Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 May 6;72(Pt 6):789–792. doi: 10.1107/S2056989016007325

Crystal structure of phenyl 2,4,5-tri­chloro­benzene­sulfonate

Sean Riley a, Richard J Staples b, Shannon M Biros a, Felix N Ngassa a,*
PMCID: PMC4908567  PMID: 27308043

In the title compound, the two aryl rings are oriented gauche to one another, around the sulfonate S—O bond, with a dihedral angle of 72.40 (7)°. In the crystal, mol­ecules are linked via C—Cl⋯π inter­actions, forming ribbons along the a-axis direction.

Keywords: crystal structure, sulfonate, C—Cl⋯π inter­actions

Abstract

The title compound, C12H7Cl3O3S, was synthesized via a nucleophilic substitution reaction between phenol and 2,4,5-tri­chloro­benzene­sulfonyl chloride. The two aryl rings are oriented gauche to one another around the sulfonate S—O bond, with a C—S—O—C torsion angle of −70.68 (16)°, and the two rings are inclined to one another by 72.40 (7)°. In the crystal, mol­ecules are linked via various C—Cl⋯π inter­actions, forming ribbons propagating along [100]. Neighboring ribbons are linked by a weak C—Cl⋯π inter­action, forming layers parallel to (010).

Chemical context  

The use of arene-sulfonates as leaving groups has been explored in synthetic organic chemistry for quite some time (Crossland et al., 1971; Klán et al., 2013; Sardzinski et al., 2015). The stability of sulfonate ester leaving groups and the identi­fication of suitable protecting groups for sulfonates has been reported (Miller, 2010). A competitive C—O and S—O bond fission has been reported in the reaction of amine nucleophiles with arene-sulfonates (Um et al., 2004). The basicity of the amine nucleophile and the electronic nature of the substituent on the sulfonyl moiety are responsible for the difference in regioselectivity. We have synthesized various arene-sulfonate analogues in order to investigate the factors responsible for the competition between C—O and S—O bond fission in the reaction with nitro­gen nucleophiles (Atanasova et al., 2015; Cooley et al., 2015).graphic file with name e-72-00789-scheme1.jpg

The sulfonamide moiety has found many useful applications in medicinal chemistry (Navia, 2000). Sulfonamides can be synthesized conveniently from the corresponding sulfonyl chloride and amine nucleophiles. In our recent work, we reported on the synthesis and crystal structure of a chiral sulfonamide (Ngassa et al., 2015). The direct synthesis of sulfonamides from arene-sulfonates has been reported (Caddick et al., 2004). Taking advantage of the regioselectivity of C—O vs S—O bond fission, we have explored the use of arene-sulfonates as electrophilic substrates in the synthesis of sulfonamides. We are inter­ested in the role of the substituent on the sulfonyl moiety and the basicity of the amine nucleophile on the nucleophilic substitution. As the title compound is of inter­est in our ongoing effort to investigate the role of the substituent on the sulfonyl moiety in nucleophilic substitution reactions with nitro­gen- and oxygen-nucleophiles, we report herein on the synthesis and crystal structure of this electrophilic arene-sulfonate.

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. The two aryl rings are oriented gauche to one another around the sulfonate S1—O1 bond, with a C1—S1—O1—C7 torsion angle of −70.68 (16)°. The two rings (C1–C6 and C7–C12) are inclined to one another by 72.40 (7)°.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, mol­ecules are linked by Cl⋯π inter­actions (Table 1 and Fig. 2). These inter­molecular inter­actions range in Cl⋯ring centroid distances from 3.525 (1) to 3.972 (1) Å (Table 1). This distance falls near the accepted average as previously noted (Imai, et al., 2008), and all inter­actions have a ‘face-on’ geometry. The two strong inter­actions involving atoms Cl1 and Cl2 with the centroid of ring C7–C12 form ribbons propagating along the a-axis direction. Within the ribbon there is also a weaker Cl⋯π inter­action involving atom Cl3 and the centroid of ring C1–C6. Neighbouring ribbons are linked by a second weak Cl1⋯π inter­action (Table 1 and Fig. 2), forming layers parallel to the ac plane. There are no other significant inter­molecular inter­actions present in the crystal.

Table 1. Geometric parameters (Å, °) for C—Cl⋯π contacts in the title compound.

Cg 1 and Cg2 are the centroids of rings C1–C6 and C7–C12, respectively.

C—Cl⋯Cg C—Cl Cl⋯Cg C⋯Cg C—Cl⋯Cg
C2—Cl1⋯Cg2i 1.727 (2) 3.5250 (10) 5.028 (2) 144.23 (7)
C4—Cl2⋯Cg2ii 1.721 (2) 3.7914 (11) 5.160 (2) 135.37 (7)
C5—Cl3⋯Cg1ii 1.725 (2) 3.6298 (10) 4.211 (2) 97.25 (7)
C2—Cl1..Cg1iii 1.727 (2) 3.9722 (10) 4.989 (2) 116.56 (7)

Symmetry codes:(i) −x + 2, −y + 1, −z + 1; (ii) −x + 1, −y + 2, −z + 1; (iii) −x + Inline graphic, y + Inline graphic, −z + Inline graphic.

Figure 2.

Figure 2

A view of the various C—Cl⋯π inter­actions (blue dashed lines; see Table 1) present in the crystal lattice of the title compound. H atoms have been omitted for clarity [symmetry codes: (i) −x + 2, −y + 1, −z + 1; (ii) −x + 1, −y + 2, −z + 1; (iii) −x + Inline graphic, y + Inline graphic, −z + Inline graphic].

Database survey  

The Cambridge Structural Database (CSD, Version 5.37, February 2016; Groom et al., 2016) contains eight structures of phenyl sulfonates where the group bonded directly to the sulfur atom is an aromatic ring. Other substituents on this ring include p-tolyl (FIQCIS: Manivannan et al., 2005), nitro (AJIWUL: Vembu et al., 2003; XUKBOV: Vembu & Fronczek, 2009), napthyl (VOJBOM: Vennila et al., 2008) and amino-napthyl (LEZWAP: Beyeh et al., 2007). Of particular inter­est is the structure JEGWEY (Wright et al., 2006) where the substituted aromatic ring bears chlorine atoms in the 2- and 5-positions. The torsion angle around the sulfonate S—O bond is 73.15 (19)°, similar to that seen in the title compound [70.68 (16)°]. In the crystal of this compound, one C—Cl⋯π inter­action is present [Cl⋯π distance: 3.4187 (16) Å] along with C—H⋯O hydrogen bonds.

Two recent publications describing the crystal structures of benzopyrimidoazepine derivatives have also noted C—Cl⋯π inter­actions present in the lattice (Acosta et al., 2015; Acosta Qu­intero et al., 2016). In these examples, the C—Cl⋯π inter­actions are complemented by either C—H⋯π or π–π inter­actions between mol­ecules in the solid state.

Synthesis and crystallization  

Phenol (0.941g, 10 mmol) was dissolved in 10 ml of chilled di­chloro­methane. This was followed by the addition of pyridine (1.6 ml, 20 mmol). The resulting solution was cooled in an ice bath under an N2 atmosphere, followed by the addition of 2,4,5-tri­chloro­benzene­sulfonyl chloride (1.91 g, 10 mmol) portion-wise. The mixture was stirred at 273 K for 30 min and then at room temperature for 12 h. Reaction completion was verified by using TLC analysis. After dilution with 15 ml of CH2Cl2, the organic phase was washed with H2O, brine, and dried over anhydrous Na2SO4. After the solvent was evaporated the crude product was obtained as a tan solid. The title compound was recrystallized from CH2Cl2/hexa­nes to afford colourless needle-like crystals (56% yield, m.p. 380–381 K) suitable for X-ray diffraction analysis.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The positions of all hydrogen atoms were calculated geometrically and refined to ride on their parent atoms: C—H = 0. 95 Å with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C12H7Cl3O3S
M r 337.59
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 12.3401 (11), 6.5421 (6), 16.1350 (14)
β (°) 92.1159 (10)
V3) 1301.7 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.86
Crystal size (mm) 0.24 × 0.18 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013)
T min, T max 0.689, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 10912, 2568, 2172
R int 0.029
(sin θ/λ)max−1) 0.618
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.031, 0.083, 1.06
No. of reflections 2568
No. of parameters 172
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.28

Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015), CrystalMaker (Palmer, 2007).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016007325/su5297sup1.cif

e-72-00789-sup1.cif (215.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016007325/su5297Isup2.hkl

e-72-00789-Isup2.hkl (141.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016007325/su5297Isup3.cml

CCDC reference: 1477649

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank GVSU for financial support (Weldon Fund, CSCE), the NSF for a 300 MHz Jeol FT–NMR (CCLI-0087655) and Pfizer, Inc. for the donation of a Varian Inova 400 F T NMR. The CCD-based X-ray diffractometers at Michigan State University were upgraded and/or replaced by departmental funds.

supplementary crystallographic information

Crystal data

C12H7Cl3O3S F(000) = 680
Mr = 337.59 Dx = 1.723 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 12.3401 (11) Å Cell parameters from 5969 reflections
b = 6.5421 (6) Å θ = 2.5–26.0°
c = 16.1350 (14) Å µ = 0.86 mm1
β = 92.1159 (10)° T = 173 K
V = 1301.7 (2) Å3 Needle, colourless
Z = 4 0.24 × 0.18 × 0.10 mm

Data collection

Bruker APEXII CCD diffractometer 2172 reflections with I > 2σ(I)
φ and ω scans Rint = 0.029
Absorption correction: multi-scan (SADABS; Bruker, 2013) θmax = 26.1°, θmin = 2.0°
Tmin = 0.689, Tmax = 0.745 h = −15→15
10912 measured reflections k = −8→8
2568 independent reflections l = −19→19

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.7507P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
2568 reflections Δρmax = 0.26 e Å3
172 parameters Δρmin = −0.28 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl3 0.40330 (4) 0.76082 (9) 0.56242 (3) 0.03498 (15)
Cl2 0.43839 (5) 1.20119 (9) 0.64173 (4) 0.04126 (17)
Cl1 0.86246 (4) 1.05869 (8) 0.68164 (3) 0.03599 (16)
S1 0.83040 (4) 0.61521 (8) 0.58959 (3) 0.02676 (14)
O2 0.78797 (12) 0.4493 (2) 0.54149 (9) 0.0322 (3)
O3 0.88861 (13) 0.5784 (2) 0.66557 (9) 0.0367 (4)
C1 0.72261 (16) 0.7865 (3) 0.60570 (12) 0.0250 (4)
C12 0.86103 (16) 0.9951 (3) 0.43502 (13) 0.0297 (5)
H12 0.8568 1.0940 0.4779 0.036*
O1 0.91219 (11) 0.7437 (2) 0.53709 (8) 0.0283 (3)
C3 0.64884 (17) 1.1015 (3) 0.65532 (12) 0.0287 (5)
H3 0.6587 1.2317 0.6806 0.034*
C6 0.61918 (16) 0.7233 (3) 0.58012 (12) 0.0260 (4)
H6 0.6093 0.5947 0.5535 0.031*
C8 0.89316 (17) 0.6461 (3) 0.39295 (13) 0.0309 (5)
H8 0.9107 0.5088 0.4072 0.037*
C5 0.53069 (16) 0.8467 (3) 0.59320 (12) 0.0267 (4)
C4 0.54605 (17) 1.0382 (3) 0.62926 (12) 0.0285 (5)
C2 0.73697 (17) 0.9755 (3) 0.64467 (12) 0.0273 (4)
C7 0.88520 (16) 0.7940 (3) 0.45289 (12) 0.0256 (4)
C10 0.84980 (18) 0.9035 (4) 0.29115 (13) 0.0352 (5)
H10 0.8371 0.9415 0.2348 0.042*
C11 0.84316 (18) 1.0485 (3) 0.35269 (14) 0.0345 (5)
H11 0.8262 1.1860 0.3385 0.041*
C9 0.87469 (18) 0.7041 (4) 0.31090 (14) 0.0359 (5)
H9 0.8793 0.6053 0.2680 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl3 0.0269 (3) 0.0401 (3) 0.0379 (3) 0.0003 (2) 0.0017 (2) 0.0008 (2)
Cl2 0.0432 (3) 0.0361 (3) 0.0451 (3) 0.0146 (2) 0.0111 (3) 0.0001 (2)
Cl1 0.0383 (3) 0.0317 (3) 0.0375 (3) −0.0058 (2) −0.0056 (2) −0.0032 (2)
S1 0.0288 (3) 0.0241 (3) 0.0275 (3) 0.0027 (2) 0.0018 (2) 0.0006 (2)
O2 0.0345 (8) 0.0237 (8) 0.0386 (8) −0.0003 (6) 0.0043 (6) −0.0037 (6)
O3 0.0419 (9) 0.0386 (9) 0.0295 (8) 0.0100 (7) −0.0021 (7) 0.0046 (7)
C1 0.0287 (11) 0.0228 (10) 0.0235 (10) 0.0032 (8) 0.0033 (8) 0.0015 (8)
C12 0.0290 (11) 0.0256 (11) 0.0347 (11) −0.0001 (9) 0.0044 (9) −0.0039 (9)
O1 0.0244 (7) 0.0334 (8) 0.0271 (7) −0.0018 (6) 0.0002 (6) 0.0006 (6)
C3 0.0420 (12) 0.0232 (10) 0.0210 (10) 0.0007 (9) 0.0046 (9) 0.0001 (8)
C6 0.0296 (11) 0.0245 (10) 0.0241 (10) 0.0000 (8) 0.0042 (8) 0.0001 (8)
C8 0.0299 (11) 0.0287 (11) 0.0344 (11) 0.0034 (9) 0.0048 (9) −0.0034 (9)
C5 0.0281 (10) 0.0285 (11) 0.0236 (10) 0.0006 (8) 0.0035 (8) 0.0029 (8)
C4 0.0354 (11) 0.0266 (11) 0.0239 (10) 0.0073 (9) 0.0088 (8) 0.0042 (8)
C2 0.0347 (11) 0.0247 (10) 0.0226 (10) −0.0043 (9) 0.0011 (8) 0.0006 (8)
C7 0.0212 (10) 0.0305 (11) 0.0251 (10) −0.0006 (8) 0.0022 (8) 0.0005 (8)
C10 0.0323 (12) 0.0458 (14) 0.0275 (11) −0.0051 (10) 0.0022 (9) 0.0029 (10)
C11 0.0339 (12) 0.0301 (12) 0.0394 (12) −0.0003 (9) −0.0001 (10) 0.0066 (10)
C9 0.0371 (12) 0.0393 (13) 0.0316 (11) −0.0027 (10) 0.0055 (9) −0.0108 (10)

Geometric parameters (Å, º)

Cl3—C5 1.725 (2) C3—C4 1.385 (3)
Cl2—C4 1.721 (2) C3—C2 1.380 (3)
Cl1—C2 1.727 (2) C6—H6 0.9500
S1—O2 1.4229 (15) C6—C5 1.380 (3)
S1—O3 1.4184 (15) C8—H8 0.9500
S1—C1 1.766 (2) C8—C7 1.374 (3)
S1—O1 1.5828 (15) C8—C9 1.388 (3)
C1—C6 1.390 (3) C5—C4 1.391 (3)
C1—C2 1.395 (3) C10—H10 0.9500
C12—H12 0.9500 C10—C11 1.378 (3)
C12—C7 1.377 (3) C10—C9 1.375 (3)
C12—C11 1.383 (3) C11—H11 0.9500
O1—C7 1.425 (2) C9—H9 0.9500
C3—H3 0.9500
O2—S1—C1 107.48 (9) C6—C5—Cl3 118.90 (16)
O2—S1—O1 110.01 (8) C6—C5—C4 119.61 (19)
O3—S1—O2 120.41 (9) C4—C5—Cl3 121.47 (16)
O3—S1—C1 109.92 (9) C3—C4—Cl2 118.78 (16)
O3—S1—O1 103.89 (9) C3—C4—C5 120.35 (19)
O1—S1—C1 103.92 (9) C5—C4—Cl2 120.87 (17)
C6—C1—S1 117.13 (15) C1—C2—Cl1 122.17 (16)
C6—C1—C2 119.83 (19) C3—C2—Cl1 117.99 (16)
C2—C1—S1 123.01 (16) C3—C2—C1 119.84 (19)
C7—C12—H12 121.1 C12—C7—O1 117.49 (18)
C7—C12—C11 117.9 (2) C8—C7—C12 123.09 (19)
C11—C12—H12 121.1 C8—C7—O1 119.19 (18)
C7—O1—S1 120.10 (12) C11—C10—H10 119.8
C4—C3—H3 120.0 C9—C10—H10 119.8
C2—C3—H3 120.0 C9—C10—C11 120.3 (2)
C2—C3—C4 120.04 (19) C12—C11—H11 119.8
C1—C6—H6 119.9 C10—C11—C12 120.4 (2)
C5—C6—C1 120.24 (19) C10—C11—H11 119.8
C5—C6—H6 119.9 C8—C9—H9 119.7
C7—C8—H8 121.1 C10—C9—C8 120.5 (2)
C7—C8—C9 117.7 (2) C10—C9—H9 119.7
C9—C8—H8 121.1
Cl3—C5—C4—Cl2 −2.0 (2) C6—C1—C2—Cl1 177.38 (15)
Cl3—C5—C4—C3 178.38 (15) C6—C1—C2—C3 −2.0 (3)
S1—C1—C6—C5 177.92 (15) C6—C5—C4—Cl2 176.71 (15)
S1—C1—C2—Cl1 −0.5 (3) C6—C5—C4—C3 −2.9 (3)
S1—C1—C2—C3 −179.86 (15) C4—C3—C2—Cl1 −177.78 (15)
S1—O1—C7—C12 109.03 (18) C4—C3—C2—C1 1.6 (3)
S1—O1—C7—C8 −76.3 (2) C2—C1—C6—C5 −0.1 (3)
O2—S1—C1—C6 7.64 (18) C2—C3—C4—Cl2 −178.78 (15)
O2—S1—C1—C2 −174.44 (16) C2—C3—C4—C5 0.8 (3)
O2—S1—O1—C7 44.13 (16) C7—C12—C11—C10 −0.1 (3)
O3—S1—C1—C6 −125.09 (16) C7—C8—C9—C10 0.3 (3)
O3—S1—C1—C2 52.8 (2) C11—C12—C7—O1 174.98 (18)
O3—S1—O1—C7 174.30 (14) C11—C12—C7—C8 0.6 (3)
C1—S1—O1—C7 −70.68 (16) C11—C10—C9—C8 0.2 (3)
C1—C6—C5—Cl3 −178.73 (15) C9—C8—C7—C12 −0.6 (3)
C1—C6—C5—C4 2.5 (3) C9—C8—C7—O1 −174.96 (18)
O1—S1—C1—C6 124.24 (15) C9—C10—C11—C12 −0.2 (3)
O1—S1—C1—C2 −57.85 (18)

References

  1. Acosta, L. M., Jurado, J., Palma, A., Cobo, J. & Glidewell, C. (2015). Acta Cryst. C71, 1062–1068. [DOI] [PubMed]
  2. Acosta Quintero, L. M., Burgos, I., Palma, A., Cobo, J. & Glidewell, C. (2016). Acta Cryst. C72, 52–56. [DOI] [PubMed]
  3. Atanasova, T. P., Riley, S., Biros, S. M., Staples, R. J. & Ngassa, F. N. (2015). Acta Cryst. E71, 1045–1047. [DOI] [PMC free article] [PubMed]
  4. Beyeh, N. K., Aumanen, J., Åhman, A., Luostarinen, M., Mansikkamäki, H., Nissinen, M., Korppi-Tommola, J. & Rissanen, K. (2007). New J. Chem. 31, 370–376.
  5. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
  6. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Caddick, S., Wilden, J. D. & Judd, D. B. (2004). J. Am. Chem. Soc. 126, 1024–1025. [DOI] [PubMed]
  8. Cooley, T. A., Riley, S., Biros, S. M., Staples, R. J. & Ngassa, F. N. (2015). Acta Cryst. E71, 1085–1088. [DOI] [PMC free article] [PubMed]
  9. Crossland, R. K., Wells, W. E. & Shiner, V. J. Jr (1971). J. Am. Chem. Soc. 93, 4217–4219.
  10. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Imai, Y. N., Inoue, Y., Nakanishi, I. & Kitaura, K. (2008). Protein Sci. 17, 1129–1137. [DOI] [PMC free article] [PubMed]
  13. Klán, P., Šolomek, T., Bochet, C. G., Blanc, A., Givens, R., Rubina, M., Popik, V., Kostikov, A. & Wirz, J. (2013). Chem. Rev. 113, 119–191. [DOI] [PMC free article] [PubMed]
  14. Manivannan, V., Vembu, N., Nallu, M., Sivakumar, K. & Linden, A. (2005). Acta Cryst. E61, o690–o692.
  15. Miller, S. C. (2010). J. Org. Chem. 75, 4632–4635. [DOI] [PMC free article] [PubMed]
  16. Navia, M. A. (2000). Science, 288, 2132–2133. [DOI] [PubMed]
  17. Ngassa, F. N., Biros, S. M. & Staples, R. J. (2015). Acta Cryst. E71, 1521–1524. [DOI] [PMC free article] [PubMed]
  18. Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.
  19. Sardzinski, L. W., Wertjes, W. C., Schnaith, A. M. & Kalyani, D. (2015). Org. Lett. 17, 1256–1259. [DOI] [PMC free article] [PubMed]
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  22. Um, I. H., Chun, S. M., Chae, O. M., Fujio, M. & Tsuno, Y. (2004). J. Am. Chem. Soc. 69, 3166–3172. [DOI] [PubMed]
  23. Vembu, N. & Fronczek, F. R. (2009). J. Chem. Crystallogr. 39, 515–518.
  24. Vembu, N., Nallu, M., Spencer, E. C. & Howard, J. A. K. (2003). Acta Cryst. E59, o1213–o1215.
  25. Vennila, J. P., Kavitha, H. P., Thiruvadigal, D. J. & Manivannan, V. (2008). Acta Cryst. E64, o2304. [DOI] [PMC free article] [PubMed]
  26. Wright, M. E., Gorish, C. E., Shen, Z. & McHugh, M. A. (2006). J. Fluor. Chem. 127, 330–336.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989016007325/su5297sup1.cif

e-72-00789-sup1.cif (215.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016007325/su5297Isup2.hkl

e-72-00789-Isup2.hkl (141.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016007325/su5297Isup3.cml

CCDC reference: 1477649

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES