Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 May 4;72(Pt 6):780–784. doi: 10.1107/S2056989016006861

Crystal structure of the inverse crown ether tetra­kis­[μ2-bis­(tri­methyl­sil­yl)amido]-μ4-oxido-dicobalt(II)disodium, [Co2Na22-N(SiMe3)2}4](μ4-O)

Christopher B Hansen a,*, Alexander S Filatov a, Gregory L Hillhouse a,
PMCID: PMC4908559  PMID: 27308041

The first cobalt-containing inverse crown ether, [Co2Na22-N(SiMe3)2}4](μ4-O), features a central μ4-oxido ligand. Weak inter­molecular Na⋯H3C—Si inter­actions form an infinite chain extending along [010] in the crystal.

Keywords: crystal structure, μ4-oxido ligand, cobalt, inverse crown ether

Abstract

The title compound, [Co2Na22-N(SiMe3)2}4](μ4-O), (I), represents a new entry in the class of inverse crown ethers. In the mol­ecule, each Co atom is formally in the oxidation state +II. The structure contains one half of a unique mol­ecule per asymmetric unit with the central μ4-oxido ligand residing on an inversion center, leading to a planar coordination to the Na and Co atoms. In the crystal, bulky tri­methyl­silyl substituents prevent additional inter­actions with cobalt. However, weak inter­molecular Na⋯H3C—Si inter­actions form an infinite chain along [010]. The structure is isotypic with its Mg, Mn and Zn analogues.

Chemical context  

Compounds that feature oxido-bridged cobalt clusters have been of great inter­est in recent years as active homogeneous (Blakemore et al., 2015) and heterogeneous (Kärkäs et al., 2014) oxygen-evolution catalysts. Bridging cobalt-oxido species also find applications in magnetic materials (Heering et al., 2013) and in hydro­carbon oxidation (Sumner & Steinmetz, 1985). In the course of studies of compounds with low-coordinate cobalt atoms (Hansen et al., 2015), we have isolated and structurally characterized a cobalt-containing tetra­nuclear compound featuring a central μ4-bridging oxido ligand, [Co2Na22-N(SiMe3)2)4](μ4-O) (I). Compound (I) fits into the larger class of ‘inverse crown ethers’ illustrated in Fig. 1 (Mulvey, 2006).graphic file with name e-72-00780-scheme1.jpg

Figure 1.

Figure 1

Schematic representation of inverse crown ethers that have previously been structurally characterized.

Compound (I) is the first cobalt-based inverse crown ether. The majority of examples contain magnesium or zinc as M′, though manganese (Kennedy et al., 2008; Mulvey et al., 2010), aluminum (Wu et al., 2010), and ytterbium (Lu et al., 2010) complexes have been reported as well.

Structural commentary  

Crystals of (I) suitable for X-ray diffraction were obtained as reaction by-products via crystallization from toluene at 238 K. Attempts at a rational synthesis were not successful. The mol­ecular structure of compound (I) is shown in Fig. 2 a and relevant bond lengths and angles are presented in Table 1. The asymmetric unit contains half of a unique mol­ecule comprised of an oxygen atom located on an inversion center, one cobalt atom, one sodium atom, and two –N(SiMe3)2 ligands with the remainder of the mol­ecule being completed by application of inversion symmetry. Consequently, all opposing M—O—M angles (M = Co, Na) are crystallographically imposed to 180°. The four bridging nitro­gen atoms lie slightly out of plane from the four metal atoms, exhibiting a dihedral angle of 8.1 (2)° between their respective planes as shown in Fig. 2 b.

Figure 2.

Figure 2

(a) The mol­ecular structure of (I), showing displacement ellipsoids at the 50% probability level. (b) An alternate view of (I) down the Na—O—Na axis displaying ring offsets. H and C atoms were truncated for clarity. [Symmetry code: (i) −x + 1, −y + 1, −z + 1.]

Table 1. Selected geometric parameters (Å, °).

Co1—O1 1.8398 (9) Na1—O1 2.314 (2)
Co1—N1 1.977 (4) Na1—N1 2.579 (4)
Co1—N2 1.980 (4) Na1—N2i 2.523 (4)
       
N1—Co1—N2 141.35 (17) Co1—O1—Co1i 180.0
N2i—Na1—N1 155.82 (15) Na1—O1—Na1i 180.00 (3)

Symmetry code: (i) Inline graphic.

The majority of cobalt-bridging oxido compounds possess bent angles, so the μ4-oxido ligand in (I) is unusual in that it coordinates linearly to the opposing metal atoms. With a central oxido ligand, by charge balance each cobalt atom has formally an oxidation state of +II. While the paramagnetic nature of (I) prevents confirmation by NMR studies, it is unlikely that the central O atom is actually a hydroxido ligand. The structurally related anionic compound [Na42-N(SiMe3)2)44-OH)], which bears a central μ4-OH ligand, is noticeably pyramidalized, possessing Na—O—Na angles of 140.1 (2) and 142.4 (2)° (Clark et al., 2009). Additionally, the Co1—O1 bond length of 1.8398 (9) Å in (I) is significantly shorter than those of other structurally characterized complexes of CoII bearing approximately linear bridging hydroxido ligands, which display bond lengths ranging from 1.975 (2) to 2.3766 (6) Å (Li et al., 2014; Reger et al., 2014; Wendelstorf & Krämer, 1997).

The structure of compound (I) is isotypic with magnesium-, manganese-, and zinc-containing analogues of the general formula [M2Na22-N(SiMe3)2)4](μ4-O), all of which contain planar linear bridging oxido ligands. Among the four compounds, (I) has comparatively short bonds. For instance, (I) displays the shortest M′—O [1.8398 (9) Å in (I) versus 1.8575 (4), 1.9272 (2), 1.8733 (9) Å in magnesium, manganese, zinc representatives, respectively] and shortest M′—N, [1.977 (4) and 1.980 (4) Å in (I) versus 2.054 (1) and 2.049 (1) Å (magnesium), 2.0909 (12) and 2.0884 (12) Å (manganese), and 1.986 (2) and 1.983 (2) Å (zinc)] bond lengths. The short bond lengths and acute bond angles may enhance the torsion of the metal plane from the nitro­gen plane.

Supra­molecular features  

In the solid state, the steric bulk of the tri­methyl­silyl­amide ligands prevents further inter­molecular inter­actions of either the cobalt atoms or the oxido ligand, as can be observed in the space filling model of (I) presented in Fig. 3 a. Some weak inter­actions can be noted for sodium, however, which is consistent with the open site around sodium visible in Fig. 3 b. The sodium atoms and one –Si—CH3 group from each mol­ecule coordinate to a neighboring –Si—CH3 group and sodium atom, respectively, forming an infinite chain extending along [010], as illustrated in Fig. 4. The two close Na⋯H contact distances of 2.961 and 2.886 Å fall within the range of previously structurally characterized literature examples of various mol­ecules containing sodium bis­(tri­methyl­sil­yl)amide moieties (2.55–3.0 Å). For selected examples, see: Driess et al. (1997); Sarazin et al. (2006); Kennedy et al. (2008). This type of inter­molecular inter­action has been previously noted in the solid state for related potassium-based inverse crown ethers bearing bridging peroxido ligands (Kennedy et al., 1999), and in related sodium-containing precursors (Kennedy et al., 2008).

Figure 3.

Figure 3

(a) Top view of a space-filling model of (I), showing the sterically shielded CoII atoms. (b) Side-on view, displaying the open pocket around sodium that allows for weak inter­actions. [Color scheme: cobalt (green), sodium (violet), silicon (yellow), oxygen (red), carbon (gray), hydrogen (white)].

Figure 4.

Figure 4

Packing diagram of (I), showing Na⋯H contacts forming an infinite chain that extends along [010]. (Symmetry code: −x + 1, −y + 1, −z + 1.)

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.37, last update Nov. 2015; Groom et al., 2016) reveals that structurally characterized oxido-centered inverse crown ethers are rare. The first examples were prepared from magnesium [CSD refcodes: EJEKEJ (Kennedy et al., 2003); SUJQOD, SUJQUJ (Kennedy et al., 1998)]. Further examples focused on zinc [CSD refcode: WOQTIF (Forbes et al., 2000)], manganese [CSD refcodes: CIVRAB, CIVRIJ (Kennedy et al., 2008); WUVROV (Mulvey et al., 2010)], aluminum [CSD refcode: BABMEY (Wu et al., 2010)] and ytterbium [CSD refcodes: IMIBUC, IMICUJ (Lu et al., 2010)] complexes.

Synthesis and crystallization  

Compound (I) was obtained as single crystals on multiple occasions as a side product of two different reactions; however, attempts at a rational synthesis were not successful. These reactions used conditions and reagents that were nominally free of oxygen and water. Nonetheless, trace oxygen or water are the likely sources of the bridging oxido ligand. Adventitious water (Lu et al., 2010) and oxygen (Kennedy et al., 2008) have both been shown to be potential oxygen-atom sources, and have been previously utilized to generate this type of structure. Additionally, fragmentation of tetra­hydro­furan has also been identified as a potential oxygen-atom source in one case (Mulvey et al., 2010).

Method 1: In a glovebox [(IPr)CoCl2]2 (Matsubara et al., 2012; Przyojski et al., 2013) [IPr = 1,3-di(2,6-diiso­propyl­phen­yl)imidazolin-2-yl­idene] (50 mg, 0.048 mmol, 1 equiv.) was dissolved in 3 ml toluene and cooled to 238 K. A 238 K solution of NaN(SiMe3)2 (Sigma–Aldrich, titrated to 0.844M in THF) (22.9 µL, 0.193 mmol, 4 equiv.) was added dropwise to the solution of [(IPr)CoCl2]2 with stirring. The reaction mixture rapidly changed color from blue to turquoise to green and became turbid. The solution was allowed to warm to ambient temperature and stirred for 1 h. The reaction was filtered through Celite and the filtrate reduced to dryness under vacuum. The resulting green solid was dissolved in a minimal volume of toluene, passed through a Pasteur pipette filter, and stored at 238 K for several days. The resulting precipitate primarily consisted of thin green plates of (IPr)CoCl(N(SiMe3)2) (Hansen et al., 2015), occasionally accompanied by a small number of dark green–blue blocks of (I).

Method 2: While attempting to prepare a compound of the type Na[Co(N(SiMe3)2)3], (I) was occasionally observed as a minor by-product during recrystallization attempts. In a typical reaction anhydrous CoCl2 (100 mg, 0.77 mmol, 1 equiv.) was suspended in 2 ml THF and cooled to 238 K. NaN(SiMe3)2 (423.6 mg, 2.31 mmol, 3 equiv.) was dissolved in 10 ml THF, cooled to 238 K, then added to the stirred slurry of CoCl2. The reaction mixture was allowed to warm to ambient temperature and stir overnight, over which time it slowly turned green and turbid. The reaction mixture was filtered through Celite and rinsed with additional THF until washings were colorless, leaving a white solid remaining on the Celite pad. The combined THF fractions were combined and concentrated under vacuum to a yield a waxy green solid. The resulting solid was recrystallized from a solution in a minimal volume of toluene cooled to 238 K. The title compound (I) was occasionally observed as blue–green blocks.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed at idealized positions with C—H = 0.98 Å, U iso(H) set to 1.5U eq(C). The initial structure solution and refinements had a goodness-of-fit of about 0.88 and many reflections with F o > F c suggesting possible twinning. The data reduction was revisited and the structure was refined under consideration as a two-component twin by non-merohedry. The second domain is rotated from the first domain by 3.3° about reciprocal axis [1 0 ½] as determined by CELL_NOW (Sheldrick, 2008). The twin ratio refined to a value of 0.88:0.12.

Table 2. Experimental details.

Crystal data
Chemical formula [Co2Na2O(C6H18NSi2)4]
M r 821.41
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 8.8839 (18), 10.591 (2), 12.700 (3)
α, β, γ (°) 96.75 (4), 108.93 (3), 99.15 (3)
V3) 1097.4 (5)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.02
Crystal size (mm) 0.30 × 0.24 × 0.20
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (TWINABS; Bruker,2012)
T min, T max 0.57, 0.75
No. of measured, independent and observed [I > 2σ(I)] reflections 4421, 4421, 3107
R int 0.089
(sin θ/λ)max−1) 0.627
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.065, 0.154, 1.03
No. of reflections 4421
No. of parameters 200
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.08, −0.54

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2013), APEX3 (Bruker, 2015), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), Mercury (Macrae et al., 2006) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016006861/wm5287sup1.cif

e-72-00780-sup1.cif (181.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016006861/wm5287Isup2.hkl

e-72-00780-Isup2.hkl (352.1KB, hkl)

CCDC reference: 1476068

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Science Foundation through grants CHE-0957816 and CHE-1266281 (to GLH). The authors thank Professor Michael D. Hopkins for helpful discussions and assistance in manuscript preparation.

supplementary crystallographic information

Crystal data

[Co2Na2O(C6H18NSi2)4] Z = 1
Mr = 821.41 F(000) = 440
Triclinic, P1 Dx = 1.243 Mg m3
a = 8.8839 (18) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.591 (2) Å Cell parameters from 1020 reflections
c = 12.700 (3) Å θ = 2.8–24.6°
α = 96.75 (4)° µ = 1.02 mm1
β = 108.93 (3)° T = 100 K
γ = 99.15 (3)° Block, green
V = 1097.4 (5) Å3 0.3 × 0.24 × 0.2 mm

Data collection

Bruker SMART APEX CCD diffractometer 4421 independent reflections
Radiation source: sealed tube 3107 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.089
ω scans θmax = 26.5°, θmin = 1.7°
Absorption correction: multi-scan (TWINABS; Bruker,2012) h = −11→10
Tmin = 0.57, Tmax = 0.75 k = −13→13
4421 measured reflections l = 0→15

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0577P)2] where P = (Fo2 + 2Fc2)/3
4421 reflections (Δ/σ)max < 0.001
200 parameters Δρmax = 1.08 e Å3
0 restraints Δρmin = −0.54 e Å3

Special details

Experimental. Absorption correction: TWINABS2012/1 (Bruker, 2012) was used for absorption correction. For component 1: wR2(int) was 0.0813 before and 0.0454 after correction. The Ratio of minimum to maximum transmission is 0.77. Final HKLF 4 output contains 11962 reflections, Rint = 0.0892 (2973 with I > 3sig(I), Rint = 0.0335)
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.61239 (8) 0.48208 (7) 0.64530 (5) 0.0137 (2)
Si1 0.40656 (17) 0.25144 (14) 0.70655 (12) 0.0174 (3)
Si2 0.71315 (17) 0.21357 (14) 0.66099 (12) 0.0167 (3)
Si3 0.94365 (16) 0.68550 (14) 0.74896 (11) 0.0165 (3)
Si4 0.68061 (16) 0.70994 (14) 0.84538 (11) 0.0165 (3)
Na1 0.4185 (2) 0.27679 (19) 0.44187 (16) 0.0222 (5)
O1 0.5000 0.5000 0.5000 0.0187 (11)
N1 0.5621 (5) 0.2967 (4) 0.6570 (3) 0.0165 (9)
N2 0.7424 (5) 0.6528 (4) 0.7365 (3) 0.0162 (9)
C1 0.3045 (6) 0.3891 (5) 0.7230 (4) 0.0248 (13)
H1A 0.2812 0.4278 0.6546 0.037*
H1B 0.3762 0.4550 0.7884 0.037*
H1C 0.2026 0.3571 0.7348 0.037*
C2 0.4707 (7) 0.1928 (6) 0.8440 (5) 0.0312 (14)
H2A 0.5074 0.1113 0.8336 0.047*
H2B 0.3784 0.1780 0.8705 0.047*
H2C 0.5600 0.2583 0.9001 0.047*
C3 0.2418 (6) 0.1205 (5) 0.6018 (5) 0.0300 (14)
H3A 0.1989 0.1514 0.5304 0.045*
H3B 0.1540 0.0979 0.6315 0.045*
H3C 0.2861 0.0435 0.5886 0.045*
C4 0.6502 (7) 0.0351 (5) 0.6561 (5) 0.0255 (13)
H4A 0.6269 0.0212 0.7247 0.038*
H4B 0.7383 −0.0080 0.6517 0.038*
H4C 0.5523 −0.0014 0.5895 0.038*
C5 0.8974 (6) 0.2721 (6) 0.7914 (4) 0.0272 (14)
H5A 0.9424 0.3638 0.7950 0.041*
H5B 0.9791 0.2206 0.7893 0.041*
H5C 0.8674 0.2625 0.8582 0.041*
C6 0.7720 (6) 0.2294 (5) 0.5334 (4) 0.0233 (13)
H6A 0.6872 0.1745 0.4663 0.035*
H6B 0.8754 0.2018 0.5441 0.035*
H6C 0.7843 0.3203 0.5232 0.035*
C7 0.9702 (6) 0.5853 (5) 0.6277 (4) 0.0239 (13)
H7A 0.9660 0.4953 0.6399 0.036*
H7B 1.0758 0.6205 0.6222 0.036*
H7C 0.8830 0.5874 0.5574 0.036*
C8 1.0834 (6) 0.6525 (5) 0.8841 (4) 0.0249 (13)
H8A 1.1074 0.7271 0.9448 0.037*
H8B 1.1849 0.6385 0.8744 0.037*
H8C 1.0310 0.5747 0.9038 0.037*
C9 1.0216 (6) 0.8588 (5) 0.7425 (5) 0.0248 (13)
H9A 0.9589 0.8788 0.6697 0.037*
H9B 1.1367 0.8712 0.7503 0.037*
H9C 1.0100 0.9168 0.8041 0.037*
C10 0.6827 (6) 0.5923 (5) 0.9438 (4) 0.0242 (13)
H10A 0.6380 0.5039 0.9000 0.036*
H10B 0.6165 0.6131 0.9893 0.036*
H10C 0.7949 0.5982 0.9939 0.036*
C11 0.4724 (6) 0.7420 (5) 0.7848 (4) 0.0237 (13)
H11A 0.4780 0.8203 0.7508 0.036*
H11B 0.4269 0.7550 0.8450 0.036*
H11C 0.4027 0.6677 0.7267 0.036*
C12 0.8079 (6) 0.8685 (5) 0.9344 (4) 0.0232 (13)
H12A 0.9202 0.8588 0.9700 0.035*
H12B 0.7642 0.8948 0.9933 0.035*
H12C 0.8060 0.9350 0.8868 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0137 (4) 0.0132 (4) 0.0111 (4) 0.0022 (3) 0.0014 (3) 0.0003 (3)
Si1 0.0189 (8) 0.0167 (8) 0.0177 (8) 0.0036 (6) 0.0077 (6) 0.0030 (6)
Si2 0.0149 (7) 0.0165 (8) 0.0177 (8) 0.0037 (6) 0.0041 (6) 0.0032 (6)
Si3 0.0142 (7) 0.0180 (8) 0.0137 (7) 0.0021 (6) 0.0015 (6) 0.0007 (6)
Si4 0.0153 (7) 0.0170 (8) 0.0140 (7) 0.0007 (6) 0.0034 (6) −0.0014 (6)
Na1 0.0268 (12) 0.0176 (12) 0.0171 (11) 0.0030 (9) 0.0018 (9) 0.0027 (9)
O1 0.022 (3) 0.017 (3) 0.014 (3) 0.002 (2) 0.003 (2) 0.001 (2)
N1 0.015 (2) 0.017 (2) 0.015 (2) 0.0014 (18) 0.0044 (18) 0.0006 (18)
N2 0.015 (2) 0.020 (3) 0.012 (2) 0.0036 (19) 0.0025 (17) 0.0016 (18)
C1 0.024 (3) 0.020 (3) 0.028 (3) 0.002 (2) 0.012 (2) −0.004 (2)
C2 0.044 (4) 0.028 (4) 0.030 (3) 0.011 (3) 0.020 (3) 0.010 (3)
C3 0.028 (3) 0.024 (3) 0.038 (4) 0.002 (3) 0.017 (3) −0.007 (3)
C4 0.028 (3) 0.023 (3) 0.030 (3) 0.011 (3) 0.013 (3) 0.008 (2)
C5 0.023 (3) 0.032 (4) 0.022 (3) 0.009 (3) 0.002 (2) 0.001 (2)
C6 0.025 (3) 0.018 (3) 0.021 (3) 0.006 (2) 0.002 (2) −0.002 (2)
C7 0.021 (3) 0.022 (3) 0.027 (3) 0.003 (2) 0.009 (2) 0.000 (2)
C8 0.021 (3) 0.031 (4) 0.019 (3) 0.006 (3) 0.003 (2) 0.002 (2)
C9 0.018 (3) 0.025 (3) 0.027 (3) −0.003 (2) 0.008 (2) −0.004 (2)
C10 0.024 (3) 0.022 (3) 0.023 (3) 0.002 (2) 0.006 (2) 0.000 (2)
C11 0.027 (3) 0.018 (3) 0.027 (3) 0.005 (2) 0.009 (2) 0.005 (2)
C12 0.024 (3) 0.022 (3) 0.023 (3) 0.002 (2) 0.012 (2) −0.003 (2)

Geometric parameters (Å, º)

Co1—Na1i 2.918 (2) C2—H2A 0.9800
Co1—O1 1.8398 (9) C2—H2B 0.9800
Co1—N1 1.977 (4) C2—H2C 0.9800
Co1—N2 1.980 (4) C3—H3A 0.9800
Si1—N1 1.721 (4) C3—H3B 0.9800
Si1—C1 1.861 (5) C3—H3C 0.9800
Si1—C2 1.865 (6) C4—H4A 0.9800
Si1—C3 1.869 (5) C4—H4B 0.9800
Si2—N1 1.709 (4) C4—H4C 0.9800
Si2—C4 1.872 (6) C5—H5A 0.9800
Si2—C5 1.866 (5) C5—H5B 0.9800
Si2—C6 1.874 (5) C5—H5C 0.9800
Si3—Na1i 3.458 (3) C6—H6A 0.9800
Si3—N2 1.717 (4) C6—H6B 0.9800
Si3—C7 1.867 (5) C6—H6C 0.9800
Si3—C8 1.872 (5) C7—H7A 0.9800
Si3—C9 1.877 (6) C7—H7B 0.9800
Si4—Na1i 3.490 (3) C7—H7C 0.9800
Si4—N2 1.727 (4) C8—H8A 0.9800
Si4—C10 1.863 (6) C8—H8B 0.9800
Si4—C11 1.862 (5) C8—H8C 0.9800
Si4—C12 1.870 (5) C9—H9A 0.9800
Na1—Co1i 2.918 (2) C9—H9B 0.9800
Na1—Si3i 3.458 (3) C9—H9C 0.9800
Na1—Si4i 3.490 (3) C10—H10A 0.9800
Na1—O1 2.314 (2) C10—H10B 0.9800
Na1—N1 2.579 (4) C10—H10C 0.9800
Na1—N2i 2.523 (4) C11—H11A 0.9800
O1—Co1i 1.8399 (9) C11—H11B 0.9800
O1—Na1i 2.314 (2) C11—H11C 0.9800
N2—Na1i 2.523 (4) C12—H12A 0.9800
C1—H1A 0.9800 C12—H12B 0.9800
C1—H1B 0.9800 C12—H12C 0.9800
C1—H1C 0.9800
O1—Co1—Na1i 52.46 (5) Si1—C1—H1B 109.5
O1—Co1—N1 108.39 (12) Si1—C1—H1C 109.5
O1—Co1—N2 110.26 (13) H1A—C1—H1B 109.5
N1—Co1—Na1i 159.62 (12) H1A—C1—H1C 109.5
N1—Co1—N2 141.35 (17) H1B—C1—H1C 109.5
N2—Co1—Na1i 58.31 (12) Si1—C2—H2A 109.5
N1—Si1—C1 110.5 (2) Si1—C2—H2B 109.5
N1—Si1—C2 114.4 (2) Si1—C2—H2C 109.5
N1—Si1—C3 111.2 (2) H2A—C2—H2B 109.5
C1—Si1—C2 108.3 (2) H2A—C2—H2C 109.5
C1—Si1—C3 104.4 (2) H2B—C2—H2C 109.5
C2—Si1—C3 107.5 (3) Si1—C3—H3A 109.5
N1—Si2—C4 113.5 (2) Si1—C3—H3B 109.5
N1—Si2—C5 113.1 (2) Si1—C3—H3C 109.5
N1—Si2—C6 108.9 (2) H3A—C3—H3B 109.5
C4—Si2—C6 106.2 (2) H3A—C3—H3C 109.5
C5—Si2—C4 105.5 (3) H3B—C3—H3C 109.5
C5—Si2—C6 109.2 (3) Si2—C4—H4A 109.5
N2—Si3—Na1i 43.99 (14) Si2—C4—H4B 109.5
N2—Si3—C7 109.4 (2) Si2—C4—H4C 109.5
N2—Si3—C8 113.4 (2) H4A—C4—H4B 109.5
N2—Si3—C9 113.5 (2) H4A—C4—H4C 109.5
C7—Si3—Na1i 86.99 (17) H4B—C4—H4C 109.5
C7—Si3—C8 108.6 (2) Si2—C5—H5A 109.5
C7—Si3—C9 105.5 (3) Si2—C5—H5B 109.5
C8—Si3—Na1i 157.06 (18) Si2—C5—H5C 109.5
C8—Si3—C9 106.0 (3) H5A—C5—H5B 109.5
C9—Si3—Na1i 84.84 (18) H5A—C5—H5C 109.5
N2—Si4—Na1i 43.12 (14) H5B—C5—H5C 109.5
N2—Si4—C10 111.6 (2) Si2—C6—H6A 109.5
N2—Si4—C11 109.2 (2) Si2—C6—H6B 109.5
N2—Si4—C12 114.5 (2) Si2—C6—H6C 109.5
C10—Si4—Na1i 141.68 (18) H6A—C6—H6B 109.5
C10—Si4—C12 106.4 (2) H6A—C6—H6C 109.5
C11—Si4—Na1i 69.07 (18) H6B—C6—H6C 109.5
C11—Si4—C10 110.1 (2) Si3—C7—H7A 109.5
C11—Si4—C12 104.8 (2) Si3—C7—H7B 109.5
C12—Si4—Na1i 110.76 (19) Si3—C7—H7C 109.5
Co1i—Na1—Si3i 58.20 (6) H7A—C7—H7B 109.5
Co1i—Na1—Si4i 57.47 (6) H7A—C7—H7C 109.5
Si3i—Na1—Si4i 51.16 (5) H7B—C7—H7C 109.5
O1—Na1—Co1i 39.08 (4) Si3—C8—H8A 109.5
O1—Na1—Si3i 90.23 (8) Si3—C8—H8B 109.5
O1—Na1—Si4i 94.36 (8) Si3—C8—H8C 109.5
O1—Na1—N1 78.30 (12) H8A—C8—H8B 109.5
O1—Na1—N2i 80.67 (12) H8A—C8—H8C 109.5
N1—Na1—Co1i 117.16 (12) H8B—C8—H8C 109.5
N1—Na1—Si3i 139.95 (12) Si3—C9—H9A 109.5
N1—Na1—Si4i 165.71 (12) Si3—C9—H9B 109.5
N2i—Na1—Co1i 41.89 (10) Si3—C9—H9C 109.5
N2i—Na1—Si3i 28.21 (10) H9A—C9—H9B 109.5
N2i—Na1—Si4i 27.90 (9) H9A—C9—H9C 109.5
N2i—Na1—N1 155.82 (15) H9B—C9—H9C 109.5
Co1—O1—Co1i 180.0 Si4—C10—H10A 109.5
Co1—O1—Na1i 88.46 (7) Si4—C10—H10B 109.5
Co1—O1—Na1 91.54 (7) Si4—C10—H10C 109.5
Co1i—O1—Na1i 91.54 (7) H10A—C10—H10B 109.5
Co1i—O1—Na1 88.46 (7) H10A—C10—H10C 109.5
Na1—O1—Na1i 180.00 (3) H10B—C10—H10C 109.5
Co1—N1—Na1 81.02 (15) Si4—C11—H11A 109.5
Si1—N1—Co1 116.1 (2) Si4—C11—H11B 109.5
Si1—N1—Na1 104.36 (18) Si4—C11—H11C 109.5
Si2—N1—Co1 115.7 (2) H11A—C11—H11B 109.5
Si2—N1—Si1 124.7 (3) H11A—C11—H11C 109.5
Si2—N1—Na1 101.38 (18) H11B—C11—H11C 109.5
Co1—N2—Na1i 79.79 (14) Si4—C12—H12A 109.5
Si3—N2—Co1 115.9 (2) Si4—C12—H12B 109.5
Si3—N2—Si4 121.2 (2) Si4—C12—H12C 109.5
Si3—N2—Na1i 107.8 (2) H12A—C12—H12B 109.5
Si4—N2—Co1 114.6 (2) H12A—C12—H12C 109.5
Si4—N2—Na1i 108.98 (19) H12B—C12—H12C 109.5
Si1—C1—H1A 109.5
Na1i—Co1—O1—Na1 179.999 (1) C5—Si2—N1—Na1 151.5 (2)
Na1i—Si3—N2—Co1 87.1 (2) C6—Si2—N1—Co1 −55.6 (3)
Na1i—Si3—N2—Si4 −126.4 (4) C6—Si2—N1—Si1 146.4 (3)
Na1i—Si4—N2—Co1 −87.2 (2) C6—Si2—N1—Na1 29.8 (2)
Na1i—Si4—N2—Si3 125.9 (4) C7—Si3—N2—Co1 23.4 (3)
N1—Co1—O1—Na1i 172.03 (13) C7—Si3—N2—Si4 170.0 (3)
N1—Co1—O1—Na1 −7.97 (13) C7—Si3—N2—Na1i −63.6 (3)
N2—Co1—O1—Na1 171.82 (13) C8—Si3—N2—Co1 −98.0 (3)
N2—Co1—O1—Na1i −8.18 (13) C8—Si3—N2—Si4 48.5 (4)
C1—Si1—N1—Co1 6.4 (3) C8—Si3—N2—Na1i 174.9 (2)
C1—Si1—N1—Si2 164.3 (3) C9—Si3—N2—Co1 140.9 (2)
C1—Si1—N1—Na1 −80.6 (2) C9—Si3—N2—Si4 −72.6 (3)
C2—Si1—N1—Co1 −116.1 (3) C9—Si3—N2—Na1i 53.8 (3)
C2—Si1—N1—Si2 41.8 (4) C10—Si4—N2—Co1 57.1 (3)
C2—Si1—N1—Na1 157.0 (2) C10—Si4—N2—Si3 −89.8 (3)
C3—Si1—N1—Co1 121.8 (3) C10—Si4—N2—Na1i 144.3 (2)
C3—Si1—N1—Si2 −80.3 (3) C11—Si4—N2—Co1 −64.8 (3)
C3—Si1—N1—Na1 34.9 (3) C11—Si4—N2—Si3 148.2 (3)
C4—Si2—N1—Co1 −173.7 (2) C11—Si4—N2—Na1i 22.4 (3)
C4—Si2—N1—Si1 28.3 (4) C12—Si4—N2—Co1 178.0 (2)
C4—Si2—N1—Na1 −88.3 (2) C12—Si4—N2—Si3 31.1 (4)
C5—Si2—N1—Co1 66.1 (3) C12—Si4—N2—Na1i −94.8 (3)
C5—Si2—N1—Si1 −92.0 (3)

Symmetry code: (i) −x+1, −y+1, −z+1.

References

  1. Blakemore, J. D., Crabtree, R. H. & Brudvig, G. W. (2015). Chem. Rev. 115, 12974–13005. [DOI] [PubMed]
  2. Bruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2015). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Clark, N. M., García-Álvarez, P., Kennedy, A. R., O’Hara, C. T. & Robertson, G. M. (2009). Chem. Commun. pp. 5835–5837. [DOI] [PubMed]
  7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  8. Driess, M., Pritzkow, H., Skipinski, M. & Winkler, U. (1997). Organometallics, 16, 5108–5112.
  9. Forbes, G. C., Kennedy, A. R., Mulvey, R. E., Rowlings, R. B., Clegg, W., Liddle, S. T. & Wilson, C. C. (2000). Chem. Commun. pp. 1759–1760.
  10. Groom, C. R., Bruno, I. J., Lightfood, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Hansen, C. B., Jordan, R. F. & Hillhouse, G. H. (2015). Inorg. Chem. 54, 4603–4610. [DOI] [PubMed]
  12. Heering, C., Boldog, I., Vasylyeva, V., Sanchiz, J. & Janiak, C. (2013). CrystEngComm, 15, 9757–9768.
  13. Kärkäs, M. D., Verho, O., Johnston, E. V. & Åkermark, B. (2014). Chem. Rev. 114, 11863–12001. [DOI] [PubMed]
  14. Kennedy, A. R., Klett, J., Mulvey, R. E., Newton, S. & Wright, D. S. (2008). Chem. Commun. pp. 308–310. [DOI] [PubMed]
  15. Kennedy, A. R., MacLellan, J. G. & Mulvey, R. E. (2003). Acta Cryst. C59, m302–m303. [DOI] [PubMed]
  16. Kennedy, A. R., Mulvey, R. E., Roberts, B. A., Rowlings, R. B. & Raston, C. L. (1999). Chem. Commun. pp. 353–354.
  17. Kennedy, A. R., Mulvey, R. E. & Rowlings, R. B. (1998). Angew. Chem. Int. Ed. 37, 3180–3183. [DOI] [PubMed]
  18. Li, Z.-Y., Dai, Y., Zhang, H., Zhu, J., Zhang, J.-J., Liu, S.-Q. & Duan, C.-Y. (2014). Eur. J. Inorg. Chem. pp. 384–391.
  19. Lu, X.-H., Ma, M.-T., Yao, Y.-M., Zhang, Y. & Shen, Q. (2010). Inorg. Chem. Commun. 13, 1566–1568.
  20. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  21. Matsubara, K., Sueyasu, T., Esaki, M., Kumamoto, A., Nagao, S., Yamamoto, H., Koga, Y., Kawata, S. & Matsumoto, T. (2012). Eur. J. Inorg. Chem. pp. 3079–3086.
  22. Mulvey, R. (2006). Organometallics, 25, 1060–1075.
  23. Mulvey, R. E., Blair, V. L., Clegg, W., Kennedy, A. R., Klett, J. & Russo, L. (2010). Nat. Chem. 2, 588–591. [DOI] [PubMed]
  24. Przyojski, J. A., Arman, H. D. & Tonzetich, Z. J. (2013). Organometallics, 32, 723–732. [DOI] [PMC free article] [PubMed]
  25. Reger, D. L., Pascui, A. E., Foley, E. A., Smith, M. D., Jezierska, J. & Ozarowski, A. (2014). Inorg. Chem. 53, 1975–1988. [DOI] [PubMed]
  26. Sarazin, Y., Coles, S. J., Hughes, D. L., Hursthouse, M. B. & Bochmann, M. (2006). Eur. J. Inorg. Chem. pp. 3211–3220.
  27. Sheldrick, G. M. (2008). CELL_NOW. University of Göttingen, Germany.
  28. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  29. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  30. Sumner, C. E. & Steinmetz, G. R. (1985). J. Am. Chem. Soc. 107, 6124–6126.
  31. Wendelstorf, C. & Krämer, R. (1997). Angew. Chem. Int. Ed. Engl. 36, 2791–2793.
  32. Wu, J., Pan, X., Tang, N. & Lin, C.-C. (2010). Inorg. Chem. 49, 5362–5364. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016006861/wm5287sup1.cif

e-72-00780-sup1.cif (181.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016006861/wm5287Isup2.hkl

e-72-00780-Isup2.hkl (352.1KB, hkl)

CCDC reference: 1476068

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES