Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Apr 5;72(Pt 5):624–627. doi: 10.1107/S205698901600517X

Crystal structure of a nucleoside model for the inter­strand cross-link formed by the reaction of 2′-de­oxy­guanosine and an abasic site in duplex DNA

Michael J Catalano a, Kasi Viswanatharaju Ruddraraju a, Charles L Barnes a, Kent S Gates a,*
PMCID: PMC4908545  PMID: 27308004

Crystallographic analysis of a nucleoside analog of the 2′-de­oxy­guanosine/abasic site cross-link is presented. This structure corroborates an earlier two-dimensional NMR analysis, concluding that the 2-de­oxy­ribose unit attached at the exocyclic N 2-amino group of the guanine residue exists in the cyclic amino­glycoside form.

Keywords: crystal structure, purine-6(9H)-one, 2′-de­oxy­guanosine, de­oxy-d-ribo­furan­ose, glycosidic linkage, nucleobase, hydrogen bonding

Abstract

The title compound, 9-[(2R,4S,5R)-4-hy­droxy-5-(hy­droxy­meth­yl)tetra­hydro­furan-2-yl]-2-{[(2R,4S,5R)-4-meth­oxy-5-(meth­oxy­meth­yl)tetra­hydro­furan-2-yl]amino}-1H-purin-6(9H)-one, C17H25N5O7, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. In the crystal, the guanosine moieties of mol­ecules A and B are linked by N—H⋯N and O—H⋯N hydrogen-bonding inter­actions, forming ribbons which are stacked to form columns along [100]. These columns are then linked by O—H⋯O hydrogen bonds between the ribose moieties and numerous C—H⋯O inter­actions to complete the three-dimensional structure.

Chemical context  

Recent work has characterized a structurally novel set of inter­strand DNA–DNA cross-links involving reaction of the ubiquitous DNA abasic lesion with a nucleobase on the opposing strand of the double helix (Catalano et al., 2015; Dutta et al., 2007; Gamboa Varela & Gates, 2015; Johnson et al., 2013; Price et al., 2014, 2015; Yang et al., 2015; Zhang et al., 2015). Evidence indicates that the covalent attachment is forged between the anomeric carbon of the abasic sugar and the exocyclic amino group of either a guanine, adenine, or N 4-amino­cytosine residue (Catalano et al., 2015; Dutta et al., 2007; Gamboa Varela & Gates, 2015; Johnson et al., 2013; Price et al., 2014, 2015; Yang et al., 2015). This type of glycosidic linkage involving the exocyclic amino group of a nucleobase is reminiscent of that found in the natural products anicemycin, spicamycin, and septacidin (Acton et al., 1977; Igarashi et al., 2005; Suzuki et al., 2002). graphic file with name e-72-00624-scheme1.jpg

Here we present single crystal X-ray crystallographic analysis of a nucleoside analog, (I), of the 2′-de­oxy­guanosine/abasic site cross-link. This structure corroborates an earlier two-dimensional NMR analysis (Catalano et al., 2015) concluding that the 2-de­oxy­ribose unit attached at the exocyclic N 2-amino group of the guanine residue exists in the cyclic amino­glycoside form.

Structural commentary  

The two independent mol­ecules (A and B) of (I) are shown in Fig. 1 as they are oriented in the crystal, while Fig. 2 shows an overlay to illustrate the differences in orientation and conformation of the furan­ose rings. Ring puckering analysis, after Cremer & Pople as calculated using PLATON (Spek, 2009) indicates the furan­ose rings attached to N4 positions in the two mol­ecules to be half-chairs in both mol­ecules, but with the maximum variance from planarity occurring between C7 and C8 in mol­ecule A and C6 and C7 in mol­ecule B [Q(2) = 0.367 (2), Φ(2) = 88.0 (4)° for mol­ecule A and Q(2) = 0.347 (2), Φ(2) = 60.6 (4)° for mol­ecule B]. The disposition of these furan­ose rings relative to the purine rings can be described by the torsion angle C2—N4—C6—O2, which is 70.9 (3)° in mol­ecule A and 61.7 (3)° in mol­ecule B. The furan­ose ring attached to the N5 position in mol­ecule A is again a half-chair, with the maximum deviation from planarity between C11A and C12A [Q(2) = 3.41 (2), Φ(2) = 62.2 (3)°], while this furan­ose ring in mol­ecule B is an envelope with C11B at the flap [Q(2) = 0.422 (2), Φ(2) = 45.4 (3)°]. The disposition of these furan­ose rings relative to the purine rings can be described by the angle C1—N5—C11—O5, which is −87.4 (2)° in mol­ecule A and −93.7 (2)° in mol­ecule B.

Figure 1.

Figure 1

The mol­ecular structure of (I) showing 50% displacement ellipsoids.

Figure 2.

Figure 2

Overlay plot of the two mol­ecules in (I). A molecule in orange and B molecule in blue.

Supra­molecular features  

In the crystal, the two mol­ecules form infinite ribbons along the ac diagonal of the unit cell, with the A mol­ecules on one side of the ribbon and the B mol­ecules on the other. The mol­ecules are staggered such that each A mol­ecule forms hydrogen bonds to two B mol­ecules and each B mol­ecule forms hydrogen bonds (Table 1) to two A mol­ecules, fully involving the N1, N3, N5 and O1 atoms. These ribbons are then stacked to form slabs propagating in the ac plane and one half the b dimension in thickness. The de­oxy­ribose moieties occupy the outsides of these slabs and are linked via hydrogen bonds to twofold screw-related slabs, resulting in a herringbone pattern in the three-dimensional structure as seen in Fig. 3.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯N3B 0.88 1.92 2.789 (2) 170
O3A—H3A⋯O5A i 0.84 2.07 2.897 (2) 167
O4A—H4A⋯O3B ii 0.84 2.01 2.847 (2) 178
N5A—H5A⋯O1B 0.88 2.23 3.058 (2) 157
C5A—H5A1⋯O1B iii 0.95 2.63 3.284 (3) 126
C7A—H7A1⋯N2A 0.99 2.46 3.172 (3) 128
C8A—H8A⋯O7A i 1.00 2.39 3.316 (3) 153
C12A—H12A⋯O1A iv 0.99 2.61 3.432 (3) 141
C12A—H12B⋯O1B 0.99 2.55 3.426 (3) 147
C16A—H16A⋯O4A v 0.98 2.47 3.401 (3) 158
C16A—H16B⋯O6A v 0.98 2.54 3.222 (3) 127
C16A—H16C⋯O2A vi 0.98 2.50 3.356 (3) 146
C17A—H17A⋯O3A vi 0.98 2.65 3.610 (3) 168
C17A—H17B⋯O2A iv 0.98 2.60 3.573 (3) 175
N1B—H1B⋯N3A vi 0.88 1.94 2.808 (2) 166
O3B—H3B⋯O5B vii 0.84 1.99 2.817 (2) 169
O4B—H4B⋯N2B 0.84 2.38 3.180 (3) 158
N5B—H5B⋯O1A vi 0.88 2.19 3.027 (2) 159
C5B—H5B1⋯O1A 0.95 2.60 3.269 (3) 127
C8B—H8B⋯O7B vii 1.00 2.49 3.363 (3) 146
C11B—H11B⋯O4B 1.00 2.59 3.251 (3) 124
C12B—H12C⋯O1A vi 0.99 2.55 3.363 (3) 140
C12B—H12D⋯O1B v 0.99 2.45 3.424 (3) 167
C14B—H14B⋯O4B 1.00 2.61 3.272 (3) 123
C17B—H17E⋯O2B v 0.98 2.48 3.456 (3) 176

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Figure 3.

Figure 3

The packing in (I) along the c axis showing the formation of hydrogen-bonded chains (A mol­ecules green, B mol­ecules blue).

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.36, update February 2015; Groom & Allen, 2014) for de­oxy­guanosine analogues with exocyclic amine substitution revealed three crystal structures (Morr et al., 1991; Fujino et al., 2010). In all these crystal structures, the five-membered 2-de­oxy­ribo­furan­ose rings have envelope conformations, as in the title compound.

Synthesis and crystallization  

2′-De­oxy­guanosine (199 mg, 0.75 mmol) and 3,5-bis-O-methyl-2-de­oxy-d-ribo­furan­ose (110 mg, 0.74 mmol) were dissolved in 0.8 ml of a 3:1 mixture of DMSO and 25 mM sodium phosphate buffer (pH 7.0) in a round-bottom flask. The flask was heated to 333 K and the mixture stirred for 22 h. The solvent removed in vacuo and the product purified by column chromatography on silica gel eluted with 0–15% methanol in di­chloro­methane (Rf = 0.30, 15% methanol/di­chloro­methane) to yield 36 mg (12% yield) of the title compound as a colorless oil. The precursor 3,5-bis-O-methyl-2-de­oxy-d-ribo­furan­ose was synthesized according to previously reported procedures (Deriaz et al., 1949; Olsson et al., 1998). The title compound was crystallized by vapour diffusion, a 2 ml vial containing the title compound in methanol being placed in a 20 ml vial containing hexa­nes at room temperature for several days.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed geometrically (C—H = 0.95 or 0.98 Å) and refined as riding with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C17H25N5O7
M r 411.42
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 8.1817 (1), 26.4033 (5), 8.8800 (2)
β (°) 98.023 (1)
V3) 1899.52 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.96
Crystal size (mm) 0.15 × 0.08 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2008)
T min, T max 0.86, 0.93
No. of measured, independent and observed [I > 2σ(I)] reflections 26696, 6862, 6644
R int 0.029
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.027, 0.072, 1.04
No. of reflections 6862
No. of parameters 531
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.17
Absolute structure Flack x determined using 2923 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.08 (5)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), X-SEED, Barbour, 2001, CIFTAB (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901600517X/hb7568sup1.cif

e-72-00624-sup1.cif (808.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901600517X/hb7568Isup2.hkl

e-72-00624-Isup2.hkl (376KB, hkl)

CCDC reference: 1448235

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C17H25N5O7 F(000) = 872
Mr = 411.42 Dx = 1.439 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.54178 Å
a = 8.1817 (1) Å Cell parameters from 9940 reflections
b = 26.4033 (5) Å θ = 5.3–72.2°
c = 8.8800 (2) Å µ = 0.96 mm1
β = 98.023 (1)° T = 100 K
V = 1899.52 (6) Å3 Prism, colourless
Z = 4 0.15 × 0.08 × 0.08 mm

Data collection

Bruker APEXII CCD diffractometer 6644 reflections with I > 2σ(I)
Radiation source: Incoatec micro focus Cu tube Rint = 0.029
ω and phi scans θmax = 72.2°, θmin = 3.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) h = −10→10
Tmin = 0.86, Tmax = 0.93 k = −31→31
26696 measured reflections l = −9→10
6862 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.3476P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.23 e Å3
6862 reflections Δρmin = −0.17 e Å3
531 parameters Absolute structure: Flack x determined using 2923 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: 0.08 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.34576 (17) 0.46915 (6) −0.12995 (17) 0.0168 (3)
N1A 0.3499 (2) 0.50765 (6) 0.1022 (2) 0.0146 (3)
H1A 0.4493 0.4955 0.1317 0.017*
C1A 0.2806 (2) 0.53738 (8) 0.2030 (2) 0.0140 (4)
O2A −0.1409 (2) 0.64849 (6) 0.01984 (18) 0.0223 (3)
N2A 0.1339 (2) 0.55894 (7) 0.1729 (2) 0.0155 (4)
C2A 0.0560 (3) 0.54690 (8) 0.0330 (2) 0.0150 (4)
O3A −0.44313 (19) 0.65756 (6) 0.18573 (19) 0.0221 (3)
H3A −0.5051 0.6460 0.2454 0.027*
N3A −0.0017 (2) 0.51309 (7) −0.2041 (2) 0.0170 (4)
C3A 0.1129 (2) 0.51624 (8) −0.0744 (2) 0.0148 (4)
O4A 0.0015 (2) 0.72195 (6) 0.3635 (2) 0.0298 (4)
H4A −0.0253 0.7501 0.3235 0.036*
N4A −0.0978 (2) 0.56295 (7) −0.0324 (2) 0.0177 (4)
C4A 0.2740 (2) 0.49535 (7) −0.0439 (2) 0.0138 (4)
O5A 0.37552 (18) 0.62783 (6) 0.42933 (16) 0.0176 (3)
N5A 0.3711 (2) 0.54372 (7) 0.3418 (2) 0.0163 (4)
H5A 0.4647 0.5272 0.3642 0.020*
C5A −0.1246 (3) 0.54152 (8) −0.1750 (2) 0.0192 (4)
H5A1 −0.2220 0.5468 −0.2449 0.023*
O6A 0.23353 (18) 0.61868 (6) 0.75564 (18) 0.0227 (3)
C6A −0.2089 (3) 0.59897 (8) 0.0258 (3) 0.0185 (4)
H6A −0.3179 0.5980 −0.0410 0.022*
O7A 0.69231 (18) 0.63615 (6) 0.60640 (19) 0.0221 (3)
C7A −0.2373 (3) 0.59060 (8) 0.1890 (3) 0.0184 (4)
H7A1 −0.1372 0.5770 0.2514 0.022*
H7A2 −0.3309 0.5673 0.1948 0.022*
C8A −0.2764 (3) 0.64379 (8) 0.2388 (2) 0.0182 (4)
H8A −0.2507 0.6476 0.3516 0.022*
C9A −0.1612 (3) 0.67599 (8) 0.1574 (2) 0.0189 (4)
H9A −0.2152 0.7093 0.1293 0.023*
C10A 0.0085 (3) 0.68527 (9) 0.2482 (3) 0.0245 (5)
H10A 0.0518 0.6531 0.2951 0.029*
H10B 0.0853 0.6970 0.1787 0.029*
C11A 0.3171 (2) 0.57690 (8) 0.4527 (2) 0.0156 (4)
H11A 0.1938 0.5767 0.4429 0.019*
C12A 0.3901 (3) 0.56396 (8) 0.6145 (2) 0.0182 (4)
H12A 0.3228 0.5381 0.6581 0.022*
H12B 0.5045 0.5513 0.6190 0.022*
C13A 0.3861 (2) 0.61397 (8) 0.6978 (2) 0.0167 (4)
H13A 0.4804 0.6161 0.7823 0.020*
C14A 0.4064 (3) 0.65359 (8) 0.5738 (2) 0.0175 (4)
H14A 0.3230 0.6811 0.5769 0.021*
C15A 0.5775 (3) 0.67638 (9) 0.5938 (3) 0.0218 (4)
H15A 0.5917 0.6979 0.5053 0.026*
H15B 0.5947 0.6976 0.6866 0.026*
C16A 0.8590 (3) 0.65335 (11) 0.6422 (3) 0.0301 (5)
H16A 0.8799 0.6802 0.5711 0.045*
H16B 0.9346 0.6250 0.6338 0.045*
H16C 0.8766 0.6666 0.7463 0.045*
C17A 0.2364 (3) 0.65893 (11) 0.8622 (3) 0.0289 (5)
H17A 0.3324 0.6551 0.9407 0.043*
H17B 0.1352 0.6581 0.9096 0.043*
H17C 0.2435 0.6913 0.8097 0.043*
O1B 0.72354 (17) 0.51384 (5) 0.47267 (17) 0.0168 (3)
N1B 0.9716 (2) 0.47201 (6) 0.50184 (19) 0.0139 (3)
H1B 0.9971 0.4855 0.5927 0.017*
C1B 1.0833 (2) 0.43911 (7) 0.4530 (2) 0.0136 (4)
O2B 0.9310 (2) 0.32766 (6) 0.07593 (19) 0.0219 (3)
N2B 1.0610 (2) 0.41620 (6) 0.3193 (2) 0.0153 (4)
C2B 0.9168 (3) 0.42949 (8) 0.2340 (2) 0.0150 (4)
O3B 1.09413 (19) 0.31769 (6) −0.23244 (18) 0.0220 (3)
H3B 1.1571 0.3306 −0.2890 0.026*
N3B 0.6634 (2) 0.46447 (7) 0.1606 (2) 0.0188 (4)
C3B 0.7979 (2) 0.46230 (8) 0.2729 (2) 0.0159 (4)
O4B 1.2568 (3) 0.31747 (9) 0.2436 (2) 0.0452 (5)
H4B 1.1920 0.3377 0.2779 0.054*
N4B 0.8528 (2) 0.41146 (7) 0.0918 (2) 0.0186 (4)
C4B 0.8210 (2) 0.48559 (8) 0.4184 (2) 0.0143 (4)
O5B 1.32491 (17) 0.34807 (6) 0.57774 (18) 0.0175 (3)
N5B 1.2221 (2) 0.43116 (7) 0.5529 (2) 0.0159 (3)
H5B 1.2334 0.4468 0.6413 0.019*
C5B 0.7002 (3) 0.43335 (9) 0.0558 (3) 0.0215 (5)
H5B1 0.6287 0.4266 −0.0358 0.026*
O6B 1.67925 (19) 0.36348 (6) 0.43876 (18) 0.0216 (3)
C6B 0.9187 (3) 0.37405 (8) −0.0034 (2) 0.0185 (4)
H6B 0.8402 0.3699 −0.0995 0.022*
O7B 1.5367 (2) 0.31343 (6) 0.84948 (19) 0.0252 (3)
C7B 1.0893 (3) 0.38469 (8) −0.0431 (3) 0.0198 (4)
H7B1 1.1615 0.4002 0.0435 0.024*
H7B2 1.0845 0.4072 −0.1328 0.024*
C8B 1.1484 (3) 0.33176 (8) −0.0781 (2) 0.0191 (4)
H8B 1.2709 0.3287 −0.0525 0.023*
C9B 1.0581 (3) 0.29760 (9) 0.0248 (3) 0.0226 (5)
H9B 1.0071 0.2683 −0.0357 0.027*
C10B 1.1657 (4) 0.27835 (11) 0.1641 (3) 0.0360 (6)
H10C 1.0958 0.2618 0.2322 0.043*
H10D 1.2427 0.2526 0.1337 0.043*
C11B 1.3507 (3) 0.39806 (8) 0.5188 (2) 0.0157 (4)
H11B 1.3500 0.3963 0.4062 0.019*
C12B 1.5222 (3) 0.41144 (8) 0.5959 (3) 0.0191 (4)
H12C 1.5218 0.4204 0.7041 0.023*
H12D 1.5700 0.4398 0.5436 0.023*
C13B 1.6149 (3) 0.36211 (8) 0.5792 (2) 0.0177 (4)
H13B 1.7050 0.3572 0.6664 0.021*
C14B 1.4792 (3) 0.32117 (8) 0.5795 (3) 0.0178 (4)
H14B 1.4738 0.3009 0.4838 0.021*
C15B 1.5051 (3) 0.28550 (9) 0.7128 (3) 0.0227 (5)
H15C 1.4055 0.2643 0.7142 0.027*
H15D 1.5995 0.2628 0.7033 0.027*
C16B 1.5735 (3) 0.28046 (11) 0.9765 (3) 0.0331 (6)
H16D 1.4856 0.2552 0.9752 0.050*
H16E 1.5814 0.3002 1.0708 0.050*
H16F 1.6788 0.2633 0.9711 0.050*
C17B 1.7854 (3) 0.32160 (10) 0.4226 (3) 0.0271 (5)
H17D 1.8756 0.3212 0.5077 0.041*
H17E 1.8312 0.3248 0.3267 0.041*
H17F 1.7225 0.2900 0.4221 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0171 (7) 0.0182 (7) 0.0155 (7) 0.0035 (6) 0.0033 (5) −0.0025 (6)
N1A 0.0120 (7) 0.0159 (8) 0.0155 (9) 0.0028 (6) 0.0006 (6) −0.0015 (6)
C1A 0.0148 (9) 0.0128 (9) 0.0142 (10) −0.0002 (7) 0.0018 (7) −0.0013 (7)
O2A 0.0304 (9) 0.0195 (8) 0.0191 (8) 0.0039 (6) 0.0108 (6) 0.0007 (6)
N2A 0.0152 (8) 0.0175 (9) 0.0134 (9) 0.0031 (6) 0.0008 (7) −0.0026 (7)
C2A 0.0152 (9) 0.0136 (10) 0.0158 (10) 0.0012 (7) 0.0005 (7) −0.0019 (7)
O3A 0.0198 (8) 0.0247 (8) 0.0234 (8) 0.0066 (6) 0.0078 (6) 0.0027 (6)
N3A 0.0174 (8) 0.0183 (9) 0.0148 (9) 0.0033 (7) 0.0001 (7) −0.0032 (7)
C3A 0.0170 (9) 0.0137 (9) 0.0134 (10) 0.0018 (8) 0.0014 (8) −0.0032 (7)
O4A 0.0448 (10) 0.0194 (8) 0.0243 (9) −0.0047 (7) 0.0011 (7) 0.0001 (7)
N4A 0.0172 (8) 0.0195 (9) 0.0154 (9) 0.0053 (7) −0.0012 (7) −0.0036 (7)
C4A 0.0152 (10) 0.0127 (10) 0.0139 (10) −0.0012 (7) 0.0032 (8) −0.0005 (7)
O5A 0.0227 (7) 0.0174 (7) 0.0123 (7) −0.0008 (6) 0.0009 (5) −0.0013 (6)
N5A 0.0139 (8) 0.0201 (9) 0.0142 (9) 0.0039 (6) −0.0003 (6) −0.0034 (7)
C5A 0.0169 (10) 0.0228 (11) 0.0166 (11) 0.0045 (8) −0.0027 (8) −0.0048 (8)
O6A 0.0163 (7) 0.0333 (9) 0.0194 (8) −0.0025 (6) 0.0060 (6) −0.0082 (7)
C6A 0.0163 (9) 0.0200 (11) 0.0185 (11) 0.0069 (8) 0.0005 (8) −0.0024 (8)
O7A 0.0153 (7) 0.0240 (8) 0.0268 (9) −0.0015 (6) 0.0027 (6) 0.0011 (6)
C7A 0.0172 (10) 0.0172 (11) 0.0211 (11) 0.0001 (8) 0.0037 (8) 0.0002 (8)
C8A 0.0203 (10) 0.0201 (11) 0.0148 (10) 0.0015 (8) 0.0047 (8) −0.0008 (8)
C9A 0.0257 (11) 0.0157 (10) 0.0165 (10) 0.0038 (8) 0.0073 (8) 0.0009 (8)
C10A 0.0259 (12) 0.0182 (11) 0.0297 (13) 0.0001 (9) 0.0052 (10) 0.0023 (9)
C11A 0.0150 (9) 0.0167 (10) 0.0149 (10) 0.0005 (7) 0.0015 (7) −0.0028 (8)
C12A 0.0206 (10) 0.0201 (10) 0.0137 (10) 0.0017 (8) 0.0024 (8) −0.0002 (8)
C13A 0.0139 (9) 0.0227 (11) 0.0134 (10) 0.0007 (8) 0.0012 (7) −0.0029 (8)
C14A 0.0185 (10) 0.0172 (10) 0.0163 (10) 0.0037 (8) 0.0004 (8) −0.0042 (8)
C15A 0.0257 (11) 0.0193 (11) 0.0207 (11) −0.0025 (9) 0.0043 (9) −0.0023 (9)
C16A 0.0209 (11) 0.0458 (15) 0.0230 (12) −0.0085 (10) 0.0010 (9) 0.0059 (11)
C17A 0.0229 (11) 0.0410 (14) 0.0238 (12) 0.0011 (10) 0.0065 (9) −0.0138 (10)
O1B 0.0172 (7) 0.0172 (7) 0.0163 (7) 0.0052 (6) 0.0031 (6) −0.0026 (6)
N1B 0.0149 (8) 0.0147 (8) 0.0119 (8) 0.0022 (6) 0.0009 (6) −0.0038 (6)
C1B 0.0148 (9) 0.0122 (9) 0.0140 (10) 0.0001 (7) 0.0033 (7) 0.0005 (7)
O2B 0.0261 (8) 0.0176 (8) 0.0243 (8) −0.0016 (6) 0.0113 (6) −0.0048 (6)
N2B 0.0137 (8) 0.0171 (9) 0.0148 (9) 0.0019 (6) 0.0010 (6) −0.0028 (7)
C2B 0.0169 (9) 0.0146 (10) 0.0136 (10) −0.0007 (8) 0.0022 (7) −0.0021 (8)
O3B 0.0278 (8) 0.0215 (8) 0.0183 (8) −0.0035 (6) 0.0094 (6) −0.0033 (6)
N3B 0.0168 (8) 0.0222 (9) 0.0166 (9) 0.0042 (7) −0.0003 (7) −0.0038 (7)
C3B 0.0144 (9) 0.0162 (10) 0.0168 (10) 0.0017 (8) 0.0014 (8) −0.0016 (8)
O4B 0.0386 (11) 0.0665 (15) 0.0278 (10) 0.0170 (10) −0.0056 (8) −0.0101 (10)
N4B 0.0168 (9) 0.0227 (9) 0.0153 (9) 0.0048 (7) −0.0013 (7) −0.0068 (7)
C4B 0.0154 (9) 0.0128 (9) 0.0147 (10) −0.0004 (7) 0.0024 (7) 0.0014 (7)
O5B 0.0139 (7) 0.0165 (7) 0.0226 (8) 0.0023 (6) 0.0037 (6) 0.0013 (6)
N5B 0.0172 (8) 0.0162 (8) 0.0137 (8) 0.0038 (7) 0.0004 (6) −0.0042 (6)
C5B 0.0185 (10) 0.0270 (12) 0.0174 (11) 0.0039 (9) −0.0028 (8) −0.0053 (9)
O6B 0.0225 (8) 0.0239 (8) 0.0200 (8) 0.0048 (6) 0.0084 (6) 0.0045 (6)
C6B 0.0212 (11) 0.0186 (11) 0.0151 (10) 0.0027 (8) 0.0002 (8) −0.0061 (8)
O7B 0.0264 (8) 0.0281 (9) 0.0207 (8) 0.0003 (7) 0.0018 (6) 0.0081 (7)
C7B 0.0246 (11) 0.0175 (10) 0.0181 (11) −0.0018 (8) 0.0055 (8) −0.0025 (8)
C8B 0.0204 (10) 0.0202 (11) 0.0175 (11) 0.0020 (8) 0.0054 (8) −0.0025 (8)
C9B 0.0305 (12) 0.0183 (11) 0.0208 (11) 0.0022 (9) 0.0098 (9) −0.0036 (8)
C10B 0.0506 (16) 0.0338 (14) 0.0241 (13) 0.0162 (12) 0.0067 (11) 0.0026 (11)
C11B 0.0174 (10) 0.0146 (10) 0.0151 (10) 0.0013 (7) 0.0018 (8) 0.0003 (7)
C12B 0.0156 (10) 0.0195 (11) 0.0220 (11) 0.0002 (8) 0.0023 (8) −0.0036 (8)
C13B 0.0149 (10) 0.0209 (11) 0.0174 (11) 0.0028 (8) 0.0028 (8) 0.0004 (8)
C14B 0.0160 (9) 0.0167 (10) 0.0210 (11) 0.0035 (8) 0.0040 (8) −0.0011 (8)
C15B 0.0201 (10) 0.0200 (11) 0.0280 (12) 0.0021 (8) 0.0034 (9) 0.0031 (9)
C16B 0.0261 (12) 0.0417 (15) 0.0298 (13) −0.0035 (11) −0.0019 (10) 0.0187 (11)
C17B 0.0263 (12) 0.0291 (13) 0.0281 (12) 0.0092 (10) 0.0118 (9) 0.0021 (10)

Geometric parameters (Å, º)

O1A—C4A 1.238 (3) O1B—C4B 1.237 (3)
N1A—C1A 1.371 (3) N1B—C1B 1.374 (3)
N1A—C4A 1.397 (3) N1B—C4B 1.393 (3)
N1A—H1A 0.8800 N1B—H1B 0.8800
C1A—N2A 1.321 (3) C1B—N2B 1.323 (3)
C1A—N5A 1.357 (3) C1B—N5B 1.356 (3)
O2A—C6A 1.425 (3) O2B—C6B 1.409 (3)
O2A—C9A 1.450 (3) O2B—C9B 1.432 (3)
N2A—C2A 1.353 (3) N2B—C2B 1.356 (3)
C2A—N4A 1.377 (3) C2B—C3B 1.382 (3)
C2A—C3A 1.380 (3) C2B—N4B 1.382 (3)
O3A—C8A 1.427 (3) O3B—C8B 1.429 (3)
O3A—H3A 0.8400 O3B—H3B 0.8400
N3A—C5A 1.309 (3) N3B—C5B 1.308 (3)
N3A—C3A 1.382 (3) N3B—C3B 1.379 (3)
C3A—C4A 1.420 (3) C3B—C4B 1.420 (3)
O4A—C10A 1.417 (3) O4B—C10B 1.405 (4)
O4A—H4A 0.8400 O4B—H4B 0.8400
N4A—C5A 1.376 (3) N4B—C5B 1.373 (3)
N4A—C6A 1.460 (3) N4B—C6B 1.452 (3)
O5A—C14A 1.443 (2) O5B—C11B 1.446 (3)
O5A—C11A 1.452 (3) O5B—C14B 1.447 (2)
N5A—C11A 1.433 (3) N5B—C11B 1.433 (3)
N5A—H5A 0.8800 N5B—H5B 0.8800
C5A—H5A1 0.9500 C5B—H5B1 0.9500
O6A—C13A 1.420 (3) O6B—C13B 1.420 (3)
O6A—C17A 1.421 (3) O6B—C17B 1.426 (3)
C6A—C7A 1.515 (3) C6B—C7B 1.513 (3)
C6A—H6A 1.0000 C6B—H6B 1.0000
O7A—C15A 1.412 (3) O7B—C15B 1.413 (3)
O7A—C16A 1.431 (3) O7B—C16B 1.424 (3)
C7A—C8A 1.520 (3) C7B—C8B 1.525 (3)
C7A—H7A1 0.9900 C7B—H7B1 0.9900
C7A—H7A2 0.9900 C7B—H7B2 0.9900
C8A—C9A 1.524 (3) C8B—C9B 1.544 (3)
C8A—H8A 1.0000 C8B—H8B 1.0000
C9A—C10A 1.525 (3) C9B—C10B 1.503 (4)
C9A—H9A 1.0000 C9B—H9B 1.0000
C10A—H10A 0.9900 C10B—H10C 0.9900
C10A—H10B 0.9900 C10B—H10D 0.9900
C11A—C12A 1.516 (3) C11B—C12B 1.514 (3)
C11A—H11A 1.0000 C11B—H11B 1.0000
C12A—C13A 1.516 (3) C12B—C13B 1.525 (3)
C12A—H12A 0.9900 C12B—H12C 0.9900
C12A—H12B 0.9900 C12B—H12D 0.9900
C13A—C14A 1.544 (3) C13B—C14B 1.550 (3)
C13A—H13A 1.0000 C13B—H13B 1.0000
C14A—C15A 1.512 (3) C14B—C15B 1.505 (3)
C14A—H14A 1.0000 C14B—H14B 1.0000
C15A—H15A 0.9900 C15B—H15C 0.9900
C15A—H15B 0.9900 C15B—H15D 0.9900
C16A—H16A 0.9800 C16B—H16D 0.9800
C16A—H16B 0.9800 C16B—H16E 0.9800
C16A—H16C 0.9800 C16B—H16F 0.9800
C17A—H17A 0.9800 C17B—H17D 0.9800
C17A—H17B 0.9800 C17B—H17E 0.9800
C17A—H17C 0.9800 C17B—H17F 0.9800
C1A—N1A—C4A 124.64 (17) C1B—N1B—C4B 124.95 (17)
C1A—N1A—H1A 117.7 C1B—N1B—H1B 117.5
C4A—N1A—H1A 117.7 C4B—N1B—H1B 117.5
N2A—C1A—N5A 119.73 (18) N2B—C1B—N5B 120.96 (18)
N2A—C1A—N1A 124.14 (18) N2B—C1B—N1B 123.93 (18)
N5A—C1A—N1A 116.13 (17) N5B—C1B—N1B 115.11 (18)
C6A—O2A—C9A 109.66 (16) C6B—O2B—C9B 109.15 (17)
C1A—N2A—C2A 112.51 (17) C1B—N2B—C2B 112.52 (17)
N2A—C2A—N4A 126.92 (19) N2B—C2B—C3B 127.64 (19)
N2A—C2A—C3A 127.70 (19) N2B—C2B—N4B 127.58 (19)
N4A—C2A—C3A 105.38 (18) C3B—C2B—N4B 104.73 (18)
C8A—O3A—H3A 109.5 C8B—O3B—H3B 109.5
C5A—N3A—C3A 104.51 (18) C5B—N3B—C3B 104.43 (17)
C2A—C3A—N3A 110.89 (18) N3B—C3B—C2B 111.34 (19)
C2A—C3A—C4A 119.30 (18) N3B—C3B—C4B 129.16 (19)
N3A—C3A—C4A 129.73 (19) C2B—C3B—C4B 119.33 (19)
C10A—O4A—H4A 109.5 C10B—O4B—H4B 109.5
C5A—N4A—C2A 106.28 (17) C5B—N4B—C2B 106.50 (17)
C5A—N4A—C6A 124.53 (18) C5B—N4B—C6B 123.40 (18)
C2A—N4A—C6A 128.96 (18) C2B—N4B—C6B 129.95 (18)
O1A—C4A—N1A 121.03 (18) O1B—C4B—N1B 121.23 (19)
O1A—C4A—C3A 127.38 (19) O1B—C4B—C3B 127.16 (19)
N1A—C4A—C3A 111.59 (17) N1B—C4B—C3B 111.59 (17)
C14A—O5A—C11A 109.25 (15) C11B—O5B—C14B 106.31 (15)
C1A—N5A—C11A 121.20 (17) C1B—N5B—C11B 121.92 (18)
C1A—N5A—H5A 119.4 C1B—N5B—H5B 119.0
C11A—N5A—H5A 119.4 C11B—N5B—H5B 119.0
N3A—C5A—N4A 112.93 (18) N3B—C5B—N4B 112.99 (18)
N3A—C5A—H5A1 123.5 N3B—C5B—H5B1 123.5
N4A—C5A—H5A1 123.5 N4B—C5B—H5B1 123.5
C13A—O6A—C17A 111.90 (16) C13B—O6B—C17B 112.00 (17)
O2A—C6A—N4A 108.59 (17) O2B—C6B—N4B 107.89 (18)
O2A—C6A—C7A 106.39 (17) O2B—C6B—C7B 105.90 (17)
N4A—C6A—C7A 115.46 (18) N4B—C6B—C7B 116.03 (18)
O2A—C6A—H6A 108.7 O2B—C6B—H6B 108.9
N4A—C6A—H6A 108.7 N4B—C6B—H6B 108.9
C7A—C6A—H6A 108.7 C7B—C6B—H6B 108.9
C15A—O7A—C16A 112.43 (18) C15B—O7B—C16B 110.76 (19)
C6A—C7A—C8A 102.12 (17) C6B—C7B—C8B 101.90 (17)
C6A—C7A—H7A1 111.3 C6B—C7B—H7B1 111.4
C8A—C7A—H7A1 111.3 C8B—C7B—H7B1 111.4
C6A—C7A—H7A2 111.3 C6B—C7B—H7B2 111.4
C8A—C7A—H7A2 111.3 C8B—C7B—H7B2 111.4
H7A1—C7A—H7A2 109.2 H7B1—C7B—H7B2 109.3
O3A—C8A—C7A 111.70 (18) O3B—C8B—C7B 111.64 (18)
O3A—C8A—C9A 109.09 (17) O3B—C8B—C9B 107.79 (17)
C7A—C8A—C9A 102.03 (17) C7B—C8B—C9B 102.92 (17)
O3A—C8A—H8A 111.2 O3B—C8B—H8B 111.4
C7A—C8A—H8A 111.2 C7B—C8B—H8B 111.4
C9A—C8A—H8A 111.2 C9B—C8B—H8B 111.4
O2A—C9A—C8A 105.75 (17) O2B—C9B—C10B 107.12 (19)
O2A—C9A—C10A 108.82 (17) O2B—C9B—C8B 107.00 (17)
C8A—C9A—C10A 114.59 (18) C10B—C9B—C8B 114.3 (2)
O2A—C9A—H9A 109.2 O2B—C9B—H9B 109.4
C8A—C9A—H9A 109.2 C10B—C9B—H9B 109.4
C10A—C9A—H9A 109.2 C8B—C9B—H9B 109.4
O4A—C10A—C9A 111.51 (19) O4B—C10B—C9B 111.9 (2)
O4A—C10A—H10A 109.3 O4B—C10B—H10C 109.2
C9A—C10A—H10A 109.3 C9B—C10B—H10C 109.2
O4A—C10A—H10B 109.3 O4B—C10B—H10D 109.2
C9A—C10A—H10B 109.3 C9B—C10B—H10D 109.2
H10A—C10A—H10B 108.0 H10C—C10B—H10D 107.9
N5A—C11A—O5A 109.19 (17) N5B—C11B—O5B 109.36 (17)
N5A—C11A—C12A 113.26 (17) N5B—C11B—C12B 115.06 (18)
O5A—C11A—C12A 104.50 (16) O5B—C11B—C12B 102.84 (16)
N5A—C11A—H11A 109.9 N5B—C11B—H11B 109.8
O5A—C11A—H11A 109.9 O5B—C11B—H11B 109.8
C12A—C11A—H11A 109.9 C12B—C11B—H11B 109.8
C13A—C12A—C11A 103.50 (17) C11B—C12B—C13B 101.47 (17)
C13A—C12A—H12A 111.1 C11B—C12B—H12C 111.5
C11A—C12A—H12A 111.1 C13B—C12B—H12C 111.5
C13A—C12A—H12B 111.1 C11B—C12B—H12D 111.5
C11A—C12A—H12B 111.1 C13B—C12B—H12D 111.5
H12A—C12A—H12B 109.0 H12C—C12B—H12D 109.3
O6A—C13A—C12A 109.43 (17) O6B—C13B—C12B 108.29 (17)
O6A—C13A—C14A 112.71 (17) O6B—C13B—C14B 111.87 (18)
C12A—C13A—C14A 103.35 (16) C12B—C13B—C14B 103.26 (16)
O6A—C13A—H13A 110.4 O6B—C13B—H13B 111.0
C12A—C13A—H13A 110.4 C12B—C13B—H13B 111.0
C14A—C13A—H13A 110.4 C14B—C13B—H13B 111.0
O5A—C14A—C15A 109.66 (17) O5B—C14B—C15B 110.05 (17)
O5A—C14A—C13A 106.95 (16) O5B—C14B—C13B 106.37 (16)
C15A—C14A—C13A 112.09 (17) C15B—C14B—C13B 114.55 (18)
O5A—C14A—H14A 109.4 O5B—C14B—H14B 108.6
C15A—C14A—H14A 109.4 C15B—C14B—H14B 108.6
C13A—C14A—H14A 109.4 C13B—C14B—H14B 108.6
O7A—C15A—C14A 107.74 (17) O7B—C15B—C14B 109.74 (18)
O7A—C15A—H15A 110.2 O7B—C15B—H15C 109.7
C14A—C15A—H15A 110.2 C14B—C15B—H15C 109.7
O7A—C15A—H15B 110.2 O7B—C15B—H15D 109.7
C14A—C15A—H15B 110.2 C14B—C15B—H15D 109.7
H15A—C15A—H15B 108.5 H15C—C15B—H15D 108.2
O7A—C16A—H16A 109.5 O7B—C16B—H16D 109.5
O7A—C16A—H16B 109.5 O7B—C16B—H16E 109.5
H16A—C16A—H16B 109.5 H16D—C16B—H16E 109.5
O7A—C16A—H16C 109.5 O7B—C16B—H16F 109.5
H16A—C16A—H16C 109.5 H16D—C16B—H16F 109.5
H16B—C16A—H16C 109.5 H16E—C16B—H16F 109.5
O6A—C17A—H17A 109.5 O6B—C17B—H17D 109.5
O6A—C17A—H17B 109.5 O6B—C17B—H17E 109.5
H17A—C17A—H17B 109.5 H17D—C17B—H17E 109.5
O6A—C17A—H17C 109.5 O6B—C17B—H17F 109.5
H17A—C17A—H17C 109.5 H17D—C17B—H17F 109.5
H17B—C17A—H17C 109.5 H17E—C17B—H17F 109.5
C4A—N1A—C1A—N2A −1.4 (3) C4B—N1B—C1B—N2B 0.2 (3)
C4A—N1A—C1A—N5A 177.84 (18) C4B—N1B—C1B—N5B −179.83 (18)
N5A—C1A—N2A—C2A −176.82 (19) N5B—C1B—N2B—C2B −178.87 (19)
N1A—C1A—N2A—C2A 2.4 (3) N1B—C1B—N2B—C2B 1.1 (3)
C1A—N2A—C2A—N4A 179.8 (2) C1B—N2B—C2B—C3B −0.8 (3)
C1A—N2A—C2A—C3A −0.3 (3) C1B—N2B—C2B—N4B −177.6 (2)
N2A—C2A—C3A—N3A −179.8 (2) C5B—N3B—C3B—C2B 0.2 (3)
N4A—C2A—C3A—N3A 0.1 (2) C5B—N3B—C3B—C4B −175.1 (2)
N2A—C2A—C3A—C4A −2.9 (3) N2B—C2B—C3B—N3B −176.7 (2)
N4A—C2A—C3A—C4A 177.03 (18) N4B—C2B—C3B—N3B 0.7 (2)
C5A—N3A—C3A—C2A 0.2 (2) N2B—C2B—C3B—C4B −0.9 (3)
C5A—N3A—C3A—C4A −176.3 (2) N4B—C2B—C3B—C4B 176.47 (19)
N2A—C2A—N4A—C5A 179.5 (2) N2B—C2B—N4B—C5B 176.1 (2)
C3A—C2A—N4A—C5A −0.4 (2) C3B—C2B—N4B—C5B −1.3 (2)
N2A—C2A—N4A—C6A 4.8 (4) N2B—C2B—N4B—C6B 0.6 (4)
C3A—C2A—N4A—C6A −175.1 (2) C3B—C2B—N4B—C6B −176.8 (2)
C1A—N1A—C4A—O1A 178.41 (19) C1B—N1B—C4B—O1B 176.86 (19)
C1A—N1A—C4A—C3A −1.7 (3) C1B—N1B—C4B—C3B −1.8 (3)
C2A—C3A—C4A—O1A −176.6 (2) N3B—C3B—C4B—O1B −1.6 (4)
N3A—C3A—C4A—O1A −0.3 (4) C2B—C3B—C4B—O1B −176.5 (2)
C2A—C3A—C4A—N1A 3.6 (3) N3B—C3B—C4B—N1B 177.0 (2)
N3A—C3A—C4A—N1A 179.8 (2) C2B—C3B—C4B—N1B 2.0 (3)
N2A—C1A—N5A—C11A −5.3 (3) N2B—C1B—N5B—C11B 0.3 (3)
N1A—C1A—N5A—C11A 175.39 (18) N1B—C1B—N5B—C11B −179.74 (18)
C3A—N3A—C5A—N4A −0.5 (3) C3B—N3B—C5B—N4B −1.0 (3)
C2A—N4A—C5A—N3A 0.6 (3) C2B—N4B—C5B—N3B 1.5 (3)
C6A—N4A—C5A—N3A 175.6 (2) C6B—N4B—C5B—N3B 177.4 (2)
C9A—O2A—C6A—N4A −138.45 (17) C9B—O2B—C6B—N4B −153.74 (17)
C9A—O2A—C6A—C7A −13.6 (2) C9B—O2B—C6B—C7B −28.9 (2)
C5A—N4A—C6A—O2A −103.0 (2) C5B—N4B—C6B—O2B −113.2 (2)
C2A—N4A—C6A—O2A 70.9 (3) C2B—N4B—C6B—O2B 61.7 (3)
C5A—N4A—C6A—C7A 137.7 (2) C5B—N4B—C6B—C7B 128.3 (2)
C2A—N4A—C6A—C7A −48.4 (3) C2B—N4B—C6B—C7B −56.9 (3)
O2A—C6A—C7A—C8A 31.8 (2) O2B—C6B—C7B—C8B 36.8 (2)
N4A—C6A—C7A—C8A 152.34 (18) N4B—C6B—C7B—C8B 156.41 (19)
C6A—C7A—C8A—O3A 79.6 (2) C6B—C7B—C8B—O3B 85.4 (2)
C6A—C7A—C8A—C9A −36.8 (2) C6B—C7B—C8B—C9B −30.0 (2)
C6A—O2A—C9A—C8A −10.4 (2) C6B—O2B—C9B—C10B 131.8 (2)
C6A—O2A—C9A—C10A 113.18 (18) C6B—O2B—C9B—C8B 8.8 (2)
O3A—C8A—C9A—O2A −88.60 (19) O3B—C8B—C9B—O2B −103.77 (19)
C7A—C8A—C9A—O2A 29.7 (2) C7B—C8B—C9B—O2B 14.3 (2)
O3A—C8A—C9A—C10A 151.55 (18) O3B—C8B—C9B—C10B 137.8 (2)
C7A—C8A—C9A—C10A −90.2 (2) C7B—C8B—C9B—C10B −104.1 (2)
O2A—C9A—C10A—O4A 165.83 (17) O2B—C9B—C10B—O4B −68.9 (3)
C8A—C9A—C10A—O4A −76.0 (2) C8B—C9B—C10B—O4B 49.4 (3)
C1A—N5A—C11A—O5A −87.4 (2) C1B—N5B—C11B—O5B −93.7 (2)
C1A—N5A—C11A—C12A 156.64 (19) C1B—N5B—C11B—C12B 151.2 (2)
C14A—O5A—C11A—N5A −148.25 (16) C14B—O5B—C11B—N5B −163.87 (16)
C14A—O5A—C11A—C12A −26.8 (2) C14B—O5B—C11B—C12B −41.2 (2)
N5A—C11A—C12A—C13A 154.32 (17) N5B—C11B—C12B—C13B 162.67 (18)
O5A—C11A—C12A—C13A 35.6 (2) O5B—C11B—C12B—C13B 43.9 (2)
C17A—O6A—C13A—C12A 167.04 (19) C17B—O6B—C13B—C12B 172.60 (18)
C17A—O6A—C13A—C14A −78.6 (2) C17B—O6B—C13B—C14B −74.3 (2)
C11A—C12A—C13A—O6A 89.7 (2) C11B—C12B—C13B—O6B 88.8 (2)
C11A—C12A—C13A—C14A −30.6 (2) C11B—C12B—C13B—C14B −30.0 (2)
C11A—O5A—C14A—C15A 128.97 (18) C11B—O5B—C14B—C15B 146.08 (17)
C11A—O5A—C14A—C13A 7.2 (2) C11B—O5B—C14B—C13B 21.5 (2)
O6A—C13A—C14A—O5A −102.90 (18) O6B—C13B—C14B—O5B −109.88 (18)
C12A—C13A—C14A—O5A 15.1 (2) C12B—C13B—C14B—O5B 6.4 (2)
O6A—C13A—C14A—C15A 136.89 (18) O6B—C13B—C14B—C15B 128.32 (19)
C12A—C13A—C14A—C15A −105.08 (19) C12B—C13B—C14B—C15B −115.5 (2)
C16A—O7A—C15A—C14A −173.67 (18) C16B—O7B—C15B—C14B −175.77 (18)
O5A—C14A—C15A—O7A −66.7 (2) O5B—C14B—C15B—O7B −69.6 (2)
C13A—C14A—C15A—O7A 51.9 (2) C13B—C14B—C15B—O7B 50.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1A···N3B 0.88 1.92 2.789 (2) 170
O3A—H3A···O5Ai 0.84 2.07 2.897 (2) 167
O4A—H4A···O3Bii 0.84 2.01 2.847 (2) 178
N5A—H5A···O1B 0.88 2.23 3.058 (2) 157
C5A—H5A1···O1Biii 0.95 2.63 3.284 (3) 126
C7A—H7A1···N2A 0.99 2.46 3.172 (3) 128
C8A—H8A···O7Ai 1.00 2.39 3.316 (3) 153
C12A—H12A···O1Aiv 0.99 2.61 3.432 (3) 141
C12A—H12B···O1B 0.99 2.55 3.426 (3) 147
C16A—H16A···O4Av 0.98 2.47 3.401 (3) 158
C16A—H16B···O6Av 0.98 2.54 3.222 (3) 127
C16A—H16C···O2Avi 0.98 2.50 3.356 (3) 146
C17A—H17A···O3Avi 0.98 2.65 3.610 (3) 168
C17A—H17B···O2Aiv 0.98 2.60 3.573 (3) 175
N1B—H1B···N3Avi 0.88 1.94 2.808 (2) 166
O3B—H3B···O5Bvii 0.84 1.99 2.817 (2) 169
O4B—H4B···N2B 0.84 2.38 3.180 (3) 158
N5B—H5B···O1Avi 0.88 2.19 3.027 (2) 159
C5B—H5B1···O1A 0.95 2.60 3.269 (3) 127
C8B—H8B···O7Bvii 1.00 2.49 3.363 (3) 146
C11B—H11B···O4B 1.00 2.59 3.251 (3) 124
C12B—H12C···O1Avi 0.99 2.55 3.363 (3) 140
C12B—H12D···O1Bv 0.99 2.45 3.424 (3) 167
C14B—H14B···O4B 1.00 2.61 3.272 (3) 123
C17B—H17E···O2Bv 0.98 2.48 3.456 (3) 176

Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z; (iii) x−1, y, z−1; (iv) x, y, z+1; (v) x+1, y, z; (vi) x+1, y, z+1; (vii) x, y, z−1.

References

  1. Acton, E. M., Ryan, K. J. & Luetzow, A. E. (1977). J. Med. Chem. 20, 1362–1371. [DOI] [PubMed]
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Catalano, M. J., Liu, S., Andersen, N., Yang, Z., Johnson, K. M., Price, N. A., Wang, Y. & Gates, K. S. (2015). J. Am. Chem. Soc. 137, 3933–3945. [DOI] [PMC free article] [PubMed]
  5. Deriaz, R. E., Overend, W. G., Stacey, M. & Wiggins, L. F. (1949). J. Chem. Soc. pp. 2836–2841.
  6. Dutta, S., Chowdhury, G. & Gates, K. S. (2007). J. Am. Chem. Soc. 129, 1852–1853. [DOI] [PMC free article] [PubMed]
  7. Fujino, T., Tsunaka, N., Guillot-Nieckowski, M., Nakanishi, W., Iwamoto, T., Nakamura, E. & Isobe, H. (2010). Tetrahedron Lett. 51, 2036–2038.
  8. Gamboa Varela, J. & Gates, K. S. (2015). Angew. Chem. Int. Ed. 54, 7666–7669. [DOI] [PMC free article] [PubMed]
  9. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  10. Igarashi, Y., Ootsu, K., Onaka, H., Fujita, T., Uehara, Y. & Furumai, T. (2005). J. Antibiot. 58, 322–326. [DOI] [PubMed]
  11. Johnson, K. M., Price, N. E., Wang, J., Fekry, M. I., Dutta, S., Seiner, D. R., Wang, Y. & Gates, K. S. (2013). J. Am. Chem. Soc. 135, 1015–1025. [DOI] [PMC free article] [PubMed]
  12. Morr, M., Ernst, L. & Schomburg, D. (1991). Liebigs Ann. Chem. 1991, 615–631.
  13. Olsson, R., Rundström, P. & Frejd, T. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 785–790.
  14. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  15. Price, N. E., Catalano, M. J., Liu, S., Wang, Y. & Gates, K. S. (2015). Nucleic Acids Res. 43, 3434–3441. [DOI] [PMC free article] [PubMed]
  16. Price, N. E., Johnson, K. M., Wang, J., Fekry, M. I., Wang, Y. & Gates, K. S. (2014). J. Am. Chem. Soc. 136, 3483–3490. [DOI] [PMC free article] [PubMed]
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  19. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  20. Suzuki, T., Suzuki, S. T., Yamada, I., Koashi, Y., Yamada, K. & Chida, N. (2002). J. Org. Chem. 67, 2874–2880. [DOI] [PubMed]
  21. Yang, Z., Price, N. E., Johnson, K. M. & Gates, K. S. (2015). Biochemistry, 54, 4259–4266. [DOI] [PMC free article] [PubMed]
  22. Zhang, X., Price, N. E., Fang, X., Yang, Z., Gu, L. Q. & Gates, K. S. (2015). ACS Nano, 9, 11812–11819. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901600517X/hb7568sup1.cif

e-72-00624-sup1.cif (808.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901600517X/hb7568Isup2.hkl

e-72-00624-Isup2.hkl (376KB, hkl)

CCDC reference: 1448235

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES