Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Apr 15;72(Pt 5):683–686. doi: 10.1107/S2056989016005855

Crystal structure of (1S*,2R*)-7-benz­yloxy-2-methyl-3-tosyl-2,3,4,5-tetra­hydro-1H-3-benz­azepin-1-ol: elucidation of the relative configuration of potent allosteric GluN2B selective NMDA receptor antagonists

Bastian Tewes a, Bastian Frehland a, Roland Fröhlich b, Bernhard Wünsch a,c,*
PMCID: PMC4908544  PMID: 27308018

Tetra­hydro-3-benzazepines with a hy­droxy group in the 1-position and a methyl group in the 2-position were designed as conformationally restricted ifenprodil analogues. The enanti­omerically pure 3-benzazepine (S,R)-4 representing a constitutional isomer of ifenprodil shows high affinity towards the ifenprodil binding site (Ki = 26 nM) and high antagonistic activity at the NMDA receptor (IC50 = 9.0 nM). The crystal structure analysis of the inter­mediate sulfonamide (S,R)-2 was performed in order to assign unequivocally the relative configuration of the methyl and hy­droxy groups.

Keywords: crystal structure, NMDA receptor antagonists, GluN2B antagonists, ifenprodil analogs, tetra­hydro-3-benzazepines, relative configuration, conformational restriction, hydrogen bonding

Abstract

In the title compound, C25H27NO4S, which crystallized as a racemate, the relative configuration of the adjacent OH and CH3 groups on the azepine ring is trans. The seven-membered azepin ring has a chair-like conformation. The planar aromatic rings of the benzyl and tosyl­ate moiety are inclined to the planar 3-benzazepine ring by 78.39 (15) and 77.03 (14)°, respectively, and to each another by 13.82 (15)°. In the crystal, mol­ecules are linked via O—H⋯O and C—H⋯O hydrogen bonds, forming double-stranded chains along the a-axis direction. The chains are linked via C—H⋯π inter­actions, forming a three-dimensional architecture.

Chemical context  

Inhibition of overactive N-methyl-d-aspartate (NMDA) receptors represents a promising strategy for the treatment of acute (e.g. stroke, epilepsy, traumatic brain injury) and chronic neuronal disorders (e.g. neuropathic pain, depression, Alzheimer’s and Parkinson’s disease) (Bräuner-Osborne et al., 2000; Kew & Kemp, 2005; Paoletti et al., 2013; Wu & Zhou, 2009). The NMDA receptor consists of four proteins (hetero­tetra­mer), which form a cation channel allowing the penetration of Ca2+ and Na+ ions into the neuron (Furukawa et al., 2005). In particular, NMDA receptors containing the GluN2B subunit are an attractive target for the development of innovative drugs, since the expression of the GluN2B subunit is limited to only a few regions of the central nervous system, including cortex, striatum and hippocampus (Borza & Domány, 2006; Layton et al., 2006; Mony et al., 2009). Moreover, the GluN2B subunit can be addressed selectively by ligands inter­acting with the so-called ifenprodil binding site, which is formed at the inter­face between GluN2B and GluN1 subunits (Karakas et al., 2011; Paoletti et al., 2013).

The 2-piperidino-1-phenyl­propan-1-ol derivative ifenprodil (Paoletti et al., 2013; Williams, 2001) (Fig. 1) represents the first ligand inter­acting with this binding site at the NMDA receptor. As a result of its poor selectivity and low bioavailability, ifenprodil has not been developed as a drug for clinical use. In order to improve the selectivity and metabolic stability, the flexible β-amino­alcohol substructure of ifenprodil has been incorporated into a rigid tetra­hydro-3-benzazepine ring (Tewes et al., 2010a ,b ; Schepmann et al., 2010; Falck et al., 2014).

Figure 1.

Figure 1

Synthesis of GluN2B antagonists including the lead compound ifenprodil and the target compound (S,R)-4. Reagents and reaction conditions: (a) NaBH4, CH3OH, (S,R)-2 50%, (R,R)-3 23%.

Elucidation of the relative configuration  

For the synthesis of 3-benzazepine analogs of ifenprodil, we developed a chiral pool synthesis starting with (R)-alanine. In a five step synthesis (Fig. 1), the central inter­mediate ketone (R)-1 was prepared from (R)-alanine (Tewes et al., 2015).

The reduction of the ketone (R)-1 with NaBH4 led to the diastereomeric alcohols (S,R)-2 and (R,R)-3, which were further transformed into potent GluN2B antagonists by reductive removal of the tosyl group, alkyl­ation with 1-chloro-4-phenyl­butane and finally, hydrogeno­lytic cleavage of the benzyl ether. For example, the phenol (S,R)-4 displays very high affinity towards the ifenprodil binding site of the NMDA receptor (K i = 26 nM) and, moreover, (S,R)-4 is able to reduce the glutamate- and glycine-induced cytotoxicity with an IC50 value of 9.0 nM (Tewes et al., 2015).graphic file with name e-72-00683-scheme1.jpg

The diastereomeric alcohols (S,R)-2 and (R,R)-3 were separated by flash column chromatography and isolated in 50% and 23% yield, respectively. However, as a result of flexibility of the seven-membered tetra­hydro-3-benzazepine ring, it was not possible to assign the relative configuration of the methyl and hy­droxy moiety. Therefore, the main diastereomer (1S,2R)-2 was crystallized and we report herein on its crystal structure.

Structural commentary  

The mol­ecular structure of the title compound (1S,2R)-2 is illustrated in Fig. 2. Since the starting material was not enanti­omerically pure, the compound crystallized as a racemate. However, the relative trans-configuration of the OH and CH3 groups in the 1- and 2-positions on the azepine ring is clearly shown, leading to a trans-configuration for compound (S*,R*)-2. The CH3 and the OH groups adopt an axial orientation in the seven-membered azepine ring which has a chair conformation. The phenyl group of the benzyl moiety (C16–C21) and the phenyl group of the tosyl­ate moiety (C25–C30) are inclined to the benzene ring of the 3-benzazepine ring (C6–C11) by 78.39 (15) and 77.03 (14)°, respectively, and to each another by 13.82 (15)°. In the azepine ring, the bonds between the N atom, N3, and its adjacent C atoms, C2 and C4 [1.483 (3) and 1.480 (3) Å, respectively] are naturally shorter than the corresponding C—C bonds [1.509 (4)–1.519 (4) Å]. The exocyclic N3—S22 bond is considerably longer at 1.622 (2) Å. The bond angles within the azepine ring are close to the tetra­hedral angle [106.2 (2)–116.3 (2) °]. Fig. 2 also shows the tetra­hedral geometry around the S atom, S22, of the sulfon-amide.

Figure 2.

Figure 2

The mol­ecular structure of the title compound (1S,2R)-2 with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Supra­molecular features  

In the crystal, mol­ecules are linked via O—H⋯O and C—H⋯O hydrogen bonds, forming double-stranded chains along the a-axis direction (Table 1 and Fig. 3). The chains are linked via C—H⋯π inter­actions (Table 1), forming a three-dimensional architecture.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of rings C6–C11, C16–C21 and C25–C30, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H12⋯O23i 0.83 2.22 3.034 (3) 169
C2—H2⋯O24ii 0.99 2.52 3.265 (3) 132
C18—H18⋯Cg3iii 0.94 2.89 3.738 (4) 150
C20—H20⋯Cg1iv 0.94 2.83 3.631 (3) 144
C29—H29⋯Cg2v 0.94 2.76 3.545 (3) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 3.

Figure 3

A view along the a axis of the crystal packing of the title compound (1S,2R)-2. The hydrogen bonds are shown as dashed lines (see Table 1); for clarity, H atoms not involved in these inter­actions are omitted.

Synthesis and crystallization  

(1 S ,2 R )-7-Benz­yloxy-2-methyl-3-(4-tos­yl)-2,3,4,5-tetra­hydro-1 H -3-benzazepin-1-ol [( S,R )-2] and (1 R ,2 R )-7-benz­yloxy-2-methyl-3-(4-tos­yl)-2,3,4,5-tetra­hydro-1 H -3-benzazepin-1-ol [( R,R )-3]

Details of the synthesis of the title compound are illustrated in Fig. 1.

As described for the synthesis of (R,S)-2 and (S,S)-3 (Tewes et al. (2015), the ketone (R)-1 (5.20 g, 12.0 mmol) was reduced with NaBH4 (909 mg, 23.9 mmol) in CH3OH (125 ml).

(S,R)-2 (R f = 0.29): Colourless solid, m.p. 417 K, yield 2.60 g (50%). Purity (HPLC): 98.1%, t R = 22.6 min. [α]D = +1.20 (c = 0.91, CH3OH, 2.1% ee). Spectroscopic data are given in Tewes et al. (2015).

(R,R)-3 (R f = 0.44): Colourless solid, m.p. 425 K, yield 1.20 g (23%). Purity (HPLC): 95.6%, t R = 22.2 min. [α]D = +1.89 (c = 0.98, CH3OH, 8.5% ee). Spectroscopic data are given in Tewes et al. (2015).

Crystals of the title compound, suitable for X-ray diffraction analysis, were obtained by recrystallization from EtOAc.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 2. The OH and C-bound H atoms were included in calculated positions and treated as riding atoms: O—H = 0.83 Å, C—H = 0.94–0.99 Å with U iso(H) = 1.5U eq(O or C-meth­yl) and 1.2U eq(C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C25H27NO4S
M r 437.54
Crystal system, space group Orthorhombic, P b c a
Temperature (K) 223
a, b, c (Å) 7.5071 (2), 23.6113 (8), 24.5180 (8)
V3) 4345.9 (2)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.59
Crystal size (mm) 0.25 × 0.15 × 0.08
 
Data collection
Diffractometer Nonius KappaCCD APEXII
Absorption correction Multi-scan (DENZO; Otwinowski et al., 2003)
T min, T max 0.692, 0.884
No. of measured, independent and observed [I > 2σ(I)] reflections 40664, 3874, 3543
R int 0.064
(sin θ/λ)max−1) 0.600
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.058, 0.151, 1.10
No. of reflections 3874
No. of parameters 283
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.64, −0.27

Computer programs: COLLECT (Nonius, 1998), DENZO–SMN (Otwinowski & Minor, 1997), SHELXS97, SHELXL97 and XP in SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016005855/su5286sup1.cif

e-72-00683-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016005855/su5286Isup2.hkl

e-72-00683-Isup2.hkl (190KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016005855/su5286Isup3.cml

CCDC reference: 1472947

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

supplementary crystallographic information

Crystal data

C25H27NO4S F(000) = 1856
Mr = 437.54 Dx = 1.337 Mg m3
Orthorhombic, Pbca Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2ab Cell parameters from 5365 reflections
a = 7.5071 (2) Å θ = 0.9–68.3°
b = 23.6113 (8) Å µ = 1.59 mm1
c = 24.5180 (8) Å T = 223 K
V = 4345.9 (2) Å3 Plate, colourless
Z = 8 0.25 × 0.15 × 0.08 mm

Data collection

Nonius KappaCCD APEXII diffractometer 3874 independent reflections
Radiation source: fine-focus sealed tube 3543 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.064
ω and φ scans θmax = 67.7°, θmin = 4.2°
Absorption correction: multi-scan (DENZO; Otwinowski et al., 2003) h = 0→9
Tmin = 0.692, Tmax = 0.884 k = 0→27
40664 measured reflections l = 0→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0619P)2 + 5.5349P] where P = (Fo2 + 2Fc2)/3
3874 reflections (Δ/σ)max = 0.001
283 parameters Δρmax = 0.64 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.2632 (4) 0.25588 (13) 0.33843 (12) 0.0433 (7)
H1 −0.3327 0.2614 0.3045 0.052*
C2 −0.0688 (4) 0.26290 (13) 0.32342 (11) 0.0444 (7)
H2 −0.0462 0.2383 0.2914 0.053*
N3 0.0518 (3) 0.24359 (10) 0.36757 (9) 0.0382 (5)
C4 0.0510 (4) 0.27343 (13) 0.42068 (11) 0.0448 (7)
H4A 0.0656 0.3141 0.4142 0.054*
H4B 0.1530 0.2605 0.4423 0.054*
C5 −0.1175 (4) 0.26389 (14) 0.45294 (11) 0.0480 (7)
H5A −0.0934 0.2721 0.4914 0.058*
H5B −0.1504 0.2238 0.4502 0.058*
C6 −0.2745 (4) 0.29959 (12) 0.43450 (11) 0.0408 (6)
C7 −0.3588 (4) 0.33478 (12) 0.47111 (11) 0.0403 (6)
H7 −0.3162 0.3369 0.5071 0.048*
C8 −0.5061 (4) 0.36736 (11) 0.45600 (10) 0.0360 (6)
C9 −0.5624 (4) 0.36714 (11) 0.40220 (11) 0.0384 (6)
H9 −0.6574 0.3902 0.3909 0.046*
C10 −0.4758 (4) 0.33218 (12) 0.36548 (11) 0.0415 (7)
H10 −0.5136 0.3322 0.3289 0.050*
C11 −0.3365 (4) 0.29737 (12) 0.38014 (11) 0.0411 (6)
O12 −0.2846 (3) 0.19835 (9) 0.35386 (10) 0.0508 (6)
H12 −0.3873 0.1933 0.3655 0.076*
C13 −0.0263 (5) 0.32466 (13) 0.30574 (13) 0.0515 (8)
H13A −0.0412 0.3498 0.3367 0.077*
H13B −0.1067 0.3359 0.2767 0.077*
H13C 0.0956 0.3268 0.2928 0.077*
O14 −0.5837 (3) 0.39821 (8) 0.49686 (7) 0.0425 (5)
C15 −0.7379 (4) 0.43106 (13) 0.48158 (12) 0.0459 (7)
H15A −0.8273 0.4065 0.4646 0.055*
H15B −0.7039 0.4603 0.4551 0.055*
C16 −0.8140 (4) 0.45824 (12) 0.53175 (11) 0.0393 (6)
C17 −0.9211 (4) 0.42782 (14) 0.56697 (13) 0.0520 (8)
H17 −0.9428 0.3892 0.5605 0.062*
C18 −0.9964 (5) 0.45419 (17) 0.61180 (14) 0.0611 (9)
H18 −1.0692 0.4334 0.6357 0.073*
C19 −0.9651 (5) 0.51087 (16) 0.62151 (13) 0.0582 (9)
H19 −1.0168 0.5287 0.6519 0.070*
C20 −0.8587 (4) 0.54114 (13) 0.58683 (12) 0.0499 (8)
H20 −0.8368 0.5797 0.5936 0.060*
C21 −0.7835 (4) 0.51513 (12) 0.54197 (12) 0.0424 (7)
H21 −0.7110 0.5362 0.5182 0.051*
S22 0.22307 (9) 0.20715 (3) 0.34775 (3) 0.0364 (2)
O23 0.3341 (2) 0.19811 (9) 0.39487 (8) 0.0422 (5)
O24 0.3039 (3) 0.23240 (9) 0.30048 (8) 0.0447 (5)
C26 0.1770 (4) 0.12036 (12) 0.27553 (12) 0.0431 (7)
H26 0.2349 0.1434 0.2498 0.052*
C27 0.1279 (4) 0.06527 (13) 0.26233 (12) 0.0483 (7)
H27 0.1544 0.0511 0.2274 0.058*
C28 0.0412 (4) 0.03100 (13) 0.29945 (12) 0.0476 (7)
C31 −0.0091 (6) −0.02894 (14) 0.28515 (16) 0.0657 (10)
H31A −0.0590 −0.0299 0.2487 0.099*
H31B −0.0968 −0.0427 0.3110 0.099*
H31C 0.0960 −0.0528 0.2866 0.099*
C29 0.0012 (4) 0.05326 (14) 0.35077 (12) 0.0512 (8)
H29 −0.0591 0.0306 0.3763 0.061*
C30 0.0483 (4) 0.10756 (14) 0.36461 (12) 0.0467 (7)
H30 0.0193 0.1222 0.3992 0.056*
C25 0.1392 (3) 0.14065 (12) 0.32714 (11) 0.0373 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0446 (16) 0.0458 (16) 0.0396 (14) 0.0026 (13) −0.0051 (13) −0.0044 (12)
C2 0.0442 (16) 0.0598 (18) 0.0294 (13) 0.0093 (14) −0.0050 (12) −0.0057 (12)
N3 0.0338 (11) 0.0522 (14) 0.0287 (11) 0.0052 (10) −0.0015 (9) −0.0057 (10)
C4 0.0424 (16) 0.0570 (18) 0.0349 (14) 0.0026 (14) −0.0042 (12) −0.0040 (13)
C5 0.0465 (17) 0.065 (2) 0.0320 (14) 0.0151 (15) 0.0018 (13) 0.0027 (13)
C6 0.0420 (15) 0.0484 (16) 0.0322 (14) 0.0081 (13) −0.0002 (12) −0.0002 (12)
C7 0.0445 (16) 0.0467 (15) 0.0295 (13) 0.0076 (13) −0.0026 (12) 0.0003 (11)
C8 0.0392 (14) 0.0344 (13) 0.0345 (13) 0.0005 (12) 0.0011 (11) −0.0008 (10)
C9 0.0397 (15) 0.0369 (14) 0.0387 (14) 0.0057 (12) −0.0057 (12) 0.0002 (11)
C10 0.0465 (16) 0.0453 (16) 0.0328 (13) 0.0080 (13) −0.0084 (12) −0.0028 (11)
C11 0.0399 (15) 0.0465 (16) 0.0368 (14) 0.0039 (13) −0.0019 (12) −0.0005 (12)
O12 0.0405 (12) 0.0410 (11) 0.0709 (15) −0.0013 (9) −0.0018 (11) −0.0050 (10)
C13 0.0531 (18) 0.0531 (18) 0.0483 (17) 0.0045 (15) 0.0078 (15) 0.0148 (14)
O14 0.0424 (11) 0.0503 (11) 0.0346 (10) 0.0144 (9) −0.0010 (8) −0.0037 (8)
C15 0.0469 (16) 0.0475 (16) 0.0432 (15) 0.0129 (14) −0.0060 (13) −0.0047 (13)
C16 0.0356 (14) 0.0421 (15) 0.0401 (14) 0.0084 (12) −0.0039 (12) −0.0004 (12)
C17 0.0545 (19) 0.0481 (17) 0.0533 (18) −0.0031 (15) −0.0016 (15) 0.0022 (14)
C18 0.0516 (19) 0.082 (3) 0.0494 (19) −0.0063 (18) 0.0107 (15) 0.0127 (17)
C19 0.0538 (19) 0.078 (2) 0.0425 (17) 0.0188 (18) 0.0036 (15) −0.0082 (16)
C20 0.0566 (19) 0.0456 (17) 0.0473 (17) 0.0131 (15) −0.0035 (15) −0.0065 (13)
C21 0.0411 (16) 0.0430 (15) 0.0432 (15) 0.0047 (13) 0.0000 (12) 0.0006 (12)
S22 0.0295 (3) 0.0466 (4) 0.0330 (3) 0.0008 (3) 0.0022 (3) −0.0022 (3)
O23 0.0300 (9) 0.0565 (12) 0.0401 (10) 0.0032 (9) −0.0036 (8) −0.0038 (9)
O24 0.0428 (11) 0.0533 (12) 0.0379 (10) −0.0057 (9) 0.0086 (9) −0.0006 (9)
C26 0.0448 (16) 0.0470 (16) 0.0374 (14) −0.0002 (13) 0.0059 (12) 0.0012 (12)
C27 0.0576 (19) 0.0493 (17) 0.0380 (16) 0.0012 (15) 0.0049 (14) −0.0051 (13)
C28 0.0494 (17) 0.0473 (16) 0.0461 (16) −0.0006 (14) −0.0014 (14) −0.0003 (13)
C31 0.084 (3) 0.0484 (19) 0.065 (2) −0.0099 (18) 0.003 (2) −0.0034 (16)
C29 0.0523 (19) 0.0571 (19) 0.0443 (17) −0.0119 (16) 0.0052 (14) 0.0047 (14)
C30 0.0468 (17) 0.0580 (18) 0.0354 (14) −0.0075 (14) 0.0084 (13) −0.0043 (13)
C25 0.0313 (13) 0.0460 (15) 0.0347 (13) 0.0014 (12) 0.0012 (11) −0.0004 (12)

Geometric parameters (Å, º)

C1—O12 1.419 (4) C15—C16 1.500 (4)
C1—C2 1.514 (4) C16—C17 1.381 (4)
C1—C11 1.519 (4) C16—C21 1.386 (4)
C2—N3 1.483 (3) C17—C18 1.384 (5)
C2—C13 1.554 (4) C18—C19 1.379 (5)
N3—C4 1.480 (3) C19—C20 1.368 (5)
N3—S22 1.622 (2) C20—C21 1.380 (4)
C4—C5 1.509 (4) S22—O24 1.438 (2)
C5—C6 1.518 (4) S22—O23 1.441 (2)
C6—C7 1.377 (4) S22—C25 1.765 (3)
C6—C11 1.413 (4) C26—C25 1.382 (4)
C7—C8 1.397 (4) C26—C27 1.390 (4)
C8—O14 1.369 (3) C27—C28 1.381 (4)
C8—C9 1.385 (4) C28—C29 1.396 (4)
C9—C10 1.384 (4) C28—C31 1.506 (4)
C10—C11 1.377 (4) C29—C30 1.373 (4)
O14—C15 1.443 (3) C30—C25 1.386 (4)
O12—C1—C2 106.2 (2) C17—C16—C21 119.2 (3)
O12—C1—C11 113.4 (2) C17—C16—C15 120.8 (3)
C2—C1—C11 116.3 (3) C21—C16—C15 120.0 (3)
N3—C2—C1 112.2 (2) C16—C17—C18 120.0 (3)
N3—C2—C13 111.5 (2) C19—C18—C17 120.2 (3)
C1—C2—C13 111.6 (3) C20—C19—C18 120.0 (3)
C4—N3—C2 119.5 (2) C19—C20—C21 120.1 (3)
C4—N3—S22 121.29 (18) C20—C21—C16 120.5 (3)
C2—N3—S22 115.37 (17) O24—S22—O23 117.62 (12)
N3—C4—C5 113.2 (2) O24—S22—N3 110.87 (12)
C4—C5—C6 114.3 (2) O23—S22—N3 107.28 (11)
C7—C6—C11 119.1 (3) O24—S22—C25 106.78 (12)
C7—C6—C5 119.9 (2) O23—S22—C25 107.70 (12)
C11—C6—C5 121.1 (2) N3—S22—C25 105.96 (13)
C6—C7—C8 121.5 (2) C25—C26—C27 118.9 (3)
O14—C8—C9 124.7 (2) C28—C27—C26 121.3 (3)
O14—C8—C7 115.8 (2) C27—C28—C29 118.3 (3)
C9—C8—C7 119.5 (2) C27—C28—C31 121.0 (3)
C10—C9—C8 118.6 (3) C29—C28—C31 120.6 (3)
C11—C10—C9 122.9 (3) C30—C29—C28 121.3 (3)
C10—C11—C6 118.3 (3) C29—C30—C25 119.3 (3)
C10—C11—C1 119.0 (3) C26—C25—C30 120.8 (3)
C6—C11—C1 122.6 (3) C26—C25—S22 119.8 (2)
C8—O14—C15 116.0 (2) C30—C25—S22 119.2 (2)
O14—C15—C16 108.8 (2)
O12—C1—C2—N3 −53.8 (3) O14—C15—C16—C17 −80.1 (3)
C11—C1—C2—N3 73.3 (3) O14—C15—C16—C21 102.7 (3)
O12—C1—C2—C13 −179.8 (2) C21—C16—C17—C18 0.0 (5)
C11—C1—C2—C13 −52.6 (3) C15—C16—C17—C18 −177.2 (3)
C1—C2—N3—C4 −64.1 (3) C16—C17—C18—C19 0.0 (5)
C13—C2—N3—C4 61.9 (3) C17—C18—C19—C20 −0.2 (5)
C1—C2—N3—S22 137.5 (2) C18—C19—C20—C21 0.3 (5)
C13—C2—N3—S22 −96.4 (3) C19—C20—C21—C16 −0.3 (5)
C2—N3—C4—C5 69.7 (3) C17—C16—C21—C20 0.1 (4)
S22—N3—C4—C5 −133.3 (2) C15—C16—C21—C20 177.4 (3)
N3—C4—C5—C6 −79.2 (3) C4—N3—S22—O24 −114.3 (2)
C4—C5—C6—C7 −123.1 (3) C2—N3—S22—O24 43.7 (2)
C4—C5—C6—C11 56.9 (4) C4—N3—S22—O23 15.4 (3)
C11—C6—C7—C8 1.3 (4) C2—N3—S22—O23 173.3 (2)
C5—C6—C7—C8 −178.6 (3) C4—N3—S22—C25 130.2 (2)
C6—C7—C8—O14 176.6 (3) C2—N3—S22—C25 −71.8 (2)
C6—C7—C8—C9 −4.1 (4) C25—C26—C27—C28 0.7 (5)
O14—C8—C9—C10 −177.5 (3) C26—C27—C28—C29 0.8 (5)
C7—C8—C9—C10 3.2 (4) C26—C27—C28—C31 −179.1 (3)
C8—C9—C10—C11 0.3 (5) C27—C28—C29—C30 −0.8 (5)
C9—C10—C11—C6 −3.1 (5) C31—C28—C29—C30 179.1 (3)
C9—C10—C11—C1 173.4 (3) C28—C29—C30—C25 −0.8 (5)
C7—C6—C11—C10 2.2 (4) C27—C26—C25—C30 −2.3 (4)
C5—C6—C11—C10 −177.9 (3) C27—C26—C25—S22 172.5 (2)
C7—C6—C11—C1 −174.1 (3) C29—C30—C25—C26 2.4 (5)
C5—C6—C11—C1 5.8 (5) C29—C30—C25—S22 −172.4 (2)
O12—C1—C11—C10 −116.8 (3) O24—S22—C25—C26 7.2 (3)
C2—C1—C11—C10 119.7 (3) O23—S22—C25—C26 −120.0 (2)
O12—C1—C11—C6 59.5 (4) N3—S22—C25—C26 125.5 (2)
C2—C1—C11—C6 −64.0 (4) O24—S22—C25—C30 −177.9 (2)
C9—C8—O14—C15 1.8 (4) O23—S22—C25—C30 54.9 (3)
C7—C8—O14—C15 −178.9 (2) N3—S22—C25—C30 −59.7 (3)
C8—O14—C15—C16 175.5 (2)

Hydrogen-bond geometry (Å, º)

Cg1, Cg2 and Cg3 are the centroids of rings C6–C11, C16–C21 and C25–C30, respectively.

D—H···A D—H H···A D···A D—H···A
O12—H12···O23i 0.83 2.22 3.034 (3) 169
C2—H2···O24ii 0.99 2.52 3.265 (3) 132
C18—H18···Cg3iii 0.94 2.89 3.738 (4) 150
C20—H20···Cg1iv 0.94 2.83 3.631 (3) 144
C29—H29···Cg2v 0.94 2.76 3.545 (3) 142

Symmetry codes: (i) x−1, y, z; (ii) x−1/2, y, −z+1/2; (iii) x−3/2, −y+1/2, −z+1; (iv) −x−1, −y+1, −z+1; (v) x+1/2, −y+1/2, −z+1.

References

  1. Borza, I. & Domány, G. (2006). Curr. Top. Med. Chem. 6, 687–695. [DOI] [PubMed]
  2. Bräuner-Osborne, H., Egebjerg, J., Nielsen, E. Ø., Madsen, U. & Krogsgaard-Larsen, P. (2000). J. Med. Chem. 43, 2609–2645. [DOI] [PubMed]
  3. Falck, E., Begrow, F., Verspohl, E. & Wünsch, B. (2014). J. Pharm. Biomed. Anal. 88, 96–105. [DOI] [PubMed]
  4. Furukawa, H., Singh, S. K., Mancusso, R. & Gouaux, E. (2005). Nature, 438, 185–192. [DOI] [PubMed]
  5. Karakas, E., Simorowski, N. & Furukawa, H. (2011). Nature, 475, 249–253. [DOI] [PMC free article] [PubMed]
  6. Kew, J. N. C. & Kemp, J. A. (2005). Psychopharmacology, 179, 4–29. [DOI] [PubMed]
  7. Layton, M. E., Kelly, M. J. III & Rodzinak, K. J. (2006). Curr. Top. Med. Chem. 6, 697–709. [DOI] [PubMed]
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Mony, L., Kew, J. N. C., Gunthorpe, M. J. & Paoletti, P. (2009). Br. J. Pharmacol. 157, 1301–1317. [DOI] [PMC free article] [PubMed]
  10. Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
  11. Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. [DOI] [PubMed]
  12. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  13. Paoletti, P., Bellone, C. & Zhou, Q. (2013). Nat. Rev. Neurosci. 14, 383–400. [DOI] [PubMed]
  14. Schepmann, D., Frehland, B., Lehmkuhl, K., Tewes, B. & Wünsch, B. (2010). J. Pharm. Biomed. Anal. 53, 603–608. [DOI] [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Tewes, B., Frehland, B., Schepmann, D., Robaa, D., Uengwetwanit, T., Gaube, F., Winckler, T., Sippl, W. & Wünsch, B. (2015). J. Med. Chem. 58, 6293–6305. [DOI] [PubMed]
  18. Tewes, B., Frehland, B., Schepmann, D., Schmidtke, K.-U., Winckler, T. & Wünsch, B. (2010a). Chem. Med. Chem. 5, 687–695. [DOI] [PubMed]
  19. Tewes, B., Frehland, B., Schepmann, D., Schmidtke, K.-U., Winckler, T. & Wünsch, B. (2010b). Bioorg. Med. Chem. 18, 8005–8015. [DOI] [PubMed]
  20. Williams, K. (2001). Curr. Drug Targets, 2, 285–298. [DOI] [PubMed]
  21. Wu, L.-J. & Zhou, M. (2009). Neurotherapeutics, 6, 693–702. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016005855/su5286sup1.cif

e-72-00683-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016005855/su5286Isup2.hkl

e-72-00683-Isup2.hkl (190KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016005855/su5286Isup3.cml

CCDC reference: 1472947

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES