In the title compound, the two aryl rings are oriented gauche to one another, around the sulfonate S—O bond, with a dihedral angle of 72.40 (7)°. In the crystal, molecules are linked via C—Cl⋯π interactions, forming ribbons along the a-axis direction.
Keywords: crystal structure, sulfonate, C—Cl⋯π interactions
Abstract
The title compound, C12H7Cl3O3S, was synthesized via a nucleophilic substitution reaction between phenol and 2,4,5-trichlorobenzenesulfonyl chloride. The two aryl rings are oriented gauche to one another around the sulfonate S—O bond, with a C—S—O—C torsion angle of −70.68 (16)°, and the two rings are inclined to one another by 72.40 (7)°. In the crystal, molecules are linked via various C—Cl⋯π interactions, forming ribbons propagating along [100]. Neighboring ribbons are linked by a weak C—Cl⋯π interaction, forming layers parallel to (010).
Chemical context
The use of arene-sulfonates as leaving groups has been explored in synthetic organic chemistry for quite some time (Crossland et al., 1971 ▸; Klán et al., 2013 ▸; Sardzinski et al., 2015 ▸). The stability of sulfonate ester leaving groups and the identification of suitable protecting groups for sulfonates has been reported (Miller, 2010 ▸). A competitive C—O and S—O bond fission has been reported in the reaction of amine nucleophiles with arene-sulfonates (Um et al., 2004 ▸). The basicity of the amine nucleophile and the electronic nature of the substituent on the sulfonyl moiety are responsible for the difference in regioselectivity. We have synthesized various arene-sulfonate analogues in order to investigate the factors responsible for the competition between C—O and S—O bond fission in the reaction with nitrogen nucleophiles (Atanasova et al., 2015 ▸; Cooley et al., 2015 ▸).
The sulfonamide moiety has found many useful applications in medicinal chemistry (Navia, 2000 ▸). Sulfonamides can be synthesized conveniently from the corresponding sulfonyl chloride and amine nucleophiles. In our recent work, we reported on the synthesis and crystal structure of a chiral sulfonamide (Ngassa et al., 2015 ▸). The direct synthesis of sulfonamides from arene-sulfonates has been reported (Caddick et al., 2004 ▸). Taking advantage of the regioselectivity of C—O vs S—O bond fission, we have explored the use of arene-sulfonates as electrophilic substrates in the synthesis of sulfonamides. We are interested in the role of the substituent on the sulfonyl moiety and the basicity of the amine nucleophile on the nucleophilic substitution. As the title compound is of interest in our ongoing effort to investigate the role of the substituent on the sulfonyl moiety in nucleophilic substitution reactions with nitrogen- and oxygen-nucleophiles, we report herein on the synthesis and crystal structure of this electrophilic arene-sulfonate.
Structural commentary
The molecular structure of the title compound is shown in Fig. 1 ▸. The two aryl rings are oriented gauche to one another around the sulfonate S1—O1 bond, with a C1—S1—O1—C7 torsion angle of −70.68 (16)°. The two rings (C1–C6 and C7–C12) are inclined to one another by 72.40 (7)°.
Figure 1.
The molecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
Supramolecular features
In the crystal, molecules are linked by Cl⋯π interactions (Table 1 ▸ and Fig. 2 ▸). These intermolecular interactions range in Cl⋯ring centroid distances from 3.525 (1) to 3.972 (1) Å (Table 1 ▸). This distance falls near the accepted average as previously noted (Imai, et al., 2008 ▸), and all interactions have a ‘face-on’ geometry. The two strong interactions involving atoms Cl1 and Cl2 with the centroid of ring C7–C12 form ribbons propagating along the a-axis direction. Within the ribbon there is also a weaker Cl⋯π interaction involving atom Cl3 and the centroid of ring C1–C6. Neighbouring ribbons are linked by a second weak Cl1⋯π interaction (Table 1 ▸ and Fig. 2 ▸), forming layers parallel to the ac plane. There are no other significant intermolecular interactions present in the crystal.
Table 1. Geometric parameters (Å, °) for C—Cl⋯π contacts in the title compound.
Cg 1 and Cg2 are the centroids of rings C1–C6 and C7–C12, respectively.
C—Cl⋯Cg | C—Cl | Cl⋯Cg | C⋯Cg | C—Cl⋯Cg |
---|---|---|---|---|
C2—Cl1⋯Cg2i | 1.727 (2) | 3.5250 (10) | 5.028 (2) | 144.23 (7) |
C4—Cl2⋯Cg2ii | 1.721 (2) | 3.7914 (11) | 5.160 (2) | 135.37 (7) |
C5—Cl3⋯Cg1ii | 1.725 (2) | 3.6298 (10) | 4.211 (2) | 97.25 (7) |
C2—Cl1..Cg1iii | 1.727 (2) | 3.9722 (10) | 4.989 (2) | 116.56 (7) |
Symmetry codes:(i) −x + 2, −y + 1, −z + 1; (ii) −x + 1, −y + 2, −z + 1; (iii) −x + , y +
, −z +
.
Figure 2.
A view of the various C—Cl⋯π interactions (blue dashed lines; see Table 1 ▸) present in the crystal lattice of the title compound. H atoms have been omitted for clarity [symmetry codes: (i) −x + 2, −y + 1, −z + 1; (ii) −x + 1, −y + 2, −z + 1; (iii) −x + , y +
, −z +
].
Database survey
The Cambridge Structural Database (CSD, Version 5.37, February 2016; Groom et al., 2016 ▸) contains eight structures of phenyl sulfonates where the group bonded directly to the sulfur atom is an aromatic ring. Other substituents on this ring include p-tolyl (FIQCIS: Manivannan et al., 2005 ▸), nitro (AJIWUL: Vembu et al., 2003 ▸; XUKBOV: Vembu & Fronczek, 2009 ▸), napthyl (VOJBOM: Vennila et al., 2008 ▸) and amino-napthyl (LEZWAP: Beyeh et al., 2007 ▸). Of particular interest is the structure JEGWEY (Wright et al., 2006 ▸) where the substituted aromatic ring bears chlorine atoms in the 2- and 5-positions. The torsion angle around the sulfonate S—O bond is 73.15 (19)°, similar to that seen in the title compound [70.68 (16)°]. In the crystal of this compound, one C—Cl⋯π interaction is present [Cl⋯π distance: 3.4187 (16) Å] along with C—H⋯O hydrogen bonds.
Two recent publications describing the crystal structures of benzopyrimidoazepine derivatives have also noted C—Cl⋯π interactions present in the lattice (Acosta et al., 2015 ▸; Acosta Quintero et al., 2016 ▸). In these examples, the C—Cl⋯π interactions are complemented by either C—H⋯π or π–π interactions between molecules in the solid state.
Synthesis and crystallization
Phenol (0.941g, 10 mmol) was dissolved in 10 ml of chilled dichloromethane. This was followed by the addition of pyridine (1.6 ml, 20 mmol). The resulting solution was cooled in an ice bath under an N2 atmosphere, followed by the addition of 2,4,5-trichlorobenzenesulfonyl chloride (1.91 g, 10 mmol) portion-wise. The mixture was stirred at 273 K for 30 min and then at room temperature for 12 h. Reaction completion was verified by using TLC analysis. After dilution with 15 ml of CH2Cl2, the organic phase was washed with H2O, brine, and dried over anhydrous Na2SO4. After the solvent was evaporated the crude product was obtained as a tan solid. The title compound was recrystallized from CH2Cl2/hexanes to afford colourless needle-like crystals (56% yield, m.p. 380–381 K) suitable for X-ray diffraction analysis.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. The positions of all hydrogen atoms were calculated geometrically and refined to ride on their parent atoms: C—H = 0. 95 Å with U iso(H) = 1.2U eq(C).
Table 2. Experimental details.
Crystal data | |
Chemical formula | C12H7Cl3O3S |
M r | 337.59 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 173 |
a, b, c (Å) | 12.3401 (11), 6.5421 (6), 16.1350 (14) |
β (°) | 92.1159 (10) |
V (Å3) | 1301.7 (2) |
Z | 4 |
Radiation type | Mo Kα |
μ (mm−1) | 0.86 |
Crystal size (mm) | 0.24 × 0.18 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2013 ▸) |
T min, T max | 0.689, 0.745 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10912, 2568, 2172 |
R int | 0.029 |
(sin θ/λ)max (Å−1) | 0.618 |
Refinement | |
R[F 2 > 2σ(F 2)], wR(F 2), S | 0.031, 0.083, 1.06 |
No. of reflections | 2568 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.28 |
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016007325/su5297sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016007325/su5297Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989016007325/su5297Isup3.cml
CCDC reference: 1477649
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors thank GVSU for financial support (Weldon Fund, CSCE), the NSF for a 300 MHz Jeol FT–NMR (CCLI-0087655) and Pfizer, Inc. for the donation of a Varian Inova 400 F T NMR. The CCD-based X-ray diffractometers at Michigan State University were upgraded and/or replaced by departmental funds.
supplementary crystallographic information
Crystal data
C12H7Cl3O3S | F(000) = 680 |
Mr = 337.59 | Dx = 1.723 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 12.3401 (11) Å | Cell parameters from 5969 reflections |
b = 6.5421 (6) Å | θ = 2.5–26.0° |
c = 16.1350 (14) Å | µ = 0.86 mm−1 |
β = 92.1159 (10)° | T = 173 K |
V = 1301.7 (2) Å3 | Needle, colourless |
Z = 4 | 0.24 × 0.18 × 0.10 mm |
Data collection
Bruker APEXII CCD diffractometer | 2172 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.029 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | θmax = 26.1°, θmin = 2.0° |
Tmin = 0.689, Tmax = 0.745 | h = −15→15 |
10912 measured reflections | k = −8→8 |
2568 independent reflections | l = −19→19 |
Refinement
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.083 | w = 1/[σ2(Fo2) + (0.0396P)2 + 0.7507P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
2568 reflections | Δρmax = 0.26 e Å−3 |
172 parameters | Δρmin = −0.28 e Å−3 |
Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
Cl3 | 0.40330 (4) | 0.76082 (9) | 0.56242 (3) | 0.03498 (15) | |
Cl2 | 0.43839 (5) | 1.20119 (9) | 0.64173 (4) | 0.04126 (17) | |
Cl1 | 0.86246 (4) | 1.05869 (8) | 0.68164 (3) | 0.03599 (16) | |
S1 | 0.83040 (4) | 0.61521 (8) | 0.58959 (3) | 0.02676 (14) | |
O2 | 0.78797 (12) | 0.4493 (2) | 0.54149 (9) | 0.0322 (3) | |
O3 | 0.88861 (13) | 0.5784 (2) | 0.66557 (9) | 0.0367 (4) | |
C1 | 0.72261 (16) | 0.7865 (3) | 0.60570 (12) | 0.0250 (4) | |
C12 | 0.86103 (16) | 0.9951 (3) | 0.43502 (13) | 0.0297 (5) | |
H12 | 0.8568 | 1.0940 | 0.4779 | 0.036* | |
O1 | 0.91219 (11) | 0.7437 (2) | 0.53709 (8) | 0.0283 (3) | |
C3 | 0.64884 (17) | 1.1015 (3) | 0.65532 (12) | 0.0287 (5) | |
H3 | 0.6587 | 1.2317 | 0.6806 | 0.034* | |
C6 | 0.61918 (16) | 0.7233 (3) | 0.58012 (12) | 0.0260 (4) | |
H6 | 0.6093 | 0.5947 | 0.5535 | 0.031* | |
C8 | 0.89316 (17) | 0.6461 (3) | 0.39295 (13) | 0.0309 (5) | |
H8 | 0.9107 | 0.5088 | 0.4072 | 0.037* | |
C5 | 0.53069 (16) | 0.8467 (3) | 0.59320 (12) | 0.0267 (4) | |
C4 | 0.54605 (17) | 1.0382 (3) | 0.62926 (12) | 0.0285 (5) | |
C2 | 0.73697 (17) | 0.9755 (3) | 0.64467 (12) | 0.0273 (4) | |
C7 | 0.88520 (16) | 0.7940 (3) | 0.45289 (12) | 0.0256 (4) | |
C10 | 0.84980 (18) | 0.9035 (4) | 0.29115 (13) | 0.0352 (5) | |
H10 | 0.8371 | 0.9415 | 0.2348 | 0.042* | |
C11 | 0.84316 (18) | 1.0485 (3) | 0.35269 (14) | 0.0345 (5) | |
H11 | 0.8262 | 1.1860 | 0.3385 | 0.041* | |
C9 | 0.87469 (18) | 0.7041 (4) | 0.31090 (14) | 0.0359 (5) | |
H9 | 0.8793 | 0.6053 | 0.2680 | 0.043* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl3 | 0.0269 (3) | 0.0401 (3) | 0.0379 (3) | 0.0003 (2) | 0.0017 (2) | 0.0008 (2) |
Cl2 | 0.0432 (3) | 0.0361 (3) | 0.0451 (3) | 0.0146 (2) | 0.0111 (3) | 0.0001 (2) |
Cl1 | 0.0383 (3) | 0.0317 (3) | 0.0375 (3) | −0.0058 (2) | −0.0056 (2) | −0.0032 (2) |
S1 | 0.0288 (3) | 0.0241 (3) | 0.0275 (3) | 0.0027 (2) | 0.0018 (2) | 0.0006 (2) |
O2 | 0.0345 (8) | 0.0237 (8) | 0.0386 (8) | −0.0003 (6) | 0.0043 (6) | −0.0037 (6) |
O3 | 0.0419 (9) | 0.0386 (9) | 0.0295 (8) | 0.0100 (7) | −0.0021 (7) | 0.0046 (7) |
C1 | 0.0287 (11) | 0.0228 (10) | 0.0235 (10) | 0.0032 (8) | 0.0033 (8) | 0.0015 (8) |
C12 | 0.0290 (11) | 0.0256 (11) | 0.0347 (11) | −0.0001 (9) | 0.0044 (9) | −0.0039 (9) |
O1 | 0.0244 (7) | 0.0334 (8) | 0.0271 (7) | −0.0018 (6) | 0.0002 (6) | 0.0006 (6) |
C3 | 0.0420 (12) | 0.0232 (10) | 0.0210 (10) | 0.0007 (9) | 0.0046 (9) | 0.0001 (8) |
C6 | 0.0296 (11) | 0.0245 (10) | 0.0241 (10) | 0.0000 (8) | 0.0042 (8) | 0.0001 (8) |
C8 | 0.0299 (11) | 0.0287 (11) | 0.0344 (11) | 0.0034 (9) | 0.0048 (9) | −0.0034 (9) |
C5 | 0.0281 (10) | 0.0285 (11) | 0.0236 (10) | 0.0006 (8) | 0.0035 (8) | 0.0029 (8) |
C4 | 0.0354 (11) | 0.0266 (11) | 0.0239 (10) | 0.0073 (9) | 0.0088 (8) | 0.0042 (8) |
C2 | 0.0347 (11) | 0.0247 (10) | 0.0226 (10) | −0.0043 (9) | 0.0011 (8) | 0.0006 (8) |
C7 | 0.0212 (10) | 0.0305 (11) | 0.0251 (10) | −0.0006 (8) | 0.0022 (8) | 0.0005 (8) |
C10 | 0.0323 (12) | 0.0458 (14) | 0.0275 (11) | −0.0051 (10) | 0.0022 (9) | 0.0029 (10) |
C11 | 0.0339 (12) | 0.0301 (12) | 0.0394 (12) | −0.0003 (9) | −0.0001 (10) | 0.0066 (10) |
C9 | 0.0371 (12) | 0.0393 (13) | 0.0316 (11) | −0.0027 (10) | 0.0055 (9) | −0.0108 (10) |
Geometric parameters (Å, º)
Cl3—C5 | 1.725 (2) | C3—C4 | 1.385 (3) |
Cl2—C4 | 1.721 (2) | C3—C2 | 1.380 (3) |
Cl1—C2 | 1.727 (2) | C6—H6 | 0.9500 |
S1—O2 | 1.4229 (15) | C6—C5 | 1.380 (3) |
S1—O3 | 1.4184 (15) | C8—H8 | 0.9500 |
S1—C1 | 1.766 (2) | C8—C7 | 1.374 (3) |
S1—O1 | 1.5828 (15) | C8—C9 | 1.388 (3) |
C1—C6 | 1.390 (3) | C5—C4 | 1.391 (3) |
C1—C2 | 1.395 (3) | C10—H10 | 0.9500 |
C12—H12 | 0.9500 | C10—C11 | 1.378 (3) |
C12—C7 | 1.377 (3) | C10—C9 | 1.375 (3) |
C12—C11 | 1.383 (3) | C11—H11 | 0.9500 |
O1—C7 | 1.425 (2) | C9—H9 | 0.9500 |
C3—H3 | 0.9500 | ||
O2—S1—C1 | 107.48 (9) | C6—C5—Cl3 | 118.90 (16) |
O2—S1—O1 | 110.01 (8) | C6—C5—C4 | 119.61 (19) |
O3—S1—O2 | 120.41 (9) | C4—C5—Cl3 | 121.47 (16) |
O3—S1—C1 | 109.92 (9) | C3—C4—Cl2 | 118.78 (16) |
O3—S1—O1 | 103.89 (9) | C3—C4—C5 | 120.35 (19) |
O1—S1—C1 | 103.92 (9) | C5—C4—Cl2 | 120.87 (17) |
C6—C1—S1 | 117.13 (15) | C1—C2—Cl1 | 122.17 (16) |
C6—C1—C2 | 119.83 (19) | C3—C2—Cl1 | 117.99 (16) |
C2—C1—S1 | 123.01 (16) | C3—C2—C1 | 119.84 (19) |
C7—C12—H12 | 121.1 | C12—C7—O1 | 117.49 (18) |
C7—C12—C11 | 117.9 (2) | C8—C7—C12 | 123.09 (19) |
C11—C12—H12 | 121.1 | C8—C7—O1 | 119.19 (18) |
C7—O1—S1 | 120.10 (12) | C11—C10—H10 | 119.8 |
C4—C3—H3 | 120.0 | C9—C10—H10 | 119.8 |
C2—C3—H3 | 120.0 | C9—C10—C11 | 120.3 (2) |
C2—C3—C4 | 120.04 (19) | C12—C11—H11 | 119.8 |
C1—C6—H6 | 119.9 | C10—C11—C12 | 120.4 (2) |
C5—C6—C1 | 120.24 (19) | C10—C11—H11 | 119.8 |
C5—C6—H6 | 119.9 | C8—C9—H9 | 119.7 |
C7—C8—H8 | 121.1 | C10—C9—C8 | 120.5 (2) |
C7—C8—C9 | 117.7 (2) | C10—C9—H9 | 119.7 |
C9—C8—H8 | 121.1 | ||
Cl3—C5—C4—Cl2 | −2.0 (2) | C6—C1—C2—Cl1 | 177.38 (15) |
Cl3—C5—C4—C3 | 178.38 (15) | C6—C1—C2—C3 | −2.0 (3) |
S1—C1—C6—C5 | 177.92 (15) | C6—C5—C4—Cl2 | 176.71 (15) |
S1—C1—C2—Cl1 | −0.5 (3) | C6—C5—C4—C3 | −2.9 (3) |
S1—C1—C2—C3 | −179.86 (15) | C4—C3—C2—Cl1 | −177.78 (15) |
S1—O1—C7—C12 | 109.03 (18) | C4—C3—C2—C1 | 1.6 (3) |
S1—O1—C7—C8 | −76.3 (2) | C2—C1—C6—C5 | −0.1 (3) |
O2—S1—C1—C6 | 7.64 (18) | C2—C3—C4—Cl2 | −178.78 (15) |
O2—S1—C1—C2 | −174.44 (16) | C2—C3—C4—C5 | 0.8 (3) |
O2—S1—O1—C7 | 44.13 (16) | C7—C12—C11—C10 | −0.1 (3) |
O3—S1—C1—C6 | −125.09 (16) | C7—C8—C9—C10 | 0.3 (3) |
O3—S1—C1—C2 | 52.8 (2) | C11—C12—C7—O1 | 174.98 (18) |
O3—S1—O1—C7 | 174.30 (14) | C11—C12—C7—C8 | 0.6 (3) |
C1—S1—O1—C7 | −70.68 (16) | C11—C10—C9—C8 | 0.2 (3) |
C1—C6—C5—Cl3 | −178.73 (15) | C9—C8—C7—C12 | −0.6 (3) |
C1—C6—C5—C4 | 2.5 (3) | C9—C8—C7—O1 | −174.96 (18) |
O1—S1—C1—C6 | 124.24 (15) | C9—C10—C11—C12 | −0.2 (3) |
O1—S1—C1—C2 | −57.85 (18) |
References
- Acosta, L. M., Jurado, J., Palma, A., Cobo, J. & Glidewell, C. (2015). Acta Cryst. C71, 1062–1068. [DOI] [PubMed]
- Acosta Quintero, L. M., Burgos, I., Palma, A., Cobo, J. & Glidewell, C. (2016). Acta Cryst. C72, 52–56. [DOI] [PubMed]
- Atanasova, T. P., Riley, S., Biros, S. M., Staples, R. J. & Ngassa, F. N. (2015). Acta Cryst. E71, 1045–1047. [DOI] [PMC free article] [PubMed]
- Beyeh, N. K., Aumanen, J., Åhman, A., Luostarinen, M., Mansikkamäki, H., Nissinen, M., Korppi-Tommola, J. & Rissanen, K. (2007). New J. Chem. 31, 370–376.
- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
- Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Caddick, S., Wilden, J. D. & Judd, D. B. (2004). J. Am. Chem. Soc. 126, 1024–1025. [DOI] [PubMed]
- Cooley, T. A., Riley, S., Biros, S. M., Staples, R. J. & Ngassa, F. N. (2015). Acta Cryst. E71, 1085–1088. [DOI] [PMC free article] [PubMed]
- Crossland, R. K., Wells, W. E. & Shiner, V. J. Jr (1971). J. Am. Chem. Soc. 93, 4217–4219.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Imai, Y. N., Inoue, Y., Nakanishi, I. & Kitaura, K. (2008). Protein Sci. 17, 1129–1137. [DOI] [PMC free article] [PubMed]
- Klán, P., Šolomek, T., Bochet, C. G., Blanc, A., Givens, R., Rubina, M., Popik, V., Kostikov, A. & Wirz, J. (2013). Chem. Rev. 113, 119–191. [DOI] [PMC free article] [PubMed]
- Manivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Linden, A. (2005). Acta Cryst. E61, o690–o692.
- Miller, S. C. (2010). J. Org. Chem. 75, 4632–4635. [DOI] [PMC free article] [PubMed]
- Navia, M. A. (2000). Science, 288, 2132–2133. [DOI] [PubMed]
- Ngassa, F. N., Biros, S. M. & Staples, R. J. (2015). Acta Cryst. E71, 1521–1524. [DOI] [PMC free article] [PubMed]
- Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.
- Sardzinski, L. W., Wertjes, W. C., Schnaith, A. M. & Kalyani, D. (2015). Org. Lett. 17, 1256–1259. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Um, I. H., Chun, S. M., Chae, O. M., Fujio, M. & Tsuno, Y. (2004). J. Am. Chem. Soc. 69, 3166–3172. [DOI] [PubMed]
- Vembu, N. & Fronczek, F. R. (2009). J. Chem. Crystallogr. 39, 515–518.
- Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003). Acta Cryst. E59, o1213–o1215.
- Vennila, J. P., Kavitha, H. P., Thiruvadigal, D. J. & Manivannan, V. (2008). Acta Cryst. E64, o2304. [DOI] [PMC free article] [PubMed]
- Wright, M. E., Gorish, C. E., Shen, Z. & McHugh, M. A. (2006). J. Fluor. Chem. 127, 330–336.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016007325/su5297sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016007325/su5297Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989016007325/su5297Isup3.cml
CCDC reference: 1477649
Additional supporting information: crystallographic information; 3D view; checkCIF report