Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 May 27;72(Pt 6):868–871. doi: 10.1107/S2056989016008446

Crystal structure of 16-ferrocenylmethyl-3β-hydroxy­estra-1,3,5(10)-trien-17-one: a potential chemotherapeutic drug

José A Carmona-Negrón a, Mariola M Flores-Rivera b, Zaibeth Díaz-Reyes b, Curtis E Moore c, Arnold L Rheigold c, Enrique Meléndez a,*
PMCID: PMC4908549  PMID: 27308062

A new ferrocene complex, 16-ferrocenylmethyl-3β-hy­droxy­estra-1,3,5(10)-trien-17-one, has been synthesized and structurally characterized by single-crystal X-ray diffraction techniques. The ferrocenylmethyl group is positioned at the β face of the estrone moiety; as a result, a new stereogenic center is formed leading to an R stereochemical configuration. No head-to-tail hydrogen bonding is observed in the crystal packing, as is the case in estrone and other derivatives.

Keywords: crystal structure, anti­cancer compound, ferrocene, medicinal chemistry

Abstract

A new ferrocene complex, 16-ferrocenylmethyl-3β-hy­droxy­estra-1,3,5(10)-trien-17-one dimethyl sulfoxide monosolvate, [Fe(C5H5)(C24H27O2)]·C2H6OS, has been synthesized and structurally characterized by single-crystal X-ray diffraction techniques. The mol­ecule crystallizes in the space group P21 with one mol­ecule of dimethyl sulfoxide. A hydrogen bond links the phenol group and the dimethyl sulfoxide O atom, with an O⋯O distance of 2.655 (5) Å. The ferrocene group is positioned in the β face of the estrone moiety, with an O—C—C—C torsion angle of 44.1 (5)°, and the carbonyl bond length of the hormone moiety is 1.216 (5) Å, typical of a C=O double bond. The average Fe—C bond length of the substituted Cp ring [Fe—C(Cp*)] is similar to that of the unsubstituted one [Fe—C(Cp)], i.e. 2.048 (3) versus 2.040 (12) Å. The structure of the complex is compared with those of estrone and eth­oxy­methyl­estrone.

Chemical context  

The discovery of cisplatin anti­neoplastic activity was a notable event in medicinal chemistry history, opening new alternatives and routes on the use of metal-based drugs and their structure–activity relationships in cancer chemotherapy. However, its remarkable success (Galanski et al., 2005; Sandler et al., 2011) came at the high cost of undesired detrimental side effects (neurotoxicity, nephrotoxicity, etc; Pabla & Dong, 2008). In this context, our research group has been working on other transition metals (e.g., titanium, iron, vanadium and tungsten, among others) with promising results for chemotherapeutic applications (Domínguez-García et al., 2013; Ramos et al., 2014; Vera et al., 2014). Recently, particular attention has been focused on the anti­neoplastic activity of ferrocene complexes (Richard et al., 2015) due to their desired physical and chemical properties such as aqueous stability and high synthetic homology to benzene chemistry, with the advantage that they exhibit fewer toxic side effects than cisplatin. Our group has been working on the synthesis and application of ferrocene complexes coupled to hormones in order to develop new metal-based therapeutic drugs with high selective index for hormone-dependent-breast-cancer treatment (Vera et al., 2011, 2014). In connection with the relationship between structure and the activity against hormone-dependent breast cancer, we intend to explore the function­alization of estrogens at C16 position with ferrocene using estrone (1) as starting material, due to the versatility which, for synthetic transformations, provides the carbonyl group over other estrogens not containing a carbonyl group. In this context, we present herein the synthesis and crystal structure of 16-ferrocenylmethyl-3β-hy­droxy­estra-1,3,5(10)-trien-17-one dimethyl sulfoxide monosolvate (2) and compare it with the structure of estrogen (1) and 16β-eth­oxy­methyl­estrone (3) (Allan et al., 2006).graphic file with name e-72-00868-scheme1.jpg

Structural commentary  

The ferrocenylmethyl group of 2 is positioned at the beta face of the estrone moiety (Fig. 1). As a result, a new stereogenic center was formed after substitution at position 16 (C16) of estrone with a ferrocenylmethyl group. This C16 atom has an R stereochemical configuration. Table 1 contains the most relevant bond lengths and angles. The carbonyl bond (C17=O2) of the hormone moiety of 2 is 1.216 (5) Å, which is very similar to in estrogen and 16β-eth­oxy­methyl­estrone [1.215 (2) and 1.219 (2) Å, respectively], corresponding to a carbon–oxygen double (C=O) bond. However, the substitution at C16 of the steroid in 2 and 3, ferrocenylmethyl and eth­oxy­methyl groups, respectively, makes torsion angles and bond angles at the 16-position slightly different. Both substituents are located on the beta face but, the torsion angle (between C19 and carbonyl group) defined as C19–C16—C17—O2 in 2 is smaller than in 3 (between the carbonyl and the meth­oxy groups), 44.1 (5) and 49.7 (2)°, respectively. The ferrocene moiety is positioned at 112.6 (3)° from C16 (∠C20—C19—C16) while the eth­oxy­methyl group is at 108.4 (1)° (∠C16—C1—O3). The average Fe—C bond length of the substituted Cp ring [Fe—C(Cp*] is similar to the unsubstituted one, 2.048 (3) vs 2.040 (12) Å (McAdam et al., 2015). We might expect that the substitution on the Cp ring with a electron-donating methyl group could enhance the Fe—C(Cp*) bonding, but such an effect is not observed. It is not clear if this is a steric rather than an electronic effect. It is worth mentioning the steroselectivity of this reaction showed the beta steroisomer but it is also the position of the eth­oxy­methyl group on eth­oxy­methyl­estrone. We might expect the beta face of the estrone moiety to be more hindered due to the methyl group on C13 which is located in this face but, according to the mechanism of hydrogen addition to a double bond, the addition is favored on the less hindered alpha face and, as a consequence, the ferrocenyl group is positioned on the beta face.

Figure 1.

Figure 1

The asymmetric unit of 2. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Selected geometrical parameters (Å, °) for compounds 1, 2 and 3 .

  1 2 3
Bond lengths      
Fe—C(Cp)avg   2.040 (12)  
Fe—C(Cp*)subt   2.048 (3)  
C(Cp)subt—CH2   1.505 (5)  
C17—O2 1.219 (2) 1.216 (5) 1.215 (2)
C3—O1 1.374 (2) 1.368 (5) 1.371 (2)
       
Hydrogen-bond parameters      
D—H 0.86 0.84 0.84
H⋯A 1.97 (O2⋯H1) 1.82 [O3(DMSO)⋯H1] 1.93 (O2⋯H1)
DA 2.819 (2) (O1⋯O2) 2.655 (5) (O1⋯O3) 2.760 (2) (O1⋯O2)
D—H⋯A 174 174 170
       
Bond angles      
C20—C19—C16   112.6 (3)  
O3—C1—C16     108.4 (1)
       
Torsion angles      
O2—C17—C16—C19   44.1 (5) 49.7 (2) [O(2)—C(17)—C(16)—C(1)]

Supra­molecular features  

In the crystal structure of 2 there is a hydrogen bond involving the hydroxyl group at C3 and the DMSO oxygen (Table 2, Fig. 2). No head-to-tail hydrogen bonding is observed, as is the case in 1 and 3 (Shikii et al., 2004; Allan et al., 2006). In the latter structures, the hydrogen bonds at the two ends are the driving force for packing. It seems that the ferrocenylmethyl substitution on C16 inhibits the hydrogen bonding at the carbonyl oxygen atom, thus eliminating the head-to-tail hydrogen-bonding network existing in 1 and 3.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.84 1.82 2.655 (5) 174

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

Packing diagram for 2, projected along the b axis. The ferrocene moieties are shown in polyhedral representation for clarity. The O—H⋯O hydrogen bonds are highlighted (in cyan dashed lines).

Synthesis and crystallization  

In a 500 mL Parr bottle, 16-ferrocenyl­idene-3β-hy­droxy­estra-1,3,5(10)-trien-17-one complex was dissolved in a mixture of tetra­hydro­furan (THF) and ethanol (1:1) and Pd/C (10wt%, catalytic). The system was purged three times with H2 at 40 psi. The reaction mixture was stirred overnight at room temperature under 40 psi of H2. The mixture was then filtered through Celite, and the filtrate was evaporated in vacuo, resulting in a yellow solid that was purified by column chromatography using CHCl3: ethyl acetate (9:1) as mobile phase, affording 67% of 2 as a yellow solid. Yellow rod-shaped crystals were obtained after dissolving the solid 16-ferro­cenyl­methyl-3β-hy­droxy­estra-1,3,5(10)-trien-17-one in a solution of CH2Cl2 with a few drops of dimethyl sulfoxide, to assure a concentrate solution, layered in hexane.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were positioned in idealized locations: d(C—H) = 0.95 Å, U iso(H) = 1.2U eq(C); d(C—H2) = 0.99 Å,U iso(H) = 1.2 Ueq (C); d(C—H3) = 0.98 Å, U iso(H) = 1.5U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula [Fe(C5H5)(C24H27O2)]·C2H6OS
M r 546.52
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 7.4178 (12), 11.2436 (15), 16.1160 (18)
β (°) 93.148 (4)
V3) 1342.1 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.67
Crystal size (mm) 0.30 × 0.25 × 0.03
 
Data collection
Diffractometer Bruker APEXII Ultra
Absorption correction Multi-scan (SADABS; Bruker, 2013)
T min, T max 0.064, 0.093
No. of measured, independent and observed [I > 2σ(I)] reflections 9583, 5327, 4816
R int 0.048
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.097, 1.02
No. of reflections 5327
No. of parameters 329
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.44
Absolute structure Flack x determined using 1990 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.004 (14)

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016008446/bg2586sup1.cif

e-72-00868-sup1.cif (348.9KB, cif)

CCDC reference: 1479699

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the NIH, the Alfred P. Sloan Program and its representative Dr Rodolfo Romañach for financial support. We also extend special thanks to Dr Robert Ríos for allowing JACN to perform the synthesis in his research laboratory. EM acknowledges the financial support of NSF–CREST II 000743–00002.

supplementary crystallographic information

Crystal data

[Fe(C5H5)(C24H27O2)]·C2H6OS F(000) = 580
Mr = 546.52 Dx = 1.352 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 7.4178 (12) Å Cell parameters from 4213 reflections
b = 11.2436 (15) Å θ = 3.0–26.2°
c = 16.1160 (18) Å µ = 0.67 mm1
β = 93.148 (4)° T = 100 K
V = 1342.1 (3) Å3 Block, yellow
Z = 2 0.3 × 0.25 × 0.03 mm

Data collection

Bruker APEXII Ultra diffractometer 5327 independent reflections
Radiation source: Micro Focus Rotating Anode, Bruker TXS 4816 reflections with I > 2σ(I)
Double Bounce Multilayer Mirrors monochromator Rint = 0.048
Detector resolution: 7.9 pixels mm-1 θmax = 26.4°, θmin = 2.2°
ω and φ scans h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2013) k = −13→14
Tmin = 0.064, Tmax = 0.093 l = −20→19
9583 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0266P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097 (Δ/σ)max = 0.001
S = 1.02 Δρmax = 0.32 e Å3
5327 reflections Δρmin = −0.44 e Å3
329 parameters Absolute structure: Flack x determined using 1990 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: 0.004 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 −0.29444 (8) 0.50023 (5) 1.06433 (3) 0.01977 (16)
S1 0.26603 (16) 0.46255 (9) 0.35262 (6) 0.0224 (3)
O3 0.1244 (5) 0.4378 (3) 0.41388 (17) 0.0285 (8)
O2 −0.2299 (4) 0.2860 (3) 0.79220 (17) 0.0247 (7)
O1 0.9351 (4) 0.6126 (3) 0.47762 (17) 0.0232 (7)
H1 0.9886 0.5548 0.4569 0.035*
C17 −0.1502 (6) 0.3780 (4) 0.7790 (2) 0.0176 (9)
C13 0.0422 (6) 0.3895 (4) 0.7523 (2) 0.0181 (9)
C8 0.2258 (6) 0.5542 (4) 0.6908 (2) 0.0163 (9)
H8 0.3108 0.5484 0.7410 0.020*
C15 −0.0744 (6) 0.5880 (4) 0.7724 (2) 0.0188 (9)
H15A −0.1175 0.6629 0.7458 0.023*
H15B −0.0055 0.6068 0.8251 0.023*
C14 0.0394 (5) 0.5159 (4) 0.7143 (2) 0.0170 (8)
H14 −0.0347 0.5095 0.6608 0.020*
C22 −0.0406 (7) 0.4352 (4) 1.0540 (3) 0.0219 (10)
H22 0.0203 0.3809 1.0910 0.026*
C5 0.5284 (6) 0.6214 (4) 0.5951 (2) 0.0166 (9)
C10 0.4657 (5) 0.5020 (4) 0.58935 (19) 0.0168 (8)
C21 −0.1534 (6) 0.4044 (4) 0.9831 (3) 0.0202 (10)
H21 −0.1811 0.3259 0.9646 0.024*
C24 −0.1427 (7) 0.6073 (4) 0.9925 (3) 0.0212 (10)
H24 −0.1619 0.6894 0.9811 0.025*
C12 0.1022 (6) 0.3007 (4) 0.6877 (2) 0.0225 (10)
H12A 0.0111 0.2978 0.6405 0.027*
H12B 0.1112 0.2204 0.7127 0.027*
C2 0.7268 (6) 0.4550 (4) 0.5087 (2) 0.0198 (9)
H2 0.7945 0.3980 0.4800 0.024*
C7 0.2328 (7) 0.6806 (4) 0.6564 (3) 0.0195 (10)
H7A 0.1600 0.6854 0.6031 0.023*
H7B 0.1813 0.7368 0.6960 0.023*
C19 −0.3372 (5) 0.5193 (4) 0.8660 (2) 0.0208 (9)
H19A −0.3982 0.5976 0.8641 0.025*
H19B −0.4316 0.4571 0.8671 0.025*
C30 0.1457 (6) 0.4879 (5) 0.2554 (2) 0.0270 (10)
H30A 0.0824 0.4150 0.2375 0.041*
H30B 0.2308 0.5106 0.2137 0.041*
H30C 0.0578 0.5519 0.2615 0.041*
C1 0.5698 (6) 0.4215 (4) 0.5459 (2) 0.0200 (9)
H1A 0.5317 0.3410 0.5417 0.024*
C11 0.2860 (6) 0.3367 (4) 0.6560 (3) 0.0218 (10)
H11A 0.3801 0.3274 0.7015 0.026*
H11B 0.3164 0.2827 0.6103 0.026*
C20 −0.2179 (5) 0.5112 (5) 0.9444 (2) 0.0184 (9)
C3 0.7837 (6) 0.5728 (4) 0.5137 (2) 0.0192 (10)
C16 −0.2314 (5) 0.5037 (4) 0.7870 (2) 0.0200 (8)
H16 −0.3205 0.5140 0.7386 0.024*
C6 0.4272 (6) 0.7143 (4) 0.6427 (2) 0.0193 (9)
H6A 0.4283 0.7904 0.6119 0.023*
H6B 0.4916 0.7272 0.6974 0.023*
C4 0.6851 (6) 0.6544 (4) 0.5575 (2) 0.0182 (9)
H4 0.7257 0.7344 0.5619 0.022*
C29 −0.3916 (9) 0.5424 (7) 1.1756 (3) 0.059 (2)
H29 −0.3244 0.5803 1.2200 0.071*
C31 0.3441 (7) 0.6100 (4) 0.3730 (3) 0.0266 (11)
H31A 0.2407 0.6624 0.3804 0.040*
H31B 0.4111 0.6383 0.3261 0.040*
H31C 0.4235 0.6106 0.4236 0.040*
C18 0.1621 (6) 0.3784 (4) 0.8337 (2) 0.0225 (10)
H18A 0.1284 0.4401 0.8728 0.034*
H18B 0.2891 0.3881 0.8214 0.034*
H18C 0.1445 0.2998 0.8584 0.034*
C23 −0.0348 (6) 0.5606 (4) 1.0600 (2) 0.0224 (10)
H23 0.0299 0.6055 1.1018 0.027*
C28 −0.4933 (9) 0.5984 (6) 1.1132 (4) 0.0490 (17)
H28 −0.5090 0.6819 1.1079 0.059*
C9 0.2869 (6) 0.4657 (4) 0.6246 (2) 0.0177 (9)
H9 0.1941 0.4698 0.5773 0.021*
C26 −0.5157 (9) 0.4035 (6) 1.0890 (4) 0.0523 (18)
H26 −0.5483 0.3294 1.0642 0.063*
C27 −0.5681 (6) 0.5152 (7) 1.0601 (3) 0.0412 (14)
H27 −0.6432 0.5311 1.0117 0.049*
C25 −0.4046 (9) 0.4208 (7) 1.1623 (4) 0.059 (2)
H25 −0.3493 0.3603 1.1960 0.071*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0179 (3) 0.0243 (3) 0.0174 (3) −0.0018 (3) 0.0034 (2) −0.0014 (3)
S1 0.0250 (6) 0.0214 (6) 0.0210 (5) 0.0067 (5) 0.0035 (4) 0.0027 (4)
O3 0.039 (2) 0.0249 (18) 0.0233 (15) 0.0017 (15) 0.0130 (14) 0.0014 (13)
O2 0.0264 (19) 0.0243 (17) 0.0239 (16) −0.0099 (15) 0.0072 (14) −0.0039 (13)
O1 0.0227 (18) 0.0230 (17) 0.0243 (16) −0.0023 (14) 0.0042 (13) 0.0020 (13)
C17 0.019 (2) 0.023 (2) 0.0106 (18) −0.0015 (19) −0.0024 (16) −0.0033 (17)
C13 0.020 (2) 0.018 (2) 0.016 (2) −0.0036 (19) 0.0002 (17) −0.0001 (17)
C8 0.019 (2) 0.016 (2) 0.0147 (18) 0.0000 (18) −0.0002 (16) −0.0002 (16)
C15 0.020 (2) 0.018 (2) 0.018 (2) 0.0025 (19) 0.0000 (17) −0.0006 (17)
C14 0.019 (2) 0.018 (2) 0.0145 (17) −0.0011 (19) 0.0001 (14) −0.0002 (17)
C22 0.021 (3) 0.025 (3) 0.020 (2) 0.006 (2) 0.0048 (19) 0.0007 (19)
C5 0.019 (2) 0.019 (2) 0.0121 (19) 0.0009 (18) −0.0024 (16) 0.0005 (16)
C10 0.020 (2) 0.0190 (19) 0.0116 (16) −0.001 (2) −0.0015 (14) 0.002 (2)
C21 0.022 (3) 0.023 (2) 0.016 (2) −0.003 (2) 0.0014 (18) −0.0052 (18)
C24 0.019 (2) 0.020 (2) 0.024 (2) −0.003 (2) 0.0042 (19) −0.0035 (19)
C12 0.026 (3) 0.018 (2) 0.024 (2) −0.007 (2) 0.0057 (19) −0.0033 (18)
C2 0.024 (2) 0.019 (2) 0.0165 (19) 0.0005 (19) 0.0031 (17) −0.0040 (17)
C7 0.024 (3) 0.017 (2) 0.018 (2) 0.0002 (19) 0.0030 (18) −0.0009 (17)
C19 0.014 (2) 0.027 (3) 0.0211 (18) 0.001 (2) 0.0012 (15) −0.0017 (19)
C30 0.029 (2) 0.029 (3) 0.0219 (19) −0.002 (2) −0.0025 (17) 0.000 (2)
C1 0.025 (2) 0.019 (2) 0.0168 (19) −0.0036 (19) 0.0014 (17) 0.0016 (17)
C11 0.028 (3) 0.016 (2) 0.022 (2) −0.005 (2) 0.0076 (19) −0.0018 (18)
C20 0.0141 (19) 0.025 (2) 0.0164 (17) −0.001 (2) 0.0029 (14) −0.0025 (19)
C3 0.018 (2) 0.025 (2) 0.0145 (19) −0.0017 (19) −0.0002 (17) 0.0051 (18)
C16 0.017 (2) 0.025 (2) 0.0171 (17) 0.000 (2) −0.0013 (15) 0.000 (2)
C6 0.026 (2) 0.014 (2) 0.018 (2) −0.0020 (18) 0.0011 (17) −0.0023 (17)
C4 0.022 (2) 0.017 (2) 0.0158 (19) −0.0018 (18) −0.0022 (17) 0.0018 (16)
C29 0.030 (3) 0.121 (7) 0.029 (3) −0.024 (4) 0.018 (2) −0.026 (3)
C31 0.027 (3) 0.028 (3) 0.024 (2) −0.007 (2) −0.0020 (19) 0.001 (2)
C18 0.022 (2) 0.024 (2) 0.021 (2) −0.006 (2) 0.0005 (18) 0.0057 (18)
C23 0.017 (3) 0.033 (3) 0.017 (2) −0.003 (2) −0.0016 (18) −0.003 (2)
C28 0.033 (4) 0.043 (4) 0.074 (4) 0.003 (3) 0.033 (3) −0.009 (3)
C9 0.024 (2) 0.016 (2) 0.0133 (17) −0.0004 (18) 0.0009 (16) −0.0023 (16)
C26 0.040 (4) 0.053 (4) 0.067 (4) −0.028 (3) 0.030 (3) −0.022 (3)
C27 0.018 (2) 0.076 (5) 0.030 (2) 0.004 (3) 0.0067 (19) 0.006 (3)
C25 0.039 (4) 0.092 (6) 0.049 (4) 0.016 (4) 0.020 (3) 0.048 (4)

Geometric parameters (Å, º)

Fe1—C22 2.035 (5) C12—H12A 0.9900
Fe1—C21 2.030 (4) C12—H12B 0.9900
Fe1—C24 2.049 (5) C12—C11 1.536 (6)
Fe1—C20 2.047 (3) C2—H2 0.9500
Fe1—C29 2.026 (5) C2—C1 1.391 (6)
Fe1—C23 2.047 (5) C2—C3 1.392 (6)
Fe1—C28 2.035 (6) C7—H7A 0.9900
Fe1—C26 2.026 (6) C7—H7B 0.9900
Fe1—C27 2.035 (5) C7—C6 1.518 (6)
Fe1—C25 2.025 (6) C19—H19A 0.9900
S1—O3 1.506 (3) C19—H19B 0.9900
S1—C30 1.783 (4) C19—C20 1.505 (5)
S1—C31 1.781 (4) C19—C16 1.543 (5)
O2—C17 1.216 (5) C30—H30A 0.9800
O1—H1 0.8400 C30—H30B 0.9800
O1—C3 1.368 (5) C30—H30C 0.9800
C17—C13 1.518 (6) C1—H1A 0.9500
C17—C16 1.545 (6) C11—H11A 0.9900
C13—C14 1.548 (6) C11—H11B 0.9900
C13—C12 1.527 (5) C11—C9 1.536 (6)
C13—C18 1.548 (5) C3—C4 1.389 (6)
C8—H8 1.0000 C16—H16 1.0000
C8—C14 1.516 (5) C6—H6A 0.9900
C8—C7 1.527 (6) C6—H6B 0.9900
C8—C9 1.545 (5) C4—H4 0.9500
C15—H15A 0.9900 C29—H29 0.9500
C15—H15B 0.9900 C29—C28 1.376 (9)
C15—C14 1.527 (5) C29—C25 1.387 (10)
C15—C16 1.529 (6) C31—H31A 0.9800
C14—H14 1.0000 C31—H31B 0.9800
C22—H22 0.9500 C31—H31C 0.9800
C22—C21 1.422 (6) C18—H18A 0.9800
C22—C23 1.414 (6) C18—H18B 0.9800
C5—C10 1.422 (6) C18—H18C 0.9800
C5—C6 1.519 (6) C23—H23 0.9500
C5—C4 1.390 (6) C28—H28 0.9500
C10—C1 1.402 (6) C28—C27 1.365 (9)
C10—C9 1.527 (5) C9—H9 1.0000
C21—H21 0.9500 C26—H26 0.9500
C21—C20 1.423 (7) C26—C27 1.387 (10)
C24—H24 0.9500 C26—C25 1.416 (9)
C24—C20 1.425 (6) C27—H27 0.9500
C24—C23 1.415 (6) C25—H25 0.9500
C22—Fe1—C24 68.00 (19) C1—C2—C3 119.4 (4)
C22—Fe1—C20 68.81 (16) C3—C2—H2 120.3
C22—Fe1—C23 40.53 (16) C8—C7—H7A 109.7
C22—Fe1—C28 156.9 (2) C8—C7—H7B 109.7
C21—Fe1—C22 40.95 (17) H7A—C7—H7B 108.2
C21—Fe1—C24 68.24 (16) C6—C7—C8 109.7 (4)
C21—Fe1—C20 40.86 (19) C6—C7—H7A 109.7
C21—Fe1—C23 68.60 (19) C6—C7—H7B 109.7
C21—Fe1—C28 161.4 (2) H19A—C19—H19B 107.8
C21—Fe1—C27 124.8 (2) C20—C19—H19A 109.1
C20—Fe1—C24 40.73 (18) C20—C19—H19B 109.1
C29—Fe1—C22 122.2 (2) C20—C19—C16 112.6 (3)
C29—Fe1—C21 156.4 (3) C16—C19—H19A 109.1
C29—Fe1—C24 126.6 (2) C16—C19—H19B 109.1
C29—Fe1—C20 162.2 (3) S1—C30—H30A 109.5
C29—Fe1—C23 109.5 (2) S1—C30—H30B 109.5
C29—Fe1—C28 39.6 (3) S1—C30—H30C 109.5
C29—Fe1—C26 67.7 (3) H30A—C30—H30B 109.5
C29—Fe1—C27 66.9 (2) H30A—C30—H30C 109.5
C29—Fe1—C25 40.0 (3) H30B—C30—H30C 109.5
C23—Fe1—C24 40.42 (18) C10—C1—H1A 118.7
C23—Fe1—C20 68.75 (16) C2—C1—C10 122.5 (4)
C28—Fe1—C24 109.4 (2) C2—C1—H1A 118.7
C28—Fe1—C20 125.3 (2) C12—C11—H11A 109.2
C28—Fe1—C23 122.5 (2) C12—C11—H11B 109.2
C26—Fe1—C22 125.9 (3) H11A—C11—H11B 107.9
C26—Fe1—C21 107.1 (2) C9—C11—C12 112.2 (4)
C26—Fe1—C24 154.4 (2) C9—C11—H11A 109.2
C26—Fe1—C20 119.2 (2) C9—C11—H11B 109.2
C26—Fe1—C23 163.4 (3) C21—C20—Fe1 68.9 (2)
C26—Fe1—C28 66.6 (2) C21—C20—C24 106.9 (3)
C26—Fe1—C27 39.9 (3) C21—C20—C19 125.9 (4)
C27—Fe1—C22 162.4 (2) C24—C20—Fe1 69.7 (2)
C27—Fe1—C24 120.7 (2) C24—C20—C19 127.3 (5)
C27—Fe1—C20 106.95 (17) C19—C20—Fe1 128.0 (3)
C27—Fe1—C23 155.6 (2) O1—C3—C2 122.7 (4)
C27—Fe1—C28 39.2 (3) O1—C3—C4 117.9 (4)
C25—Fe1—C22 108.7 (2) C4—C3—C2 119.4 (4)
C25—Fe1—C21 120.9 (3) C17—C16—H16 106.6
C25—Fe1—C24 163.2 (3) C15—C16—C17 104.5 (3)
C25—Fe1—C20 155.1 (3) C15—C16—C19 118.9 (3)
C25—Fe1—C23 126.4 (2) C15—C16—H16 106.6
C25—Fe1—C28 66.7 (3) C19—C16—C17 113.0 (4)
C25—Fe1—C26 40.9 (3) C19—C16—H16 106.6
C25—Fe1—C27 67.5 (2) C5—C6—C7 113.7 (3)
O3—S1—C30 105.8 (2) C5—C6—H6A 108.8
O3—S1—C31 106.4 (2) C5—C6—H6B 108.8
C31—S1—C30 98.9 (2) C7—C6—H6A 108.8
C3—O1—H1 109.5 C7—C6—H6B 108.8
O2—C17—C13 126.6 (4) H6A—C6—H6B 107.7
O2—C17—C16 124.6 (4) C5—C4—H4 119.3
C13—C17—C16 108.8 (4) C3—C4—C5 121.4 (4)
C17—C13—C14 101.4 (3) C3—C4—H4 119.3
C17—C13—C12 116.8 (3) Fe1—C29—H29 125.0
C17—C13—C18 105.0 (3) C28—C29—Fe1 70.6 (3)
C14—C13—C18 113.8 (3) C28—C29—H29 126.1
C12—C13—C14 109.2 (3) C28—C29—C25 107.9 (6)
C12—C13—C18 110.5 (4) C25—C29—Fe1 69.9 (4)
C14—C8—H8 108.7 C25—C29—H29 126.1
C14—C8—C7 113.9 (4) S1—C31—H31A 109.5
C14—C8—C9 107.3 (3) S1—C31—H31B 109.5
C7—C8—H8 108.7 S1—C31—H31C 109.5
C7—C8—C9 109.4 (3) H31A—C31—H31B 109.5
C9—C8—H8 108.7 H31A—C31—H31C 109.5
H15A—C15—H15B 109.2 H31B—C31—H31C 109.5
C14—C15—H15A 111.3 C13—C18—H18A 109.5
C14—C15—H15B 111.3 C13—C18—H18B 109.5
C14—C15—C16 102.5 (3) C13—C18—H18C 109.5
C16—C15—H15A 111.3 H18A—C18—H18B 109.5
C16—C15—H15B 111.3 H18A—C18—H18C 109.5
C13—C14—H14 105.7 H18B—C18—H18C 109.5
C8—C14—C13 111.5 (3) Fe1—C23—H23 126.3
C8—C14—C15 123.1 (4) C22—C23—Fe1 69.3 (3)
C8—C14—H14 105.7 C22—C23—C24 107.6 (4)
C15—C14—C13 103.9 (3) C22—C23—H23 126.2
C15—C14—H14 105.7 C24—C23—Fe1 69.9 (3)
Fe1—C22—H22 126.2 C24—C23—H23 126.2
C21—C22—Fe1 69.3 (3) Fe1—C28—H28 126.1
C21—C22—H22 125.9 C29—C28—Fe1 69.8 (4)
C23—C22—Fe1 70.2 (3) C29—C28—H28 125.3
C23—C22—H22 125.9 C27—C28—Fe1 70.4 (3)
C23—C22—C21 108.2 (4) C27—C28—C29 109.4 (6)
C10—C5—C6 120.9 (4) C27—C28—H28 125.3
C4—C5—C10 120.1 (4) C8—C9—H9 106.3
C4—C5—C6 119.0 (4) C10—C9—C8 112.2 (3)
C5—C10—C9 121.1 (4) C10—C9—C11 113.3 (4)
C1—C10—C5 117.1 (4) C10—C9—H9 106.3
C1—C10—C9 121.7 (4) C11—C9—C8 111.9 (3)
Fe1—C21—H21 125.8 C11—C9—H9 106.3
C22—C21—Fe1 69.7 (3) Fe1—C26—H26 125.4
C22—C21—H21 125.8 C27—C26—Fe1 70.3 (3)
C22—C21—C20 108.3 (4) C27—C26—H26 126.4
C20—C21—Fe1 70.2 (2) C27—C26—C25 107.2 (6)
C20—C21—H21 125.8 C25—C26—Fe1 69.5 (4)
Fe1—C24—H24 126.8 C25—C26—H26 126.4
C20—C24—Fe1 69.6 (2) Fe1—C27—H27 125.6
C20—C24—H24 125.5 C28—C27—Fe1 70.4 (3)
C23—C24—Fe1 69.7 (3) C28—C27—C26 108.2 (5)
C23—C24—H24 125.5 C28—C27—H27 125.9
C23—C24—C20 108.9 (4) C26—C27—Fe1 69.7 (3)
C13—C12—H12A 109.5 C26—C27—H27 125.9
C13—C12—H12B 109.5 Fe1—C25—H25 125.6
C13—C12—C11 110.6 (3) C29—C25—Fe1 70.0 (4)
H12A—C12—H12B 108.1 C29—C25—C26 107.3 (6)
C11—C12—H12A 109.5 C29—C25—H25 126.4
C11—C12—H12B 109.5 C26—C25—Fe1 69.6 (3)
C1—C2—H2 120.3 C26—C25—H25 126.4
Fe1—C22—C21—C20 59.8 (3) C7—C8—C9—C10 50.4 (4)
Fe1—C22—C23—C24 −59.6 (3) C7—C8—C9—C11 179.0 (4)
Fe1—C21—C20—C24 59.6 (3) C1—C10—C9—C8 162.9 (3)
Fe1—C21—C20—C19 −122.3 (4) C1—C10—C9—C11 35.0 (5)
Fe1—C24—C20—C21 −59.1 (3) C1—C2—C3—O1 −179.0 (4)
Fe1—C24—C20—C19 122.9 (4) C1—C2—C3—C4 1.5 (6)
Fe1—C24—C23—C22 59.2 (4) C20—C24—C23—Fe1 −58.6 (3)
Fe1—C29—C28—C27 59.4 (4) C20—C24—C23—C22 0.5 (6)
Fe1—C29—C25—C26 −59.9 (4) C20—C19—C16—C17 65.7 (5)
Fe1—C28—C27—C26 59.7 (4) C20—C19—C16—C15 −57.3 (6)
Fe1—C26—C27—C28 −60.1 (4) C3—C2—C1—C10 −0.4 (6)
Fe1—C26—C25—C29 60.2 (5) C16—C17—C13—C14 −20.6 (4)
O2—C17—C13—C14 159.3 (4) C16—C17—C13—C12 −139.1 (3)
O2—C17—C13—C12 40.7 (6) C16—C17—C13—C18 98.1 (4)
O2—C17—C13—C18 −82.0 (5) C16—C15—C14—C13 −43.4 (4)
O2—C17—C16—C15 174.7 (4) C16—C15—C14—C8 −171.2 (3)
O2—C17—C16—C19 44.1 (5) C16—C19—C20—Fe1 −169.8 (4)
O1—C3—C4—C5 179.2 (4) C16—C19—C20—C21 −79.7 (5)
C17—C13—C14—C8 173.9 (3) C16—C19—C20—C24 97.9 (5)
C17—C13—C14—C15 39.3 (4) C6—C5—C10—C1 −178.5 (3)
C17—C13—C12—C11 170.1 (4) C6—C5—C10—C9 5.1 (5)
C13—C17—C16—C15 −5.4 (4) C6—C5—C4—C3 179.5 (3)
C13—C17—C16—C19 −136.0 (3) C4—C5—C10—C1 1.0 (5)
C13—C12—C11—C9 −53.2 (5) C4—C5—C10—C9 −175.5 (3)
C8—C7—C6—C5 49.2 (4) C4—C5—C6—C7 161.2 (4)
C14—C13—C12—C11 55.8 (5) C29—C28—C27—Fe1 −59.1 (4)
C14—C8—C7—C6 174.5 (3) C29—C28—C27—C26 0.6 (6)
C14—C8—C9—C10 174.3 (3) C18—C13—C14—C8 61.8 (4)
C14—C8—C9—C11 −57.1 (4) C18—C13—C14—C15 −72.8 (4)
C14—C15—C16—C17 29.6 (4) C18—C13—C12—C11 −70.0 (4)
C14—C15—C16—C19 156.7 (3) C23—C22—C21—Fe1 −59.6 (4)
C22—C21—C20—Fe1 −59.5 (3) C23—C22—C21—C20 0.2 (6)
C22—C21—C20—C24 0.1 (4) C23—C24—C20—Fe1 58.7 (3)
C22—C21—C20—C19 178.1 (4) C23—C24—C20—C21 −0.4 (5)
C5—C10—C1—C2 −0.8 (6) C23—C24—C20—C19 −178.4 (4)
C5—C10—C9—C8 −20.9 (5) C28—C29—C25—Fe1 60.7 (4)
C5—C10—C9—C11 −148.8 (3) C28—C29—C25—C26 0.8 (8)
C10—C5—C6—C7 −19.3 (5) C9—C8—C14—C13 61.4 (4)
C10—C5—C4—C3 0.0 (6) C9—C8—C14—C15 −174.1 (3)
C21—C22—C23—Fe1 59.1 (3) C9—C8—C7—C6 −65.6 (4)
C21—C22—C23—C24 −0.4 (6) C9—C10—C1—C2 175.6 (4)
C12—C13—C14—C8 −62.1 (4) C27—C26—C25—Fe1 −60.5 (4)
C12—C13—C14—C15 163.2 (3) C27—C26—C25—C29 −0.4 (7)
C12—C11—C9—C8 54.3 (5) C25—C29—C28—Fe1 −60.3 (5)
C12—C11—C9—C10 −177.6 (3) C25—C29—C28—C27 −0.9 (7)
C2—C3—C4—C5 −1.3 (6) C25—C26—C27—Fe1 60.0 (4)
C7—C8—C14—C13 −177.5 (3) C25—C26—C27—C28 −0.2 (6)
C7—C8—C14—C15 −53.0 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O3i 0.84 1.82 2.655 (5) 174

Symmetry code: (i) x+1, y, z.

References

  1. Allan, G. M., Lawrence, H. R., Cornet, J., Bubert, C., Fischer, D. S., Vicker, N., Smith, A., Tutill, H. J., Purohit, A., Day, J. M., Mahon, M. F., Reed, M. J. & Potter, B. V. L. (2006). J. Med. Chem. 49, 1325–1345. [DOI] [PubMed]
  2. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Domínguez-García, M., Ortega-Zúñiga, C. & Meléndez, E. (2013). J. Biol. Inorg. Chem. 18, 195–209. [DOI] [PMC free article] [PubMed]
  5. Galanski, M., Jakupec, M. A. & Keppler, B. K. (2005). Curr. Med. Chem. 12, 2075–2094. [DOI] [PubMed]
  6. McAdam, C. J., Moratti, S. C. & Simpson, J. (2015). Acta Cryst. C71, 1100–1105. [DOI] [PubMed]
  7. Pabla, N. & Dong, Z. (2008). Kidney Int. 73, 994–1007. [DOI] [PubMed]
  8. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  9. Ramos, G., Loperena, Y., Ortiz, G., Reyes, F., Szeto, A., Vera, J., Velez, J., Morales, J., Morrero, D., Castillo, L., Dharmawardhane, S., Melendez, E. & Washington, A. V. (2014). Anticancer Res. 34, 1609–1615. [PMC free article] [PubMed]
  10. Richard, M.-A., Hamels, D., Pigeon, P., Top, S., Dansette, P. M., Lee, H. Z. S., Vessières, A., Mansuy, D. & Jaouen, G. (2015). ChemMedChem, 10, 981–990. [DOI] [PubMed]
  11. Sandler, A., Graham, C., Baggstrom, M., Herbst, R., Zergebel, C., Saito, K. & Jones, D. (2011). J. Thorac. Oncol. 6, 1400–1406. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  13. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  14. Shikii, K., Sakamoto, S., Seki, H., Utsumi, H. & Yamaguchi, K. (2004). Tetrahedron, 60, 3487–3492.
  15. Vera, J., Gao, L. M., Santana, A., Matta, J. & Meléndez, E. (2011). Dalton Trans. 40, 9557–9565. [DOI] [PMC free article] [PubMed]
  16. Vera, J. L., Rullán, J., Santos, N., Jiménez, J., Rivera, J., Santana, A., Briggs, J., Rheingold, A. L., Matta, J. & Meléndez, E. (2014). J. Organomet. Chem. 749, 204–214. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016008446/bg2586sup1.cif

e-72-00868-sup1.cif (348.9KB, cif)

CCDC reference: 1479699

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES