Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 May 13;72(Pt 6):805–808. doi: 10.1107/S2056989016007581

Supra­molecular architecture in a co-crystal of the N(7)—H tautomeric form of N 6-benzoyl­adenine with adipic acid (1/0.5)

Robert Swinton Darious a, Packianathan Thomas Muthiah a,*, Franc Perdih b
PMCID: PMC4908553  PMID: 27308047

The supra­molecular architecture in a co-crystal of N(7)—H tautomeric form of N 6-benzoyl­adenine-adipic acid (1/0.5) is reported. The typical C=O⋯π and C—H⋯π inter­actions are also present in this structure.

Keywords: crystal structure, N6-benzoyl­adenine, adipic acid, hydrogen bond, supra­molecular sheet, π–π stacking, co-crystal

Abstract

The asymmetric unit of the title co-crystal, C12H9N5O·0.5C6H10O4, consists of one mol­ecule of N 6-benzoyl­adenine (BA) and one half-mol­ecule of adipic acid (AA), the other half being generated by inversion symmetry. The dihedral angle between the adenine and phenyl ring planes is 26.71 (7)°. The N 6-benzoyl­adenine mol­ecule crystallizes in the N(7)—H tautomeric form with three non-protonated N atoms. This tautomeric form is stabilized by intra­molecular N—H⋯O hydrogen bonding between the carbonyl (C=O) group and the N(7)—H hydrogen atom on the Hoogsteen face of the purine ring, forming an S(7) ring motif. The two carboxyl groups of adipic acid inter­act with the Watson–Crick face of the BA mol­ecules through O—H⋯N and N—H⋯O hydrogen bonds, generating an R 2 2(8) ring motif. The latter units are linked by N—H⋯N hydrogen bonds, forming layers parallel to (10-5). A weak C—H⋯O hydrogen bond is also present, linking adipic acid mol­ecules in neighbouring layers, enclosing R 2 2(10) ring motifs and forming a three-dimensional structure. C=O⋯π and C—H⋯π inter­actions are also present in the structure.

Chemical context  

Adipic acid has been widely used in controlled-release formulations of many drugs and food additives (Roew et al., 2009). N 6-benzoyl­adenine is a synthetic analogue of a group of naturally occurring N 6-substituted adenines having plant-growth-stimulating activity (cytokinins) (McHugh & Erxleben, 2011). A number of co-crystals involving adipic acid have been reported in the literature (Lemmerer et al., 2012; Lin et al., 2012; Matulková et al., 2014; Thanigaimani et al., 2012). This paper deals with a co-crystal formed between N 6-benzoyl­adenine and adipic acid (I).graphic file with name e-72-00805-scheme1.jpg

Structural commentary  

The asymmetric unit of (I) contains one N 6-benzoyl­­adenine (BA) mol­ecule and a half-mol­ecule of adipic acid (AA). As evident from the angles at N7 [C8—N7—C5 = 106.82 (11)°] and N9 [C8—N9—C4 = 103.90 (11)°], the N 6-benzoyl­adenine moiety exists in the N(7)—H tautomeric form with non-protonated N1, N3 and N9 atoms. In addition, the C8—N7 bond [1.3415 (17) Å)] is longer than C8—N9 [1.3175 (19) Å]. These values are similar to those in neutral N 6-benzoyl­adenine (Raghunathan & Pattabhi, 1981). An intra­molecular hydrogen bond in the Hoogsteen face between N7—H7 and the benzoyl oxygen atom O1 forms a S(7) ring motif. The dihedral angle between the adenine and phenyl ring plane is 26.71 (7)° and the C6—N6—C10—C11 torsion angle is 173.08 (14)°. The bond lengths and bond angles of AA are in the range of values reported (Srinivasa Gopalan et al., 1999; 2000). The values for the torsion angles C18—C19—C19a—C18a [180.00 (13)°] and C17—C18—C19—C19a [–176.09 (14)°] indicate that the carbon chain of AA is fully extended.

In the crystal structures of N 6-benzyl­adenine (Raghunathan & Pattabhi, 1981), N 6-furfuryladenine (Soriano-Garcia & Parthasarathy, 1977), N 6-benzyl­adenine hydro­bromide (Umadevi et al., 2001), N 6-furfuryladenine hydro­chloride (Stanley et al., 2003), N 6-benzyl­adeninium p-toluene­sulfonate (Tamilselvi & Mu­thiah, 2011), N 6-benzyl­adeninium nitrate, N 6-benzyl­adeninium 3-hy­droxy picolinate (Nirmalram et al., 2011) and the hydrate adduct of N 6-benzyl­adenine-5-sulfo­sali­cylic acid (Xia et al., 2010), the N 6-substituent is distal to the N7 position, whereas in the crystal structures of N 6-benzoyl­adenine (Raghunathan et al., 1983), N 6-benzoyl­adenine-3-hy­droxy­pyridinium-2-carboxyl­ate (1:1), N 6-benz­oyl­adenine-dl-tartaric acid (1:1) (Karthikeyan et al., 2015), N 6-benzoyl­adeninium nitrate (Karthikeyan et al., 2015) and the title compound, the N 6-substituent is distal to N1 and syn to adenine nitrogen atom N7. In the present structure, this may be attributed to the presence of the N7—H7⋯O1A intra­molecular hydrogen bond (Table 1).

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C11–C16 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1i 0.82 1.92 2.7327 (19) 175
N6—H6⋯O3A ii 0.86 2.09 2.904 (11) 157
N7—H7⋯O1A 0.86 2.04 2.616 (16) 124
N7—H7⋯N9iii 0.86 2.17 2.9271 (17) 146
C19—H19B⋯O3A iv 0.97 2.54 3.481 (11) 164
C2—H2⋯Cg3v 0.93 2.94 3.4611 (16) 117

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Supra­molecular features  

Each of the two carboxyl groups of adipic acid inter­acts with the Watson–Crick face (atoms N1 and N6) of the corres­ponding BA through O—H⋯N and N—H⋯O hydrogen bonds, generating an Inline graphic(8) ring motif (Fig. 1). Thus each adipic acid mol­ecule bridges two BA mol­ecules. The latter units are linked by N7—H7⋯N9iii hydrogen bonds (Table 1) forming layers parallel to plane (10Inline graphic). A weak C—H⋯O hydrogen bond (C19—H19B⋯O3A iv) is also present (Table 1 and Fig. 2), linking adipic acid mol­ecules in neighbouring layers, enclosing Inline graphic(10) ring motifs and forming a three-dimensional structure. Thus atom O3A functions as a bifurcated hydrogen-bond acceptor whereas N7—H is a bifurcated hydrogen-bond donor.

Figure 1.

Figure 1

A Mercury (Macrae et al., 2008) view of the title compound (I), showing the atom-numbering scheme. Disordered oxygen atoms are omitted for clarity. H atoms not involved in hydrogen bonding have been omitted for clarity. Unlabelled atoms are related by the symmetry operation 1 − x, 1 − y, −z.

Figure 2.

Figure 2

A view of the sheet-like supra­molecular architecture generated via C19—H19B⋯O3A hydrogen bonds (black dotted lines). Phenyl rings are indicated as yellow balls. H atoms not involved in hydrogen bonding have been omitted for clarity. Symmetry codes are as given in Table 1.

The crystal structure also features C2—H2⋯π inter­actions between purine and phenyl rings (Fig. 3 a) and C10=O1B⋯π inter­actions between the carbonyl oxygen O1B and the centroid of the (N1/C2/N3/C4/C5/C6) pyrimidine ring [O⋯centroid = 3.407 (10) Å; symmetry code: 1 − x, Inline graphic + y, Inline graphic − z; Fig. 3 b] (Safaei-Ghomi et al., 2009).

Figure 3.

Figure 3

(a) A view of the C—H⋯π inter­action in compound (I). Cg3 is the centroid of the phenyl ring of the BA mol­ecule (symmetry code: x, −1 + y, z). (b) A view of the C=O⋯π inter­action. Cg2 is the centroid of the pyrimidine ring of the BA mol­ecule (symmetry code: 1 − x, Inline graphic + y, Inline graphic − z).

Database survey  

The neutral mol­ecule N 6-benzoyl­adenine was reported by Raghunathan & Pattabhi (1981). Co-crystals have also been reported: N 6-benzoyl­adenine-3-hy­droxy­pyridinium-2-carb­oxyl­ate (1:1), N 6-benzoyl­adenine-dl-tartaric acid (1:1) (Karthikeyan et al., 2015) and N 6-benzoyl­adeninium nitrate (Karthikeyan et al., 2016). Similarly, co-crystals of adipic acid with pyrimidine derivatives [adenine (Byres et al., 2009), caffeine (Bučar et al., 2007), cytosine (Das & Baruah, 2011), bis-pyrimidine-amine-linked xylene spacer (Goswami et al., 2010)] have also been reported.

Synthesis and crystallization  

The title co-crystal was synthesized by mixing a DMF solution of N 6-benzoyl­adenine (30 mg) and adipic acid (19 mg) (total volume = 10 mL). The mixture was warmed in a water bath for 20 min. After cooling to room temperature, colourless plate-like crystals were collected from the mother liquor after a few days (m.p. 438 K).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Atoms O1 and O3 are disordered over two positions with refined occupancy ratios of 0.57 (3):0.43 (3) and 0.63 (3):0.37 (3), respectively. Hydrogen atoms were readily located in difference Fourier maps and were subsequently treated as riding atoms in geometrically idealized positions, with C—H = 0.93 (aromatic) or 0.97 (methyl­ene), N—H = 0.86, and O—H = 0.82 Å, and with U iso(H) = kU eq(C,N,O), where k = 1.5 for hy­droxy and 1.2 for all other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C12H9N5O·0.5C6H10O4
M r 312.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 6.1776 (4), 9.2296 (4), 25.7480 (15)
β (°) 97.117 (6)
V3) 1456.76 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.60 × 0.60 × 0.40
 
Data collection
Diffractometer Agilent SuperNova Dual Source diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013)
T min, T max 0.756, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9480, 3325, 2755
R int 0.020
(sin θ/λ)max−1) 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.122, 1.05
No. of reflections 3325
No. of parameters 230
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.22

Computer programs: CrysAlis PRO (Agilent, 2013), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016007581/hg5474sup1.cif

e-72-00805-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016007581/hg5474Isup2.hkl

e-72-00805-Isup2.hkl (265.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016007581/hg5474Isup3.cml

CCDC reference: 1478504

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

RSD thanks the UGC–BSR India for the award of an RFSMS. PTM is thankful to the UGC, New Delhi, for a UGC–BSR one-time grant to Faculty. FP thanks the Slovenian Research Agency for financial support (P1–0230-0175), as well as the EN–FIST Centre of Excellence, Ljubljana, Slovenia, for the use of the SuperNova diffractometer.

supplementary crystallographic information

Crystal data

C12H9N5O·0.5C6H10O4 F(000) = 652
Mr = 312.31 Dx = 1.424 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 6.1776 (4) Å Cell parameters from 4139 reflections
b = 9.2296 (4) Å θ = 3.3–30.1°
c = 25.7480 (15) Å µ = 0.10 mm1
β = 97.117 (6)° T = 293 K
V = 1456.76 (14) Å3 Prism, colorless
Z = 4 0.60 × 0.60 × 0.40 mm

Data collection

Agilent SuperNova Dual Source diffractometer with an Atlas detector 3325 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2755 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.020
Detector resolution: 10.4933 pixels mm-1 θmax = 27.5°, θmin = 3.2°
ω scans h = −8→7
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) k = −11→11
Tmin = 0.756, Tmax = 1.000 l = −33→31
9480 measured reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.3295P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122 (Δ/σ)max < 0.001
S = 1.05 Δρmax = 0.25 e Å3
3325 reflections Δρmin = −0.22 e Å3
230 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0130 (18)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1A 0.7104 (15) 0.6427 (14) 0.1669 (8) 0.094 (4) 0.57 (3)
O1B 0.6582 (19) 0.6621 (6) 0.1877 (4) 0.054 (2) 0.43 (3)
N1 0.3308 (2) 0.27081 (12) 0.16588 (5) 0.0415 (3)
N3 0.5648 (2) 0.09828 (13) 0.21438 (5) 0.0477 (3)
N6 0.39990 (19) 0.51100 (12) 0.15270 (5) 0.0391 (3)
H6 0.2702 0.5109 0.1361 0.047*
N7 0.85319 (19) 0.42515 (12) 0.22672 (5) 0.0402 (3)
H7 0.8790 0.5157 0.2226 0.048*
N9 0.9054 (2) 0.19667 (13) 0.25397 (5) 0.0470 (3)
C2 0.3848 (3) 0.13827 (15) 0.18545 (6) 0.0468 (4)
H2 0.2811 0.0660 0.1774 0.056*
C4 0.7054 (2) 0.20808 (14) 0.22480 (5) 0.0389 (3)
C5 0.6683 (2) 0.35149 (13) 0.20707 (5) 0.0352 (3)
C6 0.4717 (2) 0.38085 (13) 0.17619 (5) 0.0347 (3)
C8 0.9855 (3) 0.32896 (15) 0.25376 (6) 0.0451 (4)
H8 1.1219 0.3535 0.2709 0.054*
C10 0.5100 (3) 0.63803 (16) 0.15283 (7) 0.0493 (4)
C11 0.4104 (2) 0.75951 (14) 0.11985 (6) 0.0412 (3)
C12 0.5550 (3) 0.86137 (17) 0.10534 (7) 0.0544 (4)
H12 0.7028 0.8527 0.1173 0.065*
C13 0.4831 (3) 0.97575 (19) 0.07333 (8) 0.0627 (5)
H13 0.5825 1.0423 0.0630 0.075*
C14 0.2660 (3) 0.99109 (19) 0.05686 (7) 0.0628 (5)
H14 0.2168 1.0681 0.0353 0.075*
C15 0.1208 (3) 0.8931 (2) 0.07213 (8) 0.0655 (5)
H15 −0.0274 0.9047 0.0611 0.079*
C16 0.1909 (3) 0.77622 (18) 0.10389 (7) 0.0538 (4)
H16 0.0908 0.7102 0.1142 0.065*
O2 0.9399 (2) 0.25032 (13) 0.10377 (6) 0.0694 (4)
H2A 1.0565 0.2620 0.1223 0.104*
O3A 1.0228 (15) 0.4644 (11) 0.0753 (5) 0.072 (2) 0.63 (3)
O3B 0.951 (3) 0.4828 (6) 0.0985 (9) 0.070 (5) 0.37 (3)
C17 0.8870 (3) 0.36824 (17) 0.07825 (6) 0.0494 (4)
C18 0.6762 (3) 0.36172 (16) 0.04285 (6) 0.0491 (4)
H18A 0.5619 0.3312 0.0631 0.059*
H18B 0.6882 0.2888 0.0162 0.059*
C19 0.6100 (3) 0.50345 (16) 0.01626 (6) 0.0494 (4)
H19A 0.6069 0.5781 0.0427 0.059*
H19B 0.7188 0.5308 −0.0060 0.059*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.047 (3) 0.085 (4) 0.138 (8) −0.023 (2) −0.033 (4) 0.071 (4)
O1B 0.052 (3) 0.028 (2) 0.073 (4) −0.0097 (15) −0.024 (2) 0.011 (2)
N1 0.0423 (6) 0.0333 (6) 0.0467 (7) −0.0045 (5) −0.0037 (5) 0.0046 (5)
N3 0.0559 (8) 0.0299 (6) 0.0536 (7) −0.0047 (5) −0.0074 (6) 0.0067 (5)
N6 0.0365 (6) 0.0308 (6) 0.0470 (6) 0.0002 (4) −0.0071 (5) 0.0062 (5)
N7 0.0399 (6) 0.0269 (5) 0.0503 (7) 0.0015 (5) −0.0079 (5) 0.0000 (5)
N9 0.0495 (7) 0.0310 (6) 0.0561 (7) 0.0051 (5) −0.0108 (6) 0.0036 (5)
C2 0.0519 (9) 0.0325 (7) 0.0528 (8) −0.0091 (6) −0.0060 (7) 0.0062 (6)
C4 0.0444 (8) 0.0292 (6) 0.0412 (7) 0.0023 (5) −0.0023 (6) 0.0017 (5)
C5 0.0381 (7) 0.0280 (6) 0.0383 (7) 0.0015 (5) −0.0002 (6) −0.0008 (5)
C6 0.0380 (7) 0.0290 (6) 0.0362 (6) 0.0006 (5) 0.0007 (6) 0.0015 (5)
C8 0.0423 (8) 0.0341 (7) 0.0550 (8) 0.0045 (6) −0.0101 (7) −0.0007 (6)
C10 0.0461 (8) 0.0357 (7) 0.0611 (9) −0.0047 (6) −0.0131 (7) 0.0124 (7)
C11 0.0472 (8) 0.0303 (6) 0.0441 (7) 0.0017 (6) −0.0019 (6) 0.0044 (5)
C12 0.0510 (9) 0.0398 (8) 0.0710 (11) −0.0011 (7) 0.0017 (8) 0.0131 (7)
C13 0.0716 (12) 0.0437 (9) 0.0746 (12) 0.0012 (8) 0.0155 (10) 0.0202 (8)
C14 0.0809 (13) 0.0479 (9) 0.0590 (10) 0.0163 (9) 0.0061 (9) 0.0205 (8)
C15 0.0542 (10) 0.0617 (11) 0.0771 (12) 0.0142 (9) −0.0059 (9) 0.0204 (9)
C16 0.0464 (9) 0.0455 (8) 0.0672 (10) 0.0021 (7) −0.0019 (8) 0.0146 (7)
O2 0.0568 (7) 0.0461 (6) 0.0963 (10) −0.0026 (5) −0.0264 (7) 0.0128 (6)
O3A 0.061 (3) 0.072 (2) 0.076 (4) −0.026 (2) −0.024 (3) 0.027 (2)
O3B 0.069 (5) 0.037 (2) 0.092 (8) −0.006 (2) −0.035 (5) 0.002 (2)
C17 0.0477 (9) 0.0428 (8) 0.0544 (9) −0.0017 (7) −0.0073 (7) 0.0029 (7)
C18 0.0472 (8) 0.0408 (8) 0.0558 (9) −0.0017 (6) −0.0071 (7) −0.0016 (7)
C19 0.0481 (9) 0.0411 (8) 0.0554 (9) −0.0023 (6) −0.0070 (7) 0.0023 (7)

Geometric parameters (Å, º)

O1A—C10 1.247 (6) C12—C13 1.378 (2)
O1B—C10 1.221 (6) C12—H12 0.9300
N1—C6 1.3424 (17) C13—C14 1.363 (3)
N1—C2 1.3489 (17) C13—H13 0.9300
N3—C2 1.3125 (19) C14—C15 1.365 (3)
N3—C4 1.3401 (18) C14—H14 0.9300
N6—C10 1.3551 (18) C15—C16 1.390 (2)
N6—C6 1.3926 (16) C15—H15 0.9300
N6—H6 0.8600 C16—H16 0.9300
N7—C8 1.3415 (17) O2—C17 1.2923 (18)
N7—C5 1.3712 (17) O2—H2A 0.8200
N7—H7 0.8601 O3A—C17 1.230 (4)
N9—C8 1.3175 (19) O3B—C17 1.223 (6)
N9—C4 1.3684 (18) C17—C18 1.495 (2)
C2—H2 0.9300 C18—C19 1.509 (2)
C4—C5 1.4096 (17) C18—H18A 0.9700
C5—C6 1.3931 (18) C18—H18B 0.9700
C8—H8 0.9300 C19—C19i 1.506 (3)
C10—C11 1.4924 (18) C19—H19A 0.9700
C11—C16 1.376 (2) C19—H19B 0.9700
C11—C12 1.380 (2)
C6—N1—C2 119.23 (11) C13—C12—H12 119.6
C2—N3—C4 112.56 (12) C11—C12—H12 119.6
C10—N6—C6 127.77 (11) C14—C13—C12 119.81 (17)
C10—N6—H6 116.0 C14—C13—H13 120.1
C6—N6—H6 116.2 C12—C13—H13 120.1
C8—N7—C5 106.82 (11) C13—C14—C15 119.86 (15)
C8—N7—H7 126.7 C13—C14—H14 120.1
C5—N7—H7 126.5 C15—C14—H14 120.1
C8—N9—C4 103.90 (11) C14—C15—C16 121.01 (16)
N3—C2—N1 128.29 (13) C14—C15—H15 119.5
N3—C2—H2 115.9 C16—C15—H15 119.5
N1—C2—H2 115.9 C11—C16—C15 119.12 (16)
N3—C4—N9 124.79 (12) C11—C16—H16 120.4
N3—C4—C5 124.74 (12) C15—C16—H16 120.4
N9—C4—C5 110.47 (12) C17—O2—H2A 109.5
N7—C5—C6 137.86 (12) O3B—C17—O2 117.6 (6)
N7—C5—C4 104.56 (11) O3A—C17—O2 120.5 (3)
C6—C5—C4 117.57 (12) O3B—C17—C18 120.5 (3)
N1—C6—N6 113.77 (11) O3A—C17—C18 122.7 (2)
N1—C6—C5 117.61 (11) O2—C17—C18 114.98 (13)
N6—C6—C5 128.60 (12) C17—C18—C19 114.09 (13)
N9—C8—N7 114.25 (12) C17—C18—H18A 108.7
N9—C8—H8 122.9 C19—C18—H18A 108.7
N7—C8—H8 122.9 C17—C18—H18B 108.7
O1B—C10—N6 119.4 (5) C19—C18—H18B 108.7
O1A—C10—N6 120.7 (5) H18A—C18—H18B 107.6
O1B—C10—C11 120.0 (3) C19i—C19—C18 112.99 (16)
O1A—C10—C11 117.6 (3) C19i—C19—H19A 109.0
N6—C10—C11 118.50 (12) C18—C19—H19A 109.0
C16—C11—C12 119.33 (13) C19i—C19—H19B 109.0
C16—C11—C10 125.15 (14) C18—C19—H19B 109.0
C12—C11—C10 115.52 (13) H19A—C19—H19B 107.8
C13—C12—C11 120.82 (16)
C4—N3—C2—N1 0.6 (3) C6—N6—C10—O1B −23.5 (8)
C6—N1—C2—N3 −0.5 (3) C6—N6—C10—O1A 13.7 (14)
C2—N3—C4—N9 −179.85 (15) C6—N6—C10—C11 173.08 (14)
C2—N3—C4—C5 −0.1 (2) O1B—C10—C11—C16 −138.8 (8)
C8—N9—C4—N3 179.82 (16) O1A—C10—C11—C16 −175.5 (14)
C8—N9—C4—C5 0.06 (18) N6—C10—C11—C16 24.5 (3)
C8—N7—C5—C6 −179.15 (18) O1B—C10—C11—C12 40.7 (9)
C8—N7—C5—C4 −0.01 (16) O1A—C10—C11—C12 4.0 (14)
N3—C4—C5—N7 −179.79 (15) N6—C10—C11—C12 −156.02 (16)
N9—C4—C5—N7 −0.03 (17) C16—C11—C12—C13 −2.8 (3)
N3—C4—C5—C6 −0.4 (2) C10—C11—C12—C13 177.68 (17)
N9—C4—C5—C6 179.31 (13) C11—C12—C13—C14 1.8 (3)
C2—N1—C6—N6 178.40 (13) C12—C13—C14—C15 0.0 (3)
C2—N1—C6—C5 −0.2 (2) C13—C14—C15—C16 −0.7 (3)
C10—N6—C6—N1 −175.34 (15) C12—C11—C16—C15 2.0 (3)
C10—N6—C6—C5 3.0 (3) C10—C11—C16—C15 −178.52 (16)
N7—C5—C6—N1 179.62 (16) C14—C15—C16—C11 −0.3 (3)
C4—C5—C6—N1 0.6 (2) O3B—C17—C18—C19 26.0 (16)
N7—C5—C6—N6 1.3 (3) O3A—C17—C18—C19 −19.2 (10)
C4—C5—C6—N6 −177.74 (14) O2—C17—C18—C19 176.05 (16)
C4—N9—C8—N7 −0.08 (19) C17—C18—C19—C19i −176.11 (18)
C5—N7—C8—N9 0.06 (19)

Symmetry code: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C11–C16 phenyl ring.

D—H···A D—H H···A D···A D—H···A
O2—H2A···N1ii 0.82 1.92 2.7327 (19) 175
N6—H6···O3Aiii 0.86 2.09 2.904 (11) 157
N7—H7···O1A 0.86 2.04 2.616 (16) 124
N7—H7···N9iv 0.86 2.17 2.9271 (17) 146
C19—H19B···O3Av 0.97 2.54 3.481 (11) 164
C2—H2···Cg3vi 0.93 2.94 3.4611 (16) 117

Symmetry codes: (ii) x+1, y, z; (iii) x−1, y, z; (iv) −x+2, y+1/2, −z+1/2; (v) −x+2, −y+1, −z; (vi) x, y−1, z.

References

  1. Agilent (2013). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.
  2. Bučar, D. K., Henry, R. F., Lou, X., Borchardt, T. & Zhang, G. G. Z. (2007). Chem. Commun. pp. 525–527. [DOI] [PubMed]
  3. Byres, M., Cox, P. J., Kay, G. & Nixon, E. (2009). CrystEngComm, 11, 135–142.
  4. Das, B. & Baruah, J. B. (2011). J. Mol. Struct. 1001, 134–138.
  5. Goswami, S., Hazra, A. & Fun, H.-K. (2010). J. Incl Phenom. Macrocycl Chem. 68, 461–466.
  6. Karthikeyan, A., Jeeva Jasmine, N., Thomas Muthiah, P. & Perdih, F. (2016). Acta Cryst. E72, 140–143. [DOI] [PMC free article] [PubMed]
  7. Karthikeyan, A., Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2015). Acta Cryst. C71, 985–990. [DOI] [PubMed]
  8. Lemmerer, A., Bernstein, J. & Kahlenberg, V. (2012). Acta Cryst. E68, o190. [DOI] [PMC free article] [PubMed]
  9. Lin, S., Jia, R., Gao, F. & Zhou, X. (2012). Acta Cryst. E68, o3457. [DOI] [PMC free article] [PubMed]
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. Matulková, I., Císařová, I., Němec, I. & Fábry, J. (2014). Acta Cryst. C70, 927–933. [DOI] [PubMed]
  12. McHugh, C. & Erxleben, A. (2011). Cryst. Growth Des. 11, 5096–5104.
  13. Nirmalram, J. S., Tamilselvi, D. & Muthiah, P. T. (2011). J. Chem. Crystallogr. 41, 864–867.
  14. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  15. Raghunathan, S. & Pattabhi, V. (1981). Acta Cryst. B37, 1670–1673.
  16. Raghunathan, S., Sinha, B. K., Pattabhi, V. & Gabe, E. J. (1983). Acta Cryst. C39, 1545–1547.
  17. Roew, R., Sheskey, P. & Quinn, M. (2009). Adipic Acid, Handbook of Pharmaceutical Excipients, pp. 11–12.
  18. Safaei-Ghomi, J., Aghabozorg, H., Motyeian, E. & Ghadermazi, M. (2009). Acta Cryst. E65, m2–m3. [DOI] [PMC free article] [PubMed]
  19. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  20. Soriano-Garcia, M. & Parthasarathy, R. (1977). Acta Cryst. B33, 2674–2677.
  21. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  22. Srinivasa Gopalan, R., Kumaradhas, P. & Kulkarni, G. U. (1999). J. Solid State Chem. 148, 129–134.
  23. Srinivasa Gopalan, R., Kumaradhas, P., Kulkarni, G. U. & Rao, C. N. R. (2000). J. Mol. Struct. 521, 97–106.
  24. Stanley, N., Muthiah, P. T. & Geib, S. J. (2003). Acta Cryst. C59, o27–o29. [DOI] [PubMed]
  25. Tamilselvi, D. & Muthiah, P. T. (2011). Acta Cryst. C67, o192–o194. [DOI] [PubMed]
  26. Thanigaimani, K., Razak, I. A., Arshad, S., Jagatheesan, R. & Santhanaraj, K. J. (2012). Acta Cryst. E68, o2938–o2939. [DOI] [PMC free article] [PubMed]
  27. Umadevi, B., Stanley, N., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2001). Acta Cryst. E57, o881–o883.
  28. Xia, M., Ma, K. & Zhu, Y. (2010). J. Chem. Crystallogr. 40, 634–638.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016007581/hg5474sup1.cif

e-72-00805-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016007581/hg5474Isup2.hkl

e-72-00805-Isup2.hkl (265.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016007581/hg5474Isup3.cml

CCDC reference: 1478504

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES