Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 May 13;72(Pt 6):809–814. doi: 10.1107/S2056989016007775

12-(3,4,5-Tri­meth­oxy­phen­yl)-2,3,4,12-tetra­hydro-1H-5-oxa­tetra­phen-1-one: crystal structure and Hirshfeld surface analysis

Mukesh M Jotani a,*, P Iniyavan b, V Vijayakumar b, S Sarveswari b, Yee Seng Tan c, Edward R T Tiekink c,*
PMCID: PMC4908558  PMID: 27308048

The pyran and cyclo­hexene rings of the title compound adopt flattened-boat and envelope conformations, respectively. In the crystal, zigzag supra­molecular chains are formed via aryl-CHO(meth­oxy) inter­actions.

Keywords: crystal structure, xanthene, conformation, Hirshfeld surface

Abstract

In the title compound, C26H24O5, the pyran ring has a flattened-boat con­formation, with the 1,4-related ether O and methine C atoms lying 0.1205 (18) and 0.271 (2) Å, respectively, above the least-squares plane involving the doubly bonded C atoms (r.m.s deviation = 0.0208 Å). An envelope conformation is found for the cyclo­hexene ring, with the flap atom being the middle methyl­ene C atom, lying 0.616 (2) Å out of the plane defined by the remaining atoms (r.m.s. deviation = 0.0173 Å). The fused four-ring system is approximately planar, with the dihedral angle between the least-squares planes through the cyclo­hexene and naphthyl rings being 10.78 (7)°. The tris­ubstituted benzene ring occupies a position almost perpendicular to the pyran ring [dihedral angle = 83.97 (4)°]. The most prominent feature of the packing is the formation of zigzag supra­molecular chains mediated by aryl-C—H⋯O(meth­oxy) inter­actions; chains are connected into a three-dimensional architecture by methyl­ene- and methyl-C—H⋯π inter­actions. The prevalence of C—H⋯O and C—H⋯π inter­actions is confirmed by an analysis of the Hirshfeld surface. A comparison with related structures suggests that the mol­ecular conformation of the title compound is relatively robust with respect to varying substitution patterns at the methine C atom of the pyran ring.

Chemical context  

Xanthenes and benzoxanthenes are important bioactive compounds that possess a wide range of biological and thera­peutic properties, such as analgesic (Hafez et al., 2008), anti­viral and anti­bacterial and anti-inflammatory activities (Poupelin et al., 1978; Hideo & Teruomi, 1981; Asano et al., 1996; Matsumoto et al., 2005; Pinto et al., 2005; Woo et al., 2007; Pouli & Marakos, 2009). Some of these compounds have been used in photodynamic therapy (Ion, 1997). Further, due to their having desirable spectroscopic properties, some derivatives have been used as dyes in laser technologies (Menchen et al., 2003) and as pH-sensitive fluorescent materials for the visualization of biomolecules (Ahmad et al., 2002).

Various methods for the synthesis of tetra­hydro­benzo[a]xanthen-11-ones have been reported (Knight & Stephens, 1989). These usually involve a three-component condensation of dimedone with an aromatic aldehyde and 2-naphthol. However, each of these procedures has some drawbacks, such as harsh reaction conditions, tedious work-up and low yields. Hence, the microwave-assisted ionic liquid-mediated synthesis of xanthenes from cyclo­hexane-1,3-dione, 3,4,5-tri­meth­oxy­benzaldehyde and 2-naphthol was attempted. The use of an ionic liquid, i.e. [1-butyl-3-methyl­imid­azol­ium]­PF6, and microwave irradiation afforded the title compound in high yield within 12 min (Iniyavan et al., 2015). The title compound is a potent anti-oxidant (Iniyavan et al., 2015) and herein its crystal and mol­ecular structures are described, along with an analysis of its Hirshfeld surface in order to gain greater insight into the crystal packing, especially the role of weaker inter­actions.graphic file with name e-72-00809-scheme1.jpg

Structural commentary  

The central pyran ring in the title compound, (I), is flanked by both a cyclo­hexene ring and a naphthyl-fused ring system (Fig. 1). A tris­ubstituted benzene ring is connected to the aforementioned four-ring residue at the methine C7 atom. The pyran ring has a flattened boat conformation, with the 1,4-related O1 and C7 atoms lying 0.1205 (18) and 0.271 (2) Å to the same side of the plane (r.m.s. deviation of the fitted atoms = 0.0208 Å) defined by the C1=C6 [1.3431 (19) Å] and C8=C17 [1.3681 (19) Å] double bonds. To a first approximation, the cyclo­hexene ring has an envelope conformation, with the C3 (flap) atom lying 0.616 (2) Å above the plane defined by the remaining atoms (r.m.s. deviation = 0.0173 Å). The atoms comprising the four-ring system are approximately coplanar, as seen in the dihedral angle between the best plane through the cyclo­hexene ring and naphthyl residue of 10.78 (7)°. The benzene ring occupies a position almost perpendicular to the previous residue, forming a dihedral angle of 83.97 (4)° with the best plane through the pyran ring. In the benzene ring, two meth­oxy groups are coplanar with the ring to which they are connected [the C20′—O20—C20—C19 and C22′—O22—C22—C23 torsion angles are 4.98 (19) and 0.51 (19)°, respectively], while the central substituent is approximately perpendicular to the ring lying over the naphthyl residue, i.e. C21′—O21—C21—C22 is 76.08 (16)°. Presumably, this conformation is adopted to reduce steric hindrance.

Figure 1.

Figure 1

The mol­ecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Supra­molecular features  

In the mol­ecular packing of (I), supra­molecular chains along the a axis are formed through the agency of relatively strong aryl-C16—H16⋯O(meth­oxy) inter­actions (Table 1). Being generated by glide symmetry, the topology of the chain is zigzag (Fig. 2 a). The chains are connected into a three-dimensional architecture by a network of C—H⋯π(ar­yl) inter­actions (Table 1). The donor atoms are derived from methyl­ene and methyl groups, with the acceptor rings being each of the aromatic rings and with the outer benzene ring participating in two such contacts (Fig. 2 b).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the C8/C9/C14–C17, C18–C23 and C9–C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O20i 0.95 2.36 3.2604 (18) 159
C2—H2BCg1ii 0.99 2.92 3.8088 (16) 150
C4—H4BCg2iii 0.99 2.75 3.5605 (16) 140
C22′—H22BCg2iv 0.98 2.56 3.3918 (16) 143
C22′—H22CCg3iv 0.98 2.78 3.4332 (16) 125

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

The mol­ecular packing in (I): (a) a view of the supra­molecular chain along the a axis sustained by C—H⋯O inter­actions shown as orange dashed lines and (b) the unit-cell contents shown in projection down the a axis with the C—H⋯π(ar­yl) inter­actions shown as purple dashed lines.

Hirshfeld surface analysis  

With the aid of the program Crystal Explorer (Wolff et al., 2012), Hirshfeld surfaces mapped over d norm, d e, curvedness and electrostatic potential were generated. The electrostatic potential was calculated with TONTO (Spackman et al., 2008; Jayatilaka et al., 2005), integrated in Crystal Explorer, using the crystal structure as the starting geometry. The electrostatic potentials were mapped on the Hirshfeld surface using the STO-3G basis/Hartree–Fock level of theory over the range ±0.08 au. The contact distances d i and d e from the Hirshfeld surface to the nearest atom inside and outside, respectively, enables the analysis of the inter­molecular inter­actions through the mapping of d norm. The combination of d e and d i in the form of a two-dimensional fingerprint plot (McKinnon et al., 2004) provides a convenient summary of the inter­molecular contacts in the crystal.

The bright-red spots at the aryl H16 and meth­oxy O20 atoms, visible on the Hirshfeld surface mapped over d norm and labelled as ‘1’ in Fig. 3, represent the donor and acceptor atoms for the inter­molecular C—H⋯O inter­action, respectively. On the surface mapped over electrostatic potential (Fig. 4), these inter­actions appear as the respective blue and red regions. The views of surfaces mapped over d norm, d e, electrostatic potential and shape-index (Figs. 3–6 ) highlight the significant role of C—H⋯π inter­actions in the packing. In particular, the involvement of the meth­oxy C22′—H group in two C—H⋯π inter­actions with the symmetry-related aryl rings (Table 1) are evident from the two faint-red spots near these atoms on the d norm mapped surface, indicated with ‘2’ in Fig. 3.

Figure 3.

Figure 3

Two views of Hirshfeld surfaces mapped over d norm for (I). Labels ‘1’, ‘2’ and ‘3’ indicate specific inter­molecular inter­actions (see text).

Figure 4.

Figure 4

Two views of Hirshfeld surfaces mapped over electrostatic potential for (I). The red and blue regions represent negative and positive electrostatic potentials, respectively.

Figure 5.

Figure 5

Views of Hirshfeld surface mapped over d e for (I). The pale-orange spots within blue circles indicate the involvement of aryl ring atoms in C—H⋯π inter­actions.

Figure 6.

Figure 6

Views of Hirshfeld surface mapped with the shape-index property for (I). The bright-red spots identified with arrows indicate the C—H⋯π inter­actions, while the blue spots indicate complementary π⋯H—C inter­actions.

The corresponding regions on the Hirshfeld surface mapped over electrostatic potential (Fig. 4) appear as blue and light-red, respectively. The remaining C—H⋯π inter­actions, involving the methyl­ene H2B and H4B atoms as donors, and the C8/C9/C14–C17 and C18–C23 rings as π-acceptors, are also evident from Fig. 4, through the appearance of respective blue and light-red regions near these atoms. The network of these C—H⋯π inter­actions are also recognized through the pale-orange spots present on the Hirshfeld surfaces mapped over d e, highlighted within blue circles in Fig. 5, and as bright-red spots over the front side of shape-indexed surfaces identified with arrows in Fig. 6. The reciprocal of these C—H⋯π inter­actions, i.e. π⋯H—C, are also seen as blue spots on the shape-indexed surface in Fig. 6. The faint-red spots near the phenyl C23 atom on the surface mapped over d norm, labelled as ‘3’ in Fig. 3, indicate the presence of short interatomic C⋯H/H⋯C contacts in the crystal, Table 2.

Table 2. Additional short inter­atomic contacts (Å) for the title compound.

Inter­action Distance Symmetry operation
C23⋯H4B 2.86 x, 1 − y, −z
C23⋯H22B 2.72 Inline graphic + x, y, Inline graphic − z
C11⋯H2A 2.86 1 + x, y, z
C11⋯H22A 2.83 1 + x, y, z
O2⋯H3B 2.61 x, 1 − y, −z
C12⋯H22A 2.82 1 + x, y, z
C18⋯H22B 2.77 Inline graphic + x, y, Inline graphic − z
C22⋯H22B 2.86 Inline graphic + x, y, Inline graphic − z
C21′⋯H4A 2.82 Inline graphic − x, 1 − y, Inline graphic + z

The overall two-dimensional fingerprint plot (Fig. 7 a) and those delineated (McKinnon et al., 2007) into H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts are illustrated in Figs. 7(bd), respectively; their relative contributions are summarized in Table 3. The inter­atomic H⋯H contacts at distances greater than their van der Waals separation appear as scattered points in the greater part of the fingerprint plot (Fig. 7 b), and makes the most significant contribution to the overall Hirshfeld surface, i.e. 49.3%. In the fingerprint plot delineated into O⋯H/H⋯O contacts, a pair of short spikes at d e + d i ∼ 2.4 Å, and the cluster of blue points aligned in pairs with (d e + d i)min ∼ 2.7 Å, identified with labels ‘1’ and ‘2’, respectively, in Fig. 7(c), corresponds to a 21.2% contribution to the Hirshfeld surface. These features reflect the presence of aryl-C16—H16⋯O(meth­oxy) inter­actions, as well as the short inter­atomic O⋯H/H⋯O contacts between carboxyl O2 and methyl­ene H3B atoms (Table 2).

Figure 7.

Figure 7

Two-dimensional fingerprint plots calculated for (I): (a) overall plot, and those delineated into (b) H⋯H, (c) O⋯H/H⋯O and (d) C⋯H/H⋯C contacts.

Table 3. Percentage contribution of the different inter­molecular inter­actions to the Hirshfeld surface of (I) .

Contact Contribution
H⋯H 49.9
O⋯H/H⋯O 21.2
C⋯H/H⋯C 28.1
C⋯O/O⋯C 0.6
O⋯O 0.2
C⋯C 0.0

The fingerprint plot delineated into C⋯H/H⋯C contacts, with a 28.1% contribution to the Hirshfeld surface, shows the points in the plot arranged in the form of two pairs of arrow-like shapes with their tips at d e + d i = 2.70 and 2.85 Å, labelled as ‘1’ and ‘2’ in Fig. 7(d), respectively. These features reflect the presence of C—H⋯π inter­actions and short inter­atomic C⋯H/H⋯C contacts (Table 3) in the crystal. The absence of π–π stacking inter­actions is consistent with their being no contribution from C⋯C contacts to the Hirshfeld surface (Table 3).

The final analysis of the mol­ecular packing involves a relatively new descriptor, i.e. the enrichment ratio (ER) (Jelsch et al., 2014); data are collated in Table 4. The involvement of surface H atoms in C—H⋯π inter­actions and the presence of a number of inter­atomic C⋯H contacts (Table 3) yields an ER value for H⋯H contacts less than unity, i.e. 0.90. The presence of these inter­actions explains the enhanced ER value of 1.31 for C⋯H/H⋯C contacts, consistent with their high propensity to form in the mol­ecular packing of (I). The O atoms comprise only 11.1% of the surface but provide a 21.2% contribution from O⋯H/H⋯O contacts to the Hirshfeld surface. Reflecting this, the ER value is 1.28, which is in the expected 1.2–1.6 range. Other contacts, namely C⋯C, O⋯O and C⋯O/O⋯C, show no propensity to form as reflected in their low ER values (Table 4).

Table 4. Enrichment ratios (ER) for the title compound.

Inter­action ER
H⋯H 0.90
O⋯H/H⋯O 1.28
C⋯H/H⋯C 1.31
C⋯C 0.0
C⋯O/O⋯C 0.19
O⋯O 0.16

Database survey  

There are two structures in the crystallographic literature (Groom et al., 2016) featuring the methine-substituted 2,3,4,12-tetra­hydro-5-oxa­tetra­phen-1-one residue, as in (I). In the most closely related structure, (II) (Sethukumar et al., 2012), with a 2-chloro­benzene ring at the methine C7 atom, an essentially similar conformation is found, as emphasized in the overlay diagram shown in Fig. 8. Here, the dihedral angle between the best plane through the cyclo­hexene ring and naphthyl residue is 7.50 (6)°, i.e. marginally less folded than in (I) where the angle was 10.78 (7)°. The angle between the least-squares planes through the pyran and benzene rings is 89.71 (6)°. Despite having a bulky 2-hy­droxy-6-oxo­cyclo­hex-1-enyl residue at the methine C7 atom, rather than an aryl ring, the conformation in (III) (Akkurt et al., 2013) bears a close resemblance to those of (I) and (II). Thus, in (III), the cyclo­hexene/naphthyl dihedral angle is 16.26 (5)°, indicating a non-folded four-ring residue, and the pyran/cyclohexenyl dihedral angle is 85.57 (6)°. Clearly, the non-folded conformation of the 2,3,4,12-tetra­hydro-5-oxa­tetra­phen-1-one core and its orthogonal relationship to the methine C7-bound substituent in (I)–(III) is to a first robust.

Figure 8.

Figure 8

Overlap diagram of the title compound, (I) (red image), with literature precedents (II) (green) and (III) (blue). The mol­ecules have been overlapped so that the C1, C6 and C8 atoms are coincident.

Synthesis and crystallization  

The title compound was prepared and characterized spectroscopically as per the literature (Iniyavan et al., 2015). Crystals for the X-ray study were obtained after 2 d of slow evaporation of a chloro­form solution of (I) held at room temperature.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 5. Carbon-bound H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and were included in the refinement in the riding model approximation, with U iso(H) set at 1.2–1.5U eq(C).

Table 5. Experimental details.

Crystal data
Chemical formula C26H24O5
M r 416.45
Crystal system, space group Orthorhombic, P b c a
Temperature (K) 100
a, b, c (Å) 9.2164 (5), 20.3760 (9), 21.8731 (9)
V3) 4107.6 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.25 × 0.20 × 0.20
 
Data collection
Diffractometer Agilent Technologies SuperNova Dual diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014)
T min, T max 0.855, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23597, 4664, 3991
R int 0.034
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.100, 1.04
No. of reflections 4664
No. of parameters 283
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.22

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016007775/hb7584sup1.cif

e-72-00809-sup1.cif (776.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016007775/hb7584Isup2.hkl

e-72-00809-Isup2.hkl (371.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016007775/hb7584Isup3.cml

CCDC reference: 1479203

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

VIT University is thanked for providing facilities.

supplementary crystallographic information

Crystal data

C26H24O5 Dx = 1.347 Mg m3
Mr = 416.45 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 7968 reflections
a = 9.2164 (5) Å θ = 3.5–29.3°
b = 20.3760 (9) Å µ = 0.09 mm1
c = 21.8731 (9) Å T = 100 K
V = 4107.6 (3) Å3 Prism, colourless
Z = 8 0.25 × 0.20 × 0.20 mm
F(000) = 1760

Data collection

Agilent Technologies SuperNova Dual diffractometer with an Atlas detector 4664 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 3991 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.034
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 2.9°
ω scan h = −9→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) k = −26→24
Tmin = 0.855, Tmax = 1.000 l = −28→25
23597 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0327P)2 + 3.0207P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
4664 reflections Δρmax = 0.34 e Å3
283 parameters Δρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.13499 (11) 0.29394 (5) 0.08369 (4) 0.0202 (2)
O2 0.21599 (12) 0.47795 (5) −0.04262 (5) 0.0249 (2)
O20 0.43308 (11) 0.62718 (5) 0.14235 (4) 0.0215 (2)
O21 0.24076 (11) 0.61119 (5) 0.23202 (4) 0.0204 (2)
O22 0.09183 (11) 0.49986 (5) 0.24461 (4) 0.0202 (2)
C1 0.10078 (15) 0.33649 (7) 0.03771 (6) 0.0181 (3)
C2 −0.03608 (16) 0.31688 (7) 0.00588 (7) 0.0223 (3)
H2A −0.1058 0.2993 0.0362 0.027*
H2B −0.0146 0.2817 −0.0240 0.027*
C3 −0.10412 (16) 0.37501 (7) −0.02719 (7) 0.0236 (3)
H3A −0.1826 0.3593 −0.0544 0.028*
H3B −0.1473 0.4054 0.0031 0.028*
C4 0.00918 (17) 0.41132 (8) −0.06483 (6) 0.0249 (3)
H4A 0.0396 0.3831 −0.0994 0.030*
H4B −0.0354 0.4514 −0.0822 0.030*
C5 0.14184 (16) 0.43053 (7) −0.02839 (6) 0.0188 (3)
C6 0.18328 (15) 0.38862 (6) 0.02343 (6) 0.0172 (3)
C7 0.31954 (15) 0.40554 (6) 0.05870 (6) 0.0159 (3)
H7 0.3968 0.4186 0.0290 0.019*
C8 0.37084 (15) 0.34558 (6) 0.09372 (6) 0.0163 (3)
C9 0.51546 (15) 0.34033 (6) 0.11767 (6) 0.0179 (3)
C10 0.62592 (16) 0.38608 (7) 0.10377 (6) 0.0215 (3)
H10 0.6052 0.4217 0.0772 0.026*
C11 0.76293 (17) 0.37994 (8) 0.12805 (7) 0.0261 (3)
H11 0.8356 0.4111 0.1179 0.031*
C12 0.79633 (17) 0.32772 (8) 0.16789 (7) 0.0280 (3)
H12 0.8914 0.3236 0.1842 0.034*
C13 0.69162 (18) 0.28293 (7) 0.18297 (7) 0.0267 (3)
H13 0.7142 0.2483 0.2104 0.032*
C14 0.55010 (16) 0.28747 (7) 0.15820 (6) 0.0207 (3)
C15 0.44087 (16) 0.24150 (7) 0.17401 (7) 0.0225 (3)
H15 0.4618 0.2079 0.2028 0.027*
C16 0.30631 (16) 0.24481 (7) 0.14842 (6) 0.0196 (3)
H16 0.2349 0.2127 0.1578 0.024*
C17 0.27480 (15) 0.29668 (7) 0.10782 (6) 0.0175 (3)
C18 0.29511 (14) 0.46231 (6) 0.10361 (6) 0.0153 (3)
C19 0.37542 (15) 0.51971 (6) 0.09866 (6) 0.0168 (3)
H19 0.4417 0.5253 0.0658 0.020*
C20 0.35832 (15) 0.56922 (6) 0.14226 (6) 0.0168 (3)
C20' 0.52664 (17) 0.63990 (7) 0.09194 (7) 0.0244 (3)
H20A 0.6011 0.6056 0.0897 0.037*
H20B 0.5732 0.6827 0.0974 0.037*
H20C 0.4700 0.6401 0.0540 0.037*
C21 0.26077 (15) 0.56129 (6) 0.19031 (6) 0.0166 (3)
C21' 0.30768 (18) 0.59803 (7) 0.29015 (6) 0.0255 (3)
H21A 0.2686 0.5571 0.3070 0.038*
H21B 0.2872 0.6342 0.3183 0.038*
H21C 0.4128 0.5938 0.2847 0.038*
C22 0.18044 (15) 0.50332 (6) 0.19494 (6) 0.0162 (3)
C22' 0.01074 (17) 0.44121 (7) 0.25262 (7) 0.0225 (3)
H22A −0.0589 0.4366 0.2190 0.034*
H22B −0.0416 0.4431 0.2916 0.034*
H22C 0.0768 0.4035 0.2528 0.034*
C23 0.19668 (15) 0.45412 (6) 0.15136 (6) 0.0165 (3)
H23 0.1408 0.4151 0.1542 0.020*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0199 (5) 0.0172 (5) 0.0234 (5) −0.0026 (4) −0.0031 (4) 0.0040 (4)
O2 0.0296 (6) 0.0215 (5) 0.0237 (5) −0.0001 (4) 0.0005 (4) 0.0052 (4)
O20 0.0258 (6) 0.0131 (4) 0.0255 (5) −0.0026 (4) 0.0055 (4) −0.0010 (4)
O21 0.0282 (6) 0.0143 (5) 0.0187 (5) 0.0031 (4) 0.0013 (4) −0.0022 (4)
O22 0.0232 (5) 0.0180 (5) 0.0196 (5) −0.0009 (4) 0.0058 (4) −0.0012 (4)
C1 0.0210 (7) 0.0167 (6) 0.0167 (6) 0.0021 (5) −0.0013 (5) −0.0011 (5)
C2 0.0225 (7) 0.0202 (7) 0.0242 (7) −0.0009 (6) −0.0043 (6) −0.0004 (5)
C3 0.0222 (7) 0.0250 (7) 0.0237 (7) 0.0020 (6) −0.0055 (6) 0.0003 (6)
C4 0.0287 (8) 0.0276 (7) 0.0183 (7) 0.0026 (6) −0.0047 (6) 0.0022 (6)
C5 0.0223 (7) 0.0190 (6) 0.0151 (6) 0.0042 (5) 0.0019 (5) −0.0009 (5)
C6 0.0205 (7) 0.0168 (6) 0.0142 (6) 0.0023 (5) 0.0006 (5) −0.0013 (5)
C7 0.0183 (7) 0.0141 (6) 0.0153 (6) −0.0003 (5) 0.0004 (5) 0.0005 (5)
C8 0.0202 (7) 0.0147 (6) 0.0140 (6) 0.0015 (5) 0.0010 (5) −0.0016 (5)
C9 0.0206 (7) 0.0157 (6) 0.0173 (6) 0.0015 (5) 0.0001 (5) −0.0032 (5)
C10 0.0224 (7) 0.0203 (7) 0.0219 (7) 0.0005 (6) 0.0015 (6) 0.0008 (5)
C11 0.0244 (8) 0.0258 (7) 0.0282 (7) −0.0028 (6) −0.0001 (6) −0.0013 (6)
C12 0.0233 (8) 0.0271 (8) 0.0335 (8) 0.0015 (6) −0.0082 (7) −0.0032 (6)
C13 0.0316 (8) 0.0188 (7) 0.0295 (8) 0.0028 (6) −0.0068 (7) −0.0012 (6)
C14 0.0249 (7) 0.0158 (6) 0.0214 (6) 0.0016 (5) −0.0035 (6) −0.0026 (5)
C15 0.0279 (8) 0.0167 (6) 0.0229 (7) 0.0027 (6) −0.0017 (6) 0.0029 (5)
C16 0.0242 (7) 0.0147 (6) 0.0199 (6) −0.0021 (5) 0.0008 (6) 0.0001 (5)
C17 0.0193 (7) 0.0161 (6) 0.0170 (6) 0.0013 (5) −0.0012 (5) −0.0019 (5)
C18 0.0174 (6) 0.0143 (6) 0.0142 (6) 0.0023 (5) −0.0035 (5) 0.0007 (5)
C19 0.0183 (7) 0.0161 (6) 0.0159 (6) 0.0012 (5) 0.0007 (5) 0.0024 (5)
C20 0.0182 (7) 0.0120 (6) 0.0202 (6) 0.0001 (5) −0.0018 (5) 0.0027 (5)
C20' 0.0243 (8) 0.0181 (7) 0.0308 (8) −0.0026 (6) 0.0075 (6) 0.0012 (6)
C21 0.0200 (7) 0.0135 (6) 0.0163 (6) 0.0031 (5) −0.0021 (5) −0.0008 (5)
C21' 0.0353 (9) 0.0205 (7) 0.0206 (7) 0.0008 (6) −0.0035 (6) −0.0049 (6)
C22 0.0160 (6) 0.0175 (6) 0.0151 (6) 0.0026 (5) −0.0006 (5) 0.0028 (5)
C22' 0.0231 (7) 0.0207 (7) 0.0238 (7) −0.0019 (6) 0.0068 (6) 0.0018 (6)
C23 0.0172 (7) 0.0152 (6) 0.0172 (6) −0.0003 (5) −0.0019 (5) 0.0020 (5)

Geometric parameters (Å, º)

O1—C1 1.3647 (16) C10—H10 0.9500
O1—C17 1.3936 (17) C11—C12 1.409 (2)
O2—C5 1.2237 (17) C11—H11 0.9500
O20—C20 1.3671 (16) C12—C13 1.369 (2)
O20—C20' 1.4235 (17) C12—H12 0.9500
O21—C21 1.3784 (15) C13—C14 1.415 (2)
O21—C21' 1.4384 (17) C13—H13 0.9500
O22—C22 1.3610 (16) C14—C15 1.418 (2)
O22—C22' 1.4204 (16) C15—C16 1.362 (2)
C1—C6 1.3431 (19) C15—H15 0.9500
C1—C2 1.495 (2) C16—C17 1.4105 (19)
C2—C3 1.523 (2) C16—H16 0.9500
C2—H2A 0.9900 C18—C19 1.3884 (18)
C2—H2B 0.9900 C18—C23 1.3934 (19)
C3—C4 1.522 (2) C19—C20 1.3972 (18)
C3—H3A 0.9900 C19—H19 0.9500
C3—H3B 0.9900 C20—C21 1.3926 (19)
C4—C5 1.511 (2) C20'—H20A 0.9800
C4—H4A 0.9900 C20'—H20B 0.9800
C4—H4B 0.9900 C20'—H20C 0.9800
C5—C6 1.4698 (18) C21—C22 1.3978 (19)
C6—C7 1.5136 (19) C21'—H21A 0.9800
C7—C8 1.5174 (18) C21'—H21B 0.9800
C7—C18 1.5342 (17) C21'—H21C 0.9800
C7—H7 1.0000 C22—C23 1.3913 (18)
C8—C17 1.3681 (19) C22'—H22A 0.9800
C8—C9 1.4361 (19) C22'—H22B 0.9800
C9—C10 1.413 (2) C22'—H22C 0.9800
C9—C14 1.4311 (19) C23—H23 0.9500
C10—C11 1.376 (2)
C1—O1—C17 117.86 (11) C12—C13—C14 120.92 (14)
C20—O20—C20' 117.48 (11) C12—C13—H13 119.5
C21—O21—C21' 112.96 (10) C14—C13—H13 119.5
C22—O22—C22' 117.24 (11) C13—C14—C15 121.18 (13)
C6—C1—O1 122.89 (13) C13—C14—C9 119.47 (13)
C6—C1—C2 125.50 (13) C15—C14—C9 119.34 (13)
O1—C1—C2 111.61 (12) C16—C15—C14 120.89 (13)
C1—C2—C3 111.14 (12) C16—C15—H15 119.6
C1—C2—H2A 109.4 C14—C15—H15 119.6
C3—C2—H2A 109.4 C15—C16—C17 118.90 (13)
C1—C2—H2B 109.4 C15—C16—H16 120.6
C3—C2—H2B 109.4 C17—C16—H16 120.6
H2A—C2—H2B 108.0 C8—C17—O1 122.82 (12)
C4—C3—C2 110.64 (13) C8—C17—C16 123.67 (13)
C4—C3—H3A 109.5 O1—C17—C16 113.51 (12)
C2—C3—H3A 109.5 C19—C18—C23 120.43 (12)
C4—C3—H3B 109.5 C19—C18—C7 120.46 (12)
C2—C3—H3B 109.5 C23—C18—C7 119.03 (12)
H3A—C3—H3B 108.1 C18—C19—C20 119.66 (12)
C5—C4—C3 113.31 (12) C18—C19—H19 120.2
C5—C4—H4A 108.9 C20—C19—H19 120.2
C3—C4—H4A 108.9 O20—C20—C21 115.12 (12)
C5—C4—H4B 108.9 O20—C20—C19 124.60 (12)
C3—C4—H4B 108.9 C21—C20—C19 120.28 (12)
H4A—C4—H4B 107.7 O20—C20'—H20A 109.5
O2—C5—C6 120.65 (13) O20—C20'—H20B 109.5
O2—C5—C4 121.49 (12) H20A—C20'—H20B 109.5
C6—C5—C4 117.81 (12) O20—C20'—H20C 109.5
C1—C6—C5 119.46 (13) H20A—C20'—H20C 109.5
C1—C6—C7 122.09 (12) H20B—C20'—H20C 109.5
C5—C6—C7 118.45 (12) O21—C21—C20 120.02 (12)
C6—C7—C8 109.41 (11) O21—C21—C22 120.31 (12)
C6—C7—C18 112.10 (11) C20—C21—C22 119.65 (12)
C8—C7—C18 109.24 (10) O21—C21'—H21A 109.5
C6—C7—H7 108.7 O21—C21'—H21B 109.5
C8—C7—H7 108.7 H21A—C21'—H21B 109.5
C18—C7—H7 108.7 O21—C21'—H21C 109.5
C17—C8—C9 117.65 (12) H21A—C21'—H21C 109.5
C17—C8—C7 119.91 (12) H21B—C21'—H21C 109.5
C9—C8—C7 122.23 (12) O22—C22—C23 125.04 (12)
C10—C9—C14 117.97 (13) O22—C22—C21 114.79 (12)
C10—C9—C8 122.74 (12) C23—C22—C21 120.15 (12)
C14—C9—C8 119.28 (13) O22—C22'—H22A 109.5
C11—C10—C9 121.20 (13) O22—C22'—H22B 109.5
C11—C10—H10 119.4 H22A—C22'—H22B 109.5
C9—C10—H10 119.4 O22—C22'—H22C 109.5
C10—C11—C12 120.53 (14) H22A—C22'—H22C 109.5
C10—C11—H11 119.7 H22B—C22'—H22C 109.5
C12—C11—H11 119.7 C22—C23—C18 119.82 (12)
C13—C12—C11 119.90 (14) C22—C23—H23 120.1
C13—C12—H12 120.1 C18—C23—H23 120.1
C11—C12—H12 120.1
C17—O1—C1—C6 −13.87 (19) C8—C9—C14—C15 −0.18 (19)
C17—O1—C1—C2 165.29 (11) C13—C14—C15—C16 −177.73 (13)
C6—C1—C2—C3 −22.4 (2) C9—C14—C15—C16 3.8 (2)
O1—C1—C2—C3 158.43 (12) C14—C15—C16—C17 −2.9 (2)
C1—C2—C3—C4 48.01 (16) C9—C8—C17—O1 −175.23 (11)
C2—C3—C4—C5 −52.63 (16) C7—C8—C17—O1 10.04 (19)
C3—C4—C5—O2 −153.03 (13) C9—C8—C17—C16 5.5 (2)
C3—C4—C5—C6 29.63 (18) C7—C8—C17—C16 −169.20 (12)
O1—C1—C6—C5 177.52 (12) C1—O1—C17—C8 9.55 (18)
C2—C1—C6—C5 −1.5 (2) C1—O1—C17—C16 −171.14 (11)
O1—C1—C6—C7 −1.8 (2) C15—C16—C17—C8 −2.0 (2)
C2—C1—C6—C7 179.13 (13) C15—C16—C17—O1 178.70 (12)
O2—C5—C6—C1 −179.34 (13) C6—C7—C18—C19 −120.36 (13)
C4—C5—C6—C1 −1.98 (19) C8—C7—C18—C19 118.19 (13)
O2—C5—C6—C7 0.03 (19) C6—C7—C18—C23 62.98 (15)
C4—C5—C6—C7 177.40 (12) C8—C7—C18—C23 −58.47 (16)
C1—C6—C7—C8 19.27 (17) C23—C18—C19—C20 0.7 (2)
C5—C6—C7—C8 −160.10 (11) C7—C18—C19—C20 −175.94 (12)
C1—C6—C7—C18 −102.08 (15) C20'—O20—C20—C21 −175.65 (12)
C5—C6—C7—C18 78.55 (14) C20'—O20—C20—C19 4.98 (19)
C6—C7—C8—C17 −22.82 (16) C18—C19—C20—O20 179.03 (12)
C18—C7—C8—C17 100.24 (14) C18—C19—C20—C21 −0.3 (2)
C6—C7—C8—C9 162.70 (12) C21'—O21—C21—C20 −105.78 (14)
C18—C7—C8—C9 −74.24 (15) C21'—O21—C21—C22 76.08 (16)
C17—C8—C9—C10 176.82 (13) O20—C20—C21—O21 2.79 (18)
C7—C8—C9—C10 −8.6 (2) C19—C20—C21—O21 −177.81 (12)
C17—C8—C9—C14 −4.30 (18) O20—C20—C21—C22 −179.06 (12)
C7—C8—C9—C14 170.30 (12) C19—C20—C21—C22 0.3 (2)
C14—C9—C10—C11 0.4 (2) C22'—O22—C22—C23 0.51 (19)
C8—C9—C10—C11 179.30 (13) C22'—O22—C22—C21 −178.19 (12)
C9—C10—C11—C12 −0.4 (2) O21—C21—C22—O22 −3.82 (18)
C10—C11—C12—C13 −0.4 (2) C20—C21—C22—O22 178.04 (12)
C11—C12—C13—C14 1.2 (2) O21—C21—C22—C23 177.42 (12)
C12—C13—C14—C15 −179.52 (14) C20—C21—C22—C23 −0.7 (2)
C12—C13—C14—C9 −1.1 (2) O22—C22—C23—C18 −177.55 (12)
C10—C9—C14—C13 0.3 (2) C21—C22—C23—C18 1.1 (2)
C8—C9—C14—C13 −178.63 (13) C19—C18—C23—C22 −1.1 (2)
C10—C9—C14—C15 178.75 (13) C7—C18—C23—C22 175.60 (12)

Hydrogen-bond geometry (Å, º)

Cg1, Cg2 and Cg3 are the centroids of the C8/C9/C14–C17, C18–C23 and C9–C14 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C16—H16···O20i 0.95 2.36 3.2604 (18) 159
C2—H2B···Cg1ii 0.99 2.92 3.8088 (16) 150
C4—H4B···Cg2iii 0.99 2.75 3.5605 (16) 140
C22′—H22B···Cg2iv 0.98 2.56 3.3918 (16) 143
C22′—H22C···Cg3iv 0.98 2.78 3.4332 (16) 125

Symmetry codes: (i) −x+1/2, y−1/2, z; (ii) x−1/2, −y+1/2, −z; (iii) −x, −y+1, −z; (iv) x−3/2, y, −z−1/2.

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
  2. Ahmad, M., King, T. A., Ko, D.-K., Cha, B. H. & Lee, J. J. (2002). J. Phys. D Appl. Phys. 35, 1473–1476.
  3. Akkurt, M., Mohamed, S. K., Kennedy, A. R., Abdelhamid, A. A., Miller, G. J. & Albayati, M. R. (2013). Acta Cryst. E69, o1558–o1559. [DOI] [PMC free article] [PubMed]
  4. Asano, J., Chiba, K., Tada, M. & Yoshii, T. (1996). Phytochemistry, 41, 815–820. [DOI] [PubMed]
  5. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559. [DOI] [PubMed]
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Hafez, H. N., Hegab, M. I., Ahmed-Farag, I. S. & El-Gazzar, A. B. A. (2008). Bioorg. Med. Chem. Lett. 18, 4538–4543. [DOI] [PubMed]
  10. Hideo, T. & Teruomi, J. (1981). Jpn Patent 56005480.
  11. Iniyavan, P., Sarveswari, S. & Vijayakumar, V. (2015). Res. Chem. Intermed. 41, 7413–7426.
  12. Ion, R. M. (1997). Prog. Catal 2, 55–76.
  13. Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylo, C., Wolff, S. K., Chenai, C. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
  14. Jelsch, C., Ejsmont, K. & Huder, L. (2014). IUCrJ, 1, 119–128. [DOI] [PMC free article] [PubMed]
  15. Knight, C. G. & Stephens, T. (1989). Biochem. J. 258, 683–687. [DOI] [PMC free article] [PubMed]
  16. Matsumoto, K., Akao, Y., Ohguchi, K., Ito, T., Tanaka, T., Iinuma, M. & Nozawa, Y. (2005). Bioorg. Med. Chem. 13, 6064–6069. [DOI] [PubMed]
  17. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  18. McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. [DOI] [PubMed]
  19. Menchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. (2003). US Patent 6583168.
  20. Pinto, M. M., Sousa, M. E. & Nascimento, M. S. (2005). Curr. Med. Chem. 12, 2517–2538. [DOI] [PubMed]
  21. Pouli, N. & Marakos, P. (2009). Anticancer Agents Med. Chem. 9, 77–98. [DOI] [PubMed]
  22. Poupelin, J. P., Saintruf, G., Foussardblanpin, O., Narcisse, G., Uchidaernouf, G. & Lacroix, R. (1978). Eur. J. Med. Chem. 13, 67–71.
  23. Sethukumar, A., Vidhya, V., Kumar, C. U. & Prakasam, B. A. (2012). J. Mol. Struct. 1008, 8–16.
  24. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  25. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  26. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  27. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  28. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.
  29. Woo, S., Jung, J., Lee, C., Kwon, Y. & Na, Y. (2007). Bioorg. Med. Chem. Lett. 17, 1163–1166. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016007775/hb7584sup1.cif

e-72-00809-sup1.cif (776.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016007775/hb7584Isup2.hkl

e-72-00809-Isup2.hkl (371.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016007775/hb7584Isup3.cml

CCDC reference: 1479203

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES