3) 0.027 (3) −0.001 (3) 0.013 (2) 0.005 (3)
C16 0.032 (3) 0.021 (3) 0.028 (3) 0.000 (3) 0.016 (2) −0.001 (3)
C17 0.034 (3) 0.026 (4) 0.029 (3) −0.003 (3) 0.015 (3) 0.003 (3)
C18 0.039 (4) 0.038 (5) 0.044 (4) −0.005 (3) 0.018 (3) −0.005 (3)
C19 0.036 (4) 0.041 (5) 0.057 (4) −0.001 (3) 0.027 (3) −0.009 (3)
N1 0.033 (3) 0.024 (3) 0.026 (2) 0.007 (2) 0.017 (2) 0.006 (2)
N2 0.028 (3) 0.024 (3) 0.029 (3) 0.000 (2) 0.013 (2) −0.004 (2)
O1 0.048 (3) 0.033 (3) 0.057 (3) −0.002 (2) 0.036 (2) −0.010 (2)
O2 0.042 (3) 0.018 (2) 0.057 (3) 0.002 (2) 0.025 (2) −0.006 (2)

(I) 6-Isopropyl-3-(2-nitro-1-phenylethyl)-1H-indole . Geometric parameters (Å, º)

C1—N1 1.372 (7) C11—C12 1.389 (8)
C1—C2 1.400 (7) C12—C13 1.389 (7)
C1—C6 1.404 (7) C12—H12 0.9500
C2—C3 1.380 (8) C13—C14 1.373 (8)
C2—H2 0.9500 C13—H13 0.9500
C3—C4 1.406 (8) C14—C15 1.381 (8)
C3—C17 1.527 (8) C14—H14 0.9500
C4—C5 1.380 (7) C15—C16 1.397 (7)
C4—H4 0.9500 C15—H15 0.9500
C5—C6 1.403 (7) C16—H16 0.9500
C5—H5 0.9500 C17—C19 1.513 (8)
C6—C7 1.447 (7) C17—C18 1.541 (8)
C7—C8 1.355 (8) C17—H17 1.0000
C7—C9 1.516 (8) C18—H18A 0.9800
C8—N1 1.377 (7) C18—H18B 0.9800
C8—H8 0.9500 C18—H18C 0.9800
C9—C10 1.519 (7) C19—H19A 0.9800
C9—C11 1.530 (7) C19—H19B 0.9800
C9—H9 1.0000 C19—H19C 0.9800
C10—N2 1.497 (7) N1—H1 0.84 (6)
C10—H10A 0.9900 N2—O1 1.217 (6)
C10—H10B 0.9900 N2—O2 1.222 (6)
C11—C16 1.376 (8)
N1—C1—C2 129.8 (5) C13—C12—C11 120.4 (5)
N1—C1—C6 107.9 (5) C13—C12—H12 119.8
C2—C1—C6 122.3 (5) C11—C12—H12 119.8
C3—C2—C1 118.7 (5) C14—C13—C12 119.9 (6)
C3—C2—H2 120.7 C14—C13—H13 120.1
C1—C2—H2 120.7 C12—C13—H13 120.1
C2—C3—C4 118.8 (5) C13—C14—C15 120.2 (5)
C2—C3—C17 119.6 (5) C13—C14—H14 119.9
C4—C3—C17 121.6 (5) C15—C14—H14 119.9
C5—C4—C3 123.2 (5) C14—C15—C16 120.0 (5)
C5—C4—H4 118.4 C14—C15—H15 120.0
C3—C4—H4 118.4 C16—C15—H15 120.0
C4—C5—C6 118.2 (5) C11—C16—C15 120.0 (5)
C4—C5—H5 120.9 C11—C16—H16 120.0
C6—C5—H5 120.9 C15—C16—H16 120.0
C5—C6—C1 118.7 (5) C19—C17—C3 112.2 (5)
C5—C6—C7 134.5 (5) C19—C17—C18 110.6 (5)
C1—C6—C7 106.8 (5) C3—C17—C18 111.0 (4)
C8—C7—C6 106.3 (5) C19—C17—H17 107.6
C8—C7—C9 128.4 (5) C3—C17—H17 107.6
C6—C7—C9 125.4 (5) C18—C17—H17 107.6
C7—C8—N1 110.5 (5) C17—C18—H18A 109.5
C7—C8—H8 124.8 C17—C18—H18B 109.5
N1—C8—H8 124.8 H18A—C18—H18B 109.5
C7—C9—C10 110.3 (5) C17—C18—H18C 109.5
C7—C9—C11 112.7 (5) H18A—C18—H18C 109.5
C10—C9—C11 110.3 (4) H18B—C18—H18C 109.5
C7—C9—H9 107.8 C17—C19—H19A 109.5
C10—C9—H9 107.8 C17—C19—H19B 109.5
C11—C9—H9 107.8 H19A—C19—H19B 109.5
N2—C10—C9 110.1 (4) C17—C19—H19C 109.5
N2—C10—H10A 109.6 H19A—C19—H19C 109.5
C9—C10—H10A 109.6 H19B—C19—H19C 109.5
N2—C10—H10B 109.6 C1—N1—C8 108.6 (5)
C9—C10—H10B 109.6 C1—N1—H1 129 (4)
H10A—C10—H10B 108.2 C8—N1—H1 122 (4)
C16—C11—C12 119.5 (5) O1—N2—O2 123.6 (5)
C16—C11—C9 120.1 (5) O1—N2—C10 118.7 (5)
C12—C11—C9 120.3 (5) O2—N2—C10 117.7 (5)
N1—C1—C2—C3 179.9 (5) C7—C9—C10—N2 −176.5 (4)
C6—C1—C2—C3 −2.6 (8) C11—C9—C10—N2 58.4 (6)
C1—C2—C3—C4 −0.2 (7) C7—C9—C11—C16 118.9 (6)
C1—C2—C3—C17 177.9 (5) C10—C9—C11—C16 −117.3 (6)
C2—C3—C4—C5 1.0 (8) C7—C9—C11—C12 −64.5 (6)
C17—C3—C4—C5 −177.0 (5) C10—C9—C11—C12 59.3 (7)
C3—C4—C5—C6 0.9 (7) C16—C11—C12—C13 0.6 (8)
C4—C5—C6—C1 −3.5 (7) C9—C11—C12—C13 −176.0 (5)
C4—C5—C6—C7 179.8 (5) C11—C12—C13—C14 −0.8 (8)
N1—C1—C6—C5 −177.5 (5) C12—C13—C14—C15 −0.2 (8)
C2—C1—C6—C5 4.5 (8) C13—C14—C15—C16 1.4 (8)
N1—C1—C6—C7 0.0 (5) C12—C11—C16—C15 0.6 (8)
C2—C1—C6—C7 −178.0 (5) C9—C11—C16—C15 177.2 (5)
C5—C6—C7—C8 176.5 (6) C14—C15—C16—C11 −1.6 (8)
C1—C6—C7—C8 −0.4 (6) C2—C3—C17—C19 126.2 (6)
C5—C6—C7—C9 −4.3 (9) C4—C3—C17—C19 −55.7 (7)
C1—C6—C7—C9 178.7 (5) C2—C3—C17—C18 −109.4 (6)
C6—C7—C8—N1 0.7 (6) C4—C3—C17—C18 68.6 (7)
C9—C7—C8—N1 −178.4 (5) C2—C1—N1—C8 178.2 (5)
C8—C7—C9—C10 −6.4 (8) C6—C1—N1—C8 0.4 (5)
C6—C7—C9—C10 174.6 (5) C7—C8—N1—C1 −0.7 (6)
C8—C7—C9—C11 117.3 (6) C9—C10—N2—O1 −120.8 (5)
C6—C7—C9—C11 −61.6 (7) C9—C10—N2—O2 60.7 (6)

(I) 6-Isopropyl-3-(2-nitro-1-phenylethyl)-1H-indole . Hydrogen-bond geometry (Å, º)

Cg1, Cg2 and Cg3 are the centroids of the N1/C1/C6–C8, C1–C6 and C11–C16 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1···Cg2i 0.84 (6) 2.64 (6) 3.386 (5) 148 (6)
C2—H2···Cg1i 0.95 2.63 3.468 (6) 147
C14—H14···Cg2ii 0.95 2.79 3.638 (6) 148
C15—H15···Cg3ii 0.95 2.87 3.551 (7) 129

Symmetry codes: (i) −x+1, y−1/2, −z+1; (ii) −x+1, y+1/2, −z.

(II) 2-(4-Methoxyphenyl)-3-(2-nitro-1-phenylethyl)-1H-indole . Crystal data

C23H20N2O3 Z = 4
Mr = 372.41 F(000) = 784
Triclinic, P1 Dx = 1.349 Mg m3
a = 9.2014 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.4543 (7) Å Cell parameters from 22268 reflections
c = 21.6201 (14) Å θ = 2.2–27.5°
α = 98.563 (4)° µ = 0.09 mm1
β = 93.416 (4)° T = 100 K
γ = 98.354 (4)° Plate, colourless
V = 1833.7 (2) Å3 0.10 × 0.06 × 0.06 mm

(II) 2-(4-Methoxyphenyl)-3-(2-nitro-1-phenylethyl)-1H-indole . Data collection

Rigaku Mercury CCD diffractometer Rint = 0.038
ω scans θmax = 28.4°, θmin = 2.2°
24774 measured reflections h = −11→11
8621 independent reflections k = −12→12
6769 reflections with I > 2σ(I) l = −28→28

(II) 2-(4-Methoxyphenyl)-3-(2-nitro-1-phenylethyl)-1H-indole . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: mixed
wR(F2) = 0.124 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.8021P] where P = (Fo2 + 2Fc2)/3
8621 reflections (Δ/σ)max < 0.001
513 parameters Δρmax = 0.62 e Å3
0 restraints Δρmin = −0.31 e Å3

(II) 2-(4-Methoxyphenyl)-3-(2-nitro-1-phenylethyl)-1H-indole . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(II) 2-(4-Methoxyphenyl)-3-(2-nitro-1-phenylethyl)-1H-indole . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.49618 (16) 0.34164 (15) 0.06414 (6) 0.0170 (3)
C2 0.38705 (17) 0.42054 (15) 0.08413 (7) 0.0189 (3)
H2A 0.3201 0.4495 0.0551 0.023*
C3 0.38042 (17) 0.45411 (16) 0.14638 (7) 0.0213 (3)
H3A 0.3087 0.5094 0.1624 0.026*
C4 0.47956 (18) 0.40736 (16) 0.18735 (7) 0.0222 (3)
H4 0.4737 0.4329 0.2312 0.027*
C5 0.58536 (17) 0.32607 (16) 0.16733 (7) 0.0199 (3)
H5 0.6497 0.2950 0.1968 0.024*
C6 0.59606 (16) 0.29082 (15) 0.10432 (7) 0.0171 (3)
C7 0.68766 (16) 0.21018 (15) 0.06651 (7) 0.0177 (3)
C8 0.64249 (16) 0.21756 (15) 0.00713 (7) 0.0173 (3)
C9 0.81582 (17) 0.13561 (16) 0.08290 (7) 0.0217 (3)
H9 0.8720 0.1249 0.0447 0.026*
C10 0.92103 (18) 0.22377 (17) 0.13441 (8) 0.0245 (3)
H10A 1.0027 0.1698 0.1428 0.029*
H10B 0.8695 0.2389 0.1732 0.029*
C11 0.77242 (16) −0.01722 (16) 0.09801 (7) 0.0188 (3)
C12 0.84562 (17) −0.12686 (16) 0.07252 (7) 0.0217 (3)
H12 0.9215 −0.1060 0.0458 0.026*
C13 0.81037 (18) −0.26753 (17) 0.08526 (8) 0.0254 (3)
H13 0.8620 −0.3414 0.0672 0.030*
C14 0.70126 (18) −0.29942 (17) 0.12382 (7) 0.0244 (3)
H14 0.6775 −0.3949 0.1329 0.029*
C15 0.62638 (18) −0.19130 (17) 0.14925 (7) 0.0243 (3)
H15 0.5502 −0.2127 0.1758 0.029*
C16 0.66181 (17) −0.05090 (16) 0.13627 (7) 0.0214 (3)
H16 0.6092 0.0225 0.1540 0.026*
C17 0.70037 (16) 0.15610 (15) −0.04944 (7) 0.0180 (3)
C18 0.77075 (17) 0.24493 (16) −0.08755 (7) 0.0212 (3)
H18 0.7800 0.3471 −0.0764 0.025*
C19 0.82656 (17) 0.18773 (16) −0.14060 (7) 0.0214 (3)
H19 0.8735 0.2487 −0.1671 0.026*
C20 0.81369 (16) 0.03855 (16) −0.15535 (7) 0.0190 (3)
C21 0.74181 (17) −0.05225 (16) −0.11828 (7) 0.0207 (3)
H21 0.7316 −0.1544 −0.1297 0.025*
C22 0.68649 (17) 0.00643 (16) −0.06567 (7) 0.0204 (3)
H22 0.6379 −0.0547 −0.0396 0.025*
C23 0.9661 (2) 0.06002 (19) −0.23777 (7) 0.0297 (4)
H23A 1.0146 −0.0009 −0.2682 0.045*
H23B 1.0409 0.1233 −0.2079 0.045*
H23C 0.9083 0.1192 −0.2599 0.045*
N1 0.52777 (14) 0.29681 (13) 0.00553 (6) 0.0173 (2)
H1 0.471 (2) 0.3091 (19) −0.0271 (9) 0.021*
N2 0.98391 (15) 0.36924 (15) 0.11821 (7) 0.0272 (3)
O1 1.01892 (15) 0.37644 (15) 0.06681 (6) 0.0391 (3)
O2 1.00019 (16) 0.47097 (14) 0.15869 (7) 0.0418 (3)
O3 0.87109 (12) −0.02940 (12) −0.20477 (5) 0.0229 (2)
C24 1.07078 (17) 0.27498 (15) 0.60018 (7) 0.0186 (3)
C25 1.19481 (18) 0.23268 (16) 0.62786 (7) 0.0222 (3)
H25 1.2510 0.1700 0.6046 0.027*
C26 1.23137 (18) 0.28475 (17) 0.68904 (7) 0.0245 (3)
H26 1.3142 0.2580 0.7102 0.029*
C27 1.14771 (19) 0.37763 (17) 0.72123 (7) 0.0252 (3)
H27 1.1756 0.4136 0.7643 0.030*
C28 1.02574 (18) 0.42001 (17) 0.69332 (7) 0.0224 (3)
H28 0.9715 0.4842 0.7169 0.027*
C29 0.98380 (16) 0.36824 (15) 0.63114 (7) 0.0182 (3)
C30 0.86833 (17) 0.38853 (16) 0.58743 (7) 0.0184 (3)
C31 0.88891 (16) 0.30774 (15) 0.53304 (6) 0.0178 (3)
C32 0.73865 (18) 0.46891 (17) 0.59473 (7) 0.0222 (3)
H32 0.6627 0.4216 0.5600 0.027*
C33 0.6680 (2) 0.45620 (18) 0.65431 (8) 0.0279 (4)
H33A 0.5817 0.5077 0.6551 0.033*
H33B 0.7389 0.5043 0.6901 0.033*
C34 0.76883 (17) 0.62946 (16) 0.58830 (7) 0.0203 (3)
C35 0.89706 (19) 0.72001 (17) 0.61460 (7) 0.0241 (3)
H35 0.9719 0.6818 0.6360 0.029*
C36 0.9164 (2) 0.86699 (18) 0.60972 (7) 0.0272 (4)
H36 1.0045 0.9280 0.6278 0.033*
C37 0.8086 (2) 0.92481 (18) 0.57886 (8) 0.0296 (4)
H37 0.8214 1.0254 0.5767 0.035*
C38 0.6826 (2) 0.83509 (19) 0.55131 (8) 0.0297 (4)
H38 0.6091 0.8733 0.5291 0.036*
C39 0.66297 (18) 0.68832 (18) 0.55610 (7) 0.0252 (3)
H39 0.5757 0.6273 0.5370 0.030*
C40 0.80143 (17) 0.28679 (16) 0.47391 (7) 0.0186 (3)
C41 0.78144 (17) 0.40508 (16) 0.44448 (7) 0.0204 (3)
H41 0.8257 0.4998 0.4637 0.024*
C42 0.69952 (17) 0.38631 (17) 0.38876 (7) 0.0216 (3)
H42 0.6880 0.4669 0.3684 0.026*
C43 0.63290 (17) 0.24818 (17) 0.36192 (7) 0.0213 (3)
C44 0.65272 (18) 0.12873 (17) 0.39006 (7) 0.0231 (3)
H44 0.6082 0.0341 0.3709 0.028*
C45 0.73698 (18) 0.14931 (16) 0.44560 (7) 0.0219 (3)
H45 0.7516 0.0683 0.4651 0.026*
C46 0.4670 (2) 0.1044 (2) 0.28258 (8) 0.0346 (4)
H46A 0.4059 0.1135 0.2451 0.052*
H46B 0.4035 0.0696 0.3138 0.052*
H46C 0.5345 0.0355 0.2712 0.052*
N3 1.01008 (14) 0.23898 (13) 0.54058 (6) 0.0186 (3)
H3 1.050 (2) 0.193 (2) 0.5094 (9) 0.022*
N4 0.61859 (17) 0.30122 (17) 0.66247 (8) 0.0351 (4)
O4 0.55989 (17) 0.21888 (16) 0.61780 (8) 0.0474 (4)
O5 0.6370 (2) 0.26938 (18) 0.71306 (8) 0.0575 (4)
O6 0.54974 (13) 0.24217 (13) 0.30834 (5) 0.0278 (3)

(II) 2-(4-Methoxyphenyl)-3-(2-nitro-1-phenylethyl)-1H-indole . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0182 (7) 0.0134 (6) 0.0185 (6) −0.0002 (5) −0.0014 (5) 0.0033 (5)
C2 0.0184 (7) 0.0157 (7) 0.0230 (7) 0.0027 (6) −0.0002 (6) 0.0054 (5)
C3 0.0219 (8) 0.0159 (7) 0.0263 (7) 0.0025 (6) 0.0044 (6) 0.0034 (6)
C4 0.0270 (8) 0.0195 (7) 0.0189 (7) 0.0001 (6) 0.0012 (6) 0.0029 (5)
C5 0.0226 (8) 0.0170 (7) 0.0197 (7) 0.0002 (6) −0.0027 (6) 0.0056 (5)
C6 0.0180 (7) 0.0117 (6) 0.0209 (7) −0.0004 (5) −0.0022 (5) 0.0045 (5)
C7 0.0164 (7) 0.0136 (6) 0.0231 (7) 0.0004 (5) −0.0009 (5) 0.0053 (5)
C8 0.0157 (7) 0.0131 (6) 0.0229 (7) 0.0013 (5) 0.0004 (5) 0.0041 (5)
C9 0.0194 (8) 0.0192 (7) 0.0276 (8) 0.0037 (6) −0.0007 (6) 0.0078 (6)
C10 0.0229 (8) 0.0216 (8) 0.0295 (8) 0.0031 (6) −0.0026 (6) 0.0082 (6)
C11 0.0180 (7) 0.0173 (7) 0.0208 (7) 0.0020 (6) −0.0053 (5) 0.0059 (5)
C12 0.0199 (8) 0.0226 (7) 0.0228 (7) 0.0048 (6) −0.0024 (6) 0.0043 (6)
C13 0.0255 (9) 0.0196 (7) 0.0296 (8) 0.0062 (6) −0.0080 (6) 0.0006 (6)
C14 0.0272 (9) 0.0171 (7) 0.0270 (8) −0.0014 (6) −0.0116 (6) 0.0074 (6)
C15 0.0236 (8) 0.0250 (8) 0.0233 (7) −0.0018 (6) −0.0039 (6) 0.0084 (6)
C16 0.0205 (8) 0.0202 (7) 0.0234 (7) 0.0048 (6) −0.0029 (6) 0.0036 (6)
C17 0.0159 (7) 0.0179 (7) 0.0200 (7) 0.0030 (6) −0.0021 (5) 0.0037 (5)
C18 0.0227 (8) 0.0162 (7) 0.0260 (7) 0.0057 (6) 0.0007 (6) 0.0053 (6)
C19 0.0217 (8) 0.0198 (7) 0.0244 (7) 0.0038 (6) 0.0022 (6) 0.0083 (6)
C20 0.0156 (7) 0.0234 (7) 0.0179 (7) 0.0043 (6) −0.0022 (5) 0.0028 (5)
C21 0.0205 (8) 0.0157 (7) 0.0244 (7) 0.0007 (6) −0.0011 (6) 0.0012 (5)
C22 0.0198 (8) 0.0185 (7) 0.0223 (7) 0.0000 (6) 0.0003 (6) 0.0045 (5)
C23 0.0347 (10) 0.0337 (9) 0.0195 (7) −0.0004 (7) 0.0050 (7) 0.0048 (6)
N1 0.0175 (6) 0.0176 (6) 0.0174 (6) 0.0048 (5) −0.0016 (5) 0.0041 (4)
N2 0.0180 (7) 0.0245 (7) 0.0394 (8) 0.0016 (5) −0.0014 (6) 0.0094 (6)
O1 0.0357 (8) 0.0405 (8) 0.0374 (7) −0.0061 (6) 0.0004 (6) 0.0074 (6)
O2 0.0470 (9) 0.0270 (7) 0.0482 (8) 0.0013 (6) 0.0062 (7) −0.0006 (6)
O3 0.0264 (6) 0.0230 (5) 0.0185 (5) 0.0029 (5) 0.0020 (4) 0.0021 (4)
C24 0.0212 (8) 0.0158 (7) 0.0178 (6) −0.0010 (6) −0.0010 (5) 0.0048 (5)
C25 0.0234 (8) 0.0185 (7) 0.0247 (7) 0.0028 (6) −0.0012 (6) 0.0055 (6)
C26 0.0231 (8) 0.0250 (8) 0.0252 (8) 0.0001 (6) −0.0065 (6) 0.0105 (6)
C27 0.0299 (9) 0.0271 (8) 0.0168 (7) −0.0023 (7) −0.0030 (6) 0.0062 (6)
C28 0.0258 (8) 0.0230 (7) 0.0173 (7) 0.0004 (6) 0.0010 (6) 0.0038 (5)
C29 0.0195 (7) 0.0179 (7) 0.0172 (6) 0.0004 (6) 0.0002 (5) 0.0056 (5)
C30 0.0189 (7) 0.0183 (7) 0.0179 (6) 0.0007 (6) 0.0005 (5) 0.0048 (5)
C31 0.0191 (7) 0.0163 (7) 0.0180 (7) 0.0001 (6) −0.0011 (5) 0.0057 (5)
C32 0.0220 (8) 0.0213 (7) 0.0237 (7) 0.0026 (6) 0.0020 (6) 0.0055 (6)
C33 0.0297 (9) 0.0270 (8) 0.0284 (8) 0.0050 (7) 0.0059 (7) 0.0073 (6)
C34 0.0227 (8) 0.0210 (7) 0.0184 (7) 0.0051 (6) 0.0055 (6) 0.0042 (5)
C35 0.0278 (9) 0.0262 (8) 0.0183 (7) 0.0036 (7) 0.0014 (6) 0.0040 (6)
C36 0.0349 (10) 0.0245 (8) 0.0197 (7) −0.0024 (7) 0.0072 (6) 0.0002 (6)
C37 0.0421 (11) 0.0208 (8) 0.0288 (8) 0.0062 (7) 0.0147 (7) 0.0077 (6)
C38 0.0317 (9) 0.0304 (9) 0.0329 (9) 0.0118 (7) 0.0099 (7) 0.0149 (7)
C39 0.0235 (8) 0.0276 (8) 0.0262 (8) 0.0049 (7) 0.0043 (6) 0.0079 (6)
C40 0.0181 (7) 0.0210 (7) 0.0164 (6) 0.0013 (6) −0.0002 (5) 0.0049 (5)
C41 0.0214 (8) 0.0192 (7) 0.0195 (7) −0.0007 (6) −0.0001 (6) 0.0044 (5)
C42 0.0225 (8) 0.0228 (7) 0.0204 (7) 0.0017 (6) −0.0011 (6) 0.0092 (6)
C43 0.0199 (8) 0.0271 (8) 0.0162 (6) 0.0008 (6) −0.0024 (5) 0.0056 (6)
C44 0.0261 (8) 0.0209 (7) 0.0204 (7) 0.0001 (6) −0.0026 (6) 0.0027 (6)
C45 0.0258 (8) 0.0200 (7) 0.0197 (7) 0.0024 (6) −0.0023 (6) 0.0059 (6)
C46 0.0381 (11) 0.0361 (10) 0.0236 (8) −0.0102 (8) −0.0110 (7) 0.0062 (7)
N3 0.0206 (7) 0.0196 (6) 0.0152 (6) 0.0030 (5) −0.0014 (5) 0.0028 (5)
N4 0.0287 (8) 0.0320 (8) 0.0469 (9) 0.0046 (7) 0.0123 (7) 0.0104 (7)
O4 0.0411 (8) 0.0394 (8) 0.0608 (10) −0.0023 (7) 0.0144 (7) 0.0094 (7)
O5 0.0674 (11) 0.0575 (10) 0.0579 (10) 0.0112 (8) 0.0167 (8) 0.0370 (8)
O6 0.0310 (7) 0.0303 (6) 0.0194 (5) −0.0034 (5) −0.0103 (5) 0.0078 (4)

(II) 2-(4-Methoxyphenyl)-3-(2-nitro-1-phenylethyl)-1H-indole . Geometric parameters (Å, º)

C1—N1 1.3377 (18) C24—N3 1.3478 (18)
C1—C2 1.387 (2) C24—C25 1.394 (2)
C1—C6 1.410 (2) C24—C29 1.400 (2)
C2—C3 1.343 (2) C25—C26 1.345 (2)
C2—H2A 0.9500 C25—H25 0.9500
C3—C4 1.396 (2) C26—C27 1.388 (2)
C3—H3A 0.9500 C26—H26 0.9500
C4—C5 1.376 (2) C27—C28 1.381 (2)
C4—H4 0.9500 C27—H27 0.9500
C5—C6 1.366 (2) C28—C29 1.372 (2)
C5—H5 0.9500 C28—H28 0.9500
C6—C7 1.429 (2) C29—C30 1.432 (2)
C7—C8 1.341 (2) C30—C31 1.343 (2)
C7—C9 1.510 (2) C30—C32 1.509 (2)
C8—N1 1.3820 (19) C31—N3 1.3830 (19)
C8—C17 1.440 (2) C31—C40 1.441 (2)
C9—C10 1.494 (2) C32—C33 1.490 (2)
C9—C11 1.530 (2) C32—C34 1.531 (2)
C9—H9 1.0000 C32—H32 1.0000
C10—N2 1.512 (2) C33—N4 1.509 (2)
C10—H10A 0.9900 C33—H33A 0.9900
C10—H10B 0.9900 C33—H33B 0.9900
C11—C16 1.381 (2) C34—C35 1.389 (2)
C11—C12 1.382 (2) C34—C39 1.391 (2)
C12—C13 1.394 (2) C35—C36 1.396 (2)
C12—H12 0.9500 C35—H35 0.9500
C13—C14 1.371 (2) C36—C37 1.383 (3)
C13—H13 0.9500 C36—H36 0.9500
C14—C15 1.380 (2) C37—C38 1.379 (3)
C14—H14 0.9500 C37—H37 0.9500
C15—C16 1.394 (2) C38—C39 1.393 (2)
C15—H15 0.9500 C38—H38 0.9500
C16—H16 0.9500 C39—H39 0.9500
C17—C18 1.384 (2) C40—C45 1.383 (2)
C17—C22 1.391 (2) C40—C41 1.395 (2)
C18—C19 1.356 (2) C41—C42 1.357 (2)
C18—H18 0.9500 C41—H41 0.9500
C19—C20 1.385 (2) C42—C43 1.385 (2)
C19—H19 0.9500 C42—H42 0.9500
C20—O3 1.3398 (17) C43—O6 1.3389 (17)
C20—C21 1.386 (2) C43—C44 1.389 (2)
C21—C22 1.351 (2) C44—C45 1.363 (2)
C21—H21 0.9500 C44—H44 0.9500
C22—H22 0.9500 C45—H45 0.9500
C23—O3 1.4240 (19) C46—O6 1.425 (2)
C23—H23A 0.9800 C46—H46A 0.9800
C23—H23B 0.9800 C46—H46B 0.9800
C23—H23C 0.9800 C46—H46C 0.9800
N1—H1 0.886 (19) N3—H3 0.875 (18)
N2—O1 1.1841 (19) N4—O5 1.186 (2)
N2—O2 1.1856 (19) N4—O4 1.193 (2)
N1—C1—C2 128.86 (14) N3—C24—C25 129.20 (14)
N1—C1—C6 106.46 (13) N3—C24—C29 105.99 (13)
C2—C1—C6 124.68 (13) C25—C24—C29 124.81 (14)
C3—C2—C1 116.96 (14) C26—C25—C24 116.94 (15)
C3—C2—H2A 121.5 C26—C25—H25 121.5
C1—C2—H2A 121.5 C24—C25—H25 121.5
C2—C3—C4 119.63 (14) C25—C26—C27 119.82 (15)
C2—C3—H3A 120.2 C25—C26—H26 120.1
C4—C3—H3A 120.2 C27—C26—H26 120.1
C5—C4—C3 123.24 (14) C28—C27—C26 122.88 (14)
C5—C4—H4 118.4 C28—C27—H27 118.6
C3—C4—H4 118.4 C26—C27—H27 118.6
C6—C5—C4 118.74 (14) C29—C28—C27 119.17 (15)
C6—C5—H5 120.6 C29—C28—H28 120.4
C4—C5—H5 120.6 C27—C28—H28 120.4
C5—C6—C1 116.72 (14) C28—C29—C24 116.38 (14)
C5—C6—C7 134.97 (14) C28—C29—C30 134.77 (14)
C1—C6—C7 108.31 (12) C24—C29—C30 108.84 (12)
C8—C7—C6 105.06 (13) C31—C30—C29 105.15 (13)
C8—C7—C9 122.53 (13) C31—C30—C32 122.19 (14)
C6—C7—C9 132.32 (13) C29—C30—C32 132.51 (13)
C7—C8—N1 110.65 (13) C30—C31—N3 110.11 (13)
C7—C8—C17 127.68 (14) C30—C31—C40 128.18 (14)
N1—C8—C17 121.66 (13) N3—C31—C40 121.70 (13)
C10—C9—C7 112.94 (13) C33—C32—C30 113.41 (13)
C10—C9—C11 109.64 (12) C33—C32—C34 108.23 (12)
C7—C9—C11 114.72 (12) C30—C32—C34 115.66 (13)
C10—C9—H9 106.3 C33—C32—H32 106.3
C7—C9—H9 106.3 C30—C32—H32 106.3
C11—C9—H9 106.3 C34—C32—H32 106.3
C9—C10—N2 112.11 (13) C32—C33—N4 113.00 (14)
C9—C10—H10A 109.2 C32—C33—H33A 109.0
N2—C10—H10A 109.2 N4—C33—H33A 109.0
C9—C10—H10B 109.2 C32—C33—H33B 109.0
N2—C10—H10B 109.2 N4—C33—H33B 109.0
H10A—C10—H10B 107.9 H33A—C33—H33B 107.8
C16—C11—C12 118.10 (14) C35—C34—C39 118.41 (14)
C16—C11—C9 122.57 (13) C35—C34—C32 122.49 (14)
C12—C11—C9 119.33 (14) C39—C34—C32 119.08 (14)
C11—C12—C13 121.32 (15) C34—C35—C36 120.23 (16)
C11—C12—H12 119.3 C34—C35—H35 119.9
C13—C12—H12 119.3 C36—C35—H35 119.9
C14—C13—C12 120.07 (15) C37—C36—C35 120.76 (16)
C14—C13—H13 120.0 C37—C36—H36 119.6
C12—C13—H13 120.0 C35—C36—H36 119.6
C13—C14—C15 119.29 (14) C38—C37—C36 119.40 (15)
C13—C14—H14 120.4 C38—C37—H37 120.3
C15—C14—H14 120.4 C36—C37—H37 120.3
C14—C15—C16 120.43 (15) C37—C38—C39 119.95 (16)
C14—C15—H15 119.8 C37—C38—H38 120.0
C16—C15—H15 119.8 C39—C38—H38 120.0
C11—C16—C15 120.79 (14) C34—C39—C38 121.22 (16)
C11—C16—H16 119.6 C34—C39—H39 119.4
C15—C16—H16 119.6 C38—C39—H39 119.4
C18—C17—C22 119.76 (13) C45—C40—C41 119.30 (14)
C18—C17—C8 120.44 (13) C45—C40—C31 120.40 (13)
C22—C17—C8 119.80 (13) C41—C40—C31 120.31 (13)
C19—C18—C17 120.71 (14) C42—C41—C40 120.70 (14)
C19—C18—H18 119.6 C42—C41—H41 119.7
C17—C18—H18 119.6 C40—C41—H41 119.7
C18—C19—C20 118.60 (14) C41—C42—C43 119.13 (14)
C18—C19—H19 120.7 C41—C42—H42 120.4
C20—C19—H19 120.7 C43—C42—H42 120.4
O3—C20—C19 123.68 (14) O6—C43—C42 114.42 (13)
O3—C20—C21 114.75 (13) O6—C43—C44 124.49 (14)
C19—C20—C21 121.55 (13) C42—C43—C44 121.09 (14)
C22—C21—C20 119.10 (14) C45—C44—C43 118.99 (14)
C22—C21—H21 120.4 C45—C44—H44 120.5
C20—C21—H21 120.4 C43—C44—H44 120.5
C21—C22—C17 120.25 (14) C44—C45—C40 120.77 (14)
C21—C22—H22 119.9 C44—C45—H45 119.6
C17—C22—H22 119.9 C40—C45—H45 119.6
O3—C23—H23A 109.5 O6—C46—H46A 109.5
O3—C23—H23B 109.5 O6—C46—H46B 109.5
H23A—C23—H23B 109.5 H46A—C46—H46B 109.5
O3—C23—H23C 109.5 O6—C46—H46C 109.5
H23A—C23—H23C 109.5 H46A—C46—H46C 109.5
H23B—C23—H23C 109.5 H46B—C46—H46C 109.5
C1—N1—C8 109.50 (12) C24—N3—C31 109.90 (12)
C1—N1—H1 120.6 (11) C24—N3—H3 125.5 (12)
C8—N1—H1 129.3 (11) C31—N3—H3 123.7 (12)
O1—N2—O2 122.88 (15) O5—N4—O4 123.94 (18)
O1—N2—C10 119.27 (14) O5—N4—C33 118.26 (17)
O2—N2—C10 117.80 (15) O4—N4—C33 117.78 (16)
C20—O3—C23 116.20 (12) C43—O6—C46 116.24 (13)
N1—C1—C2—C3 −178.82 (14) N3—C24—C25—C26 −179.75 (15)
C6—C1—C2—C3 2.2 (2) C29—C24—C25—C26 0.8 (2)
C1—C2—C3—C4 −1.0 (2) C24—C25—C26—C27 −0.8 (2)
C2—C3—C4—C5 −0.5 (2) C25—C26—C27—C28 0.3 (2)
C3—C4—C5—C6 1.0 (2) C26—C27—C28—C29 0.3 (2)
C4—C5—C6—C1 0.1 (2) C27—C28—C29—C24 −0.4 (2)
C4—C5—C6—C7 −179.51 (15) C27—C28—C29—C30 −179.21 (16)
N1—C1—C6—C5 179.10 (13) N3—C24—C29—C28 −179.75 (13)
C2—C1—C6—C5 −1.8 (2) C25—C24—C29—C28 −0.2 (2)
N1—C1—C6—C7 −1.20 (16) N3—C24—C29—C30 −0.62 (16)
C2—C1—C6—C7 177.94 (14) C25—C24—C29—C30 178.93 (14)
C5—C6—C7—C8 −179.37 (16) C28—C29—C30—C31 179.30 (17)
C1—C6—C7—C8 1.01 (16) C24—C29—C30—C31 0.40 (16)
C5—C6—C7—C9 −2.8 (3) C28—C29—C30—C32 −5.2 (3)
C1—C6—C7—C9 177.56 (14) C24—C29—C30—C32 175.88 (15)
C6—C7—C8—N1 −0.45 (16) C29—C30—C31—N3 −0.02 (16)
C9—C7—C8—N1 −177.42 (12) C32—C30—C31—N3 −176.09 (13)
C6—C7—C8—C17 178.90 (14) C29—C30—C31—C40 178.55 (14)
C9—C7—C8—C17 1.9 (2) C32—C30—C31—C40 2.5 (2)
C8—C7—C9—C10 133.17 (15) C31—C30—C32—C33 136.46 (16)
C6—C7—C9—C10 −42.9 (2) C29—C30—C32—C33 −38.4 (2)
C8—C7—C9—C11 −100.19 (17) C31—C30—C32—C34 −97.65 (17)
C6—C7—C9—C11 83.76 (19) C29—C30—C32—C34 87.50 (19)
C7—C9—C10—N2 −58.42 (17) C30—C32—C33—N4 −56.24 (19)
C11—C9—C10—N2 172.28 (13) C34—C32—C33—N4 174.02 (14)
C10—C9—C11—C16 83.64 (18) C33—C32—C34—C35 86.90 (18)
C7—C9—C11—C16 −44.7 (2) C30—C32—C34—C35 −41.6 (2)
C10—C9—C11—C12 −96.58 (17) C33—C32—C34—C39 −91.71 (17)
C7—C9—C11—C12 135.11 (15) C30—C32—C34—C39 139.81 (14)
C16—C11—C12—C13 −0.6 (2) C39—C34—C35—C36 1.4 (2)
C9—C11—C12—C13 179.65 (14) C32—C34—C35—C36 −177.20 (13)
C11—C12—C13—C14 −0.1 (2) C34—C35—C36—C37 0.1 (2)
C12—C13—C14—C15 0.6 (2) C35—C36—C37—C38 −1.7 (2)
C13—C14—C15—C16 −0.4 (2) C36—C37—C38—C39 1.6 (2)
C12—C11—C16—C15 0.7 (2) C35—C34—C39—C38 −1.4 (2)
C9—C11—C16—C15 −179.52 (14) C32—C34—C39—C38 177.22 (14)
C14—C15—C16—C11 −0.2 (2) C37—C38—C39—C34 −0.1 (2)
C7—C8—C17—C18 −114.00 (18) C30—C31—C40—C45 −121.49 (18)
N1—C8—C17—C18 65.3 (2) N3—C31—C40—C45 56.9 (2)
C7—C8—C17—C22 65.5 (2) C30—C31—C40—C41 58.8 (2)
N1—C8—C17—C22 −115.22 (16) N3—C31—C40—C41 −122.77 (16)
C22—C17—C18—C19 −0.1 (2) C45—C40—C41—C42 0.2 (2)
C8—C17—C18—C19 179.44 (14) C31—C40—C41—C42 179.86 (14)
C17—C18—C19—C20 −1.0 (2) C40—C41—C42—C43 1.4 (2)
C18—C19—C20—O3 −176.55 (14) C41—C42—C43—O6 177.38 (14)
C18—C19—C20—C21 1.9 (2) C41—C42—C43—C44 −2.2 (2)
O3—C20—C21—C22 176.83 (14) O6—C43—C44—C45 −178.21 (15)
C19—C20—C21—C22 −1.8 (2) C42—C43—C44—C45 1.3 (2)
C20—C21—C22—C17 0.7 (2) C43—C44—C45—C40 0.3 (2)
C18—C17—C22—C21 0.2 (2) C41—C40—C45—C44 −1.0 (2)
C8—C17—C22—C21 −179.29 (14) C31—C40—C45—C44 179.25 (15)
C2—C1—N1—C8 −178.16 (14) C25—C24—N3—C31 −178.91 (14)
C6—C1—N1—C8 0.93 (16) C29—C24—N3—C31 0.60 (16)
C7—C8—N1—C1 −0.30 (17) C30—C31—N3—C24 −0.37 (17)
C17—C8—N1—C1 −179.70 (13) C40—C31—N3—C24 −179.06 (13)
C9—C10—N2—O1 −41.3 (2) C32—C33—N4—O5 139.49 (17)
C9—C10—N2—O2 141.02 (15) C32—C33—N4—O4 −42.3 (2)
C19—C20—O3—C23 8.6 (2) C42—C43—O6—C46 −173.68 (15)
C21—C20—O3—C23 −169.94 (13) C44—C43—O6—C46 5.8 (2)

(II) 2-(4-Methoxyphenyl)-3-(2-nitro-1-phenylethyl)-1H-indole . Hydrogen-bond geometry (Å, º)

Cg1, Cg2, Cg3, Cg6, Cg7 and Cg8 are the centroids of the N1/C1/C6–C8, C1–C6, C11–C16, N3/C24/C29–C31, C24–C29 and C34–C39 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1···Cg3i 0.886 (19) 2.640 (19) 3.3631 (15) 139.6 (15)
N3—H3···Cg8ii 0.875 (18) 2.582 (19) 3.3364 (15) 144.9 (16)
C14—H14···Cg2iii 0.95 2.58 3.4228 (18) 149
C21—H21···Cg2i 0.95 2.69 3.4133 (17) 134
C22—H22···Cg1i 0.95 2.68 3.4543 (17) 138
C23—H23B···Cg3iv 0.98 2.79 3.6739 (18) 150
C37—H37···Cg6v 0.95 2.86 3.7660 (18) 160
C41—H41···Cg6ii 0.95 2.70 3.3793 (17) 129
C42—H42···Cg7ii 0.95 2.67 3.3627 (17) 130

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+2, −y+1, −z+1; (iii) x, y−1, z; (iv) −x+2, −y, −z; (v) x, y+1, z.

References

  1. Burley, S. K. & Petsko, G. A. (1986). FEBS Lett. 203, 139–143. [DOI] [PubMed]
  2. Cordes, D. B., Hua, G., Slawin, A. M. Z. & Woollins, J. D. (2011). Acta Cryst. E67, o1606. [DOI] [PMC free article] [PubMed]
  3. Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Kerr, J. R. (2013). PhD thesis, University of Aberdeen, Scotland.
  7. Kerr, J. R., Trembleau, L., Storey, J. M. D., Wardell, J. L. & Harrison, W. T. A. (2015). Acta Cryst. E71, 654–659. [DOI] [PMC free article] [PubMed]
  8. Kerr, J. R., Trembleau, L., Storey, J. M. D., Wardell, J. L. & Harrison, W. T. A. (2016). Acta Cryst. E72, 363–369. [DOI] [PMC free article] [PubMed]
  9. Krishna, R., Velmurugan, D., Babu, G. & Perumal, P. T. (1999). Acta Cryst. C55, 75–78.
  10. Lavanya, P., Ramaiah, S. & Anbarasu, A. (2014). Comput. Biol. Med. 46, 22–28. [DOI] [PubMed]
  11. Levitt, M. & Perutz, M. F. (1998). J. Mol. Biol. 201, 751–754. [DOI] [PubMed]
  12. Muñoz, M. A., Ferrero, R., Carmona, C. & Balón, M. (2004). Spectrochim. Acta Part A, 60, 193–200. [DOI] [PubMed]
  13. Rigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  17. Zhao, H., Jiang, L., Dong, H., Li, H., Hu, W. & Ong, B. (2009). ChemPhysChem, 10, 2345–2348. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989016006162/pk2578sup1.cif

e-72-00699-sup1.cif (2.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016006162/pk2578Isup2.hkl

e-72-00699-Isup2.hkl (279.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989016006162/pk2578IIsup3.hkl

e-72-00699-IIsup3.hkl (684.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016006162/pk2578Isup4.cml

Supporting information file. DOI: 10.1107/S2056989016006162/pk2578IIsup5.cml

CCDC references: 1473664, 1473663

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES