Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 May 10;72(Pt 6):801–804. doi: 10.1107/S2056989016007568

Crystal structure of [tris­(pyridin-2-ylmeth­yl)amine-κ4 N]copper(II) bromide

Emma C Bridgman a, Megan M Doherty a, Kaleigh A Ellis a, Elizabeth A Homer a, Taylor N Lashbrook a, Margaret E Mraz a, Gina C Pernesky a, Emma M Vreeke a, Kayode D Oshin a,*, Allen G Oliver b
PMCID: PMC4908570  PMID: 27308046

The complex [tris­(pyridin-2-ylmeth­yl)amine]­copper(II) bromide adopts a trigonal–bipyramidal coordination geometry about the CuII ion. The outer sphere bromine counter-ions are severely disordered.

Keywords: crystal structure, five-coordinate copper(II) complex, Atom Transfer Radical Addition (ATRA), ligand disorder

Abstract

In the asymmetric unit of the title compound, [CuBr(C18H18N4)]Br, there are three crystallographically independent cations. One of the cations exhibits positional disorder of the pyridin-2-yl­methyl groups over two sets of sites with refined occupancies of 0.672 (8) and 0.328 (8). The outer-sphere bromine counter-ion is severely disordered over multiple sites. In each cation, the CuII ion is coordinated by the four N atoms of the tris­(pyridin-2-ylmeth­yl)amine ligand and one bromine and adopts a slightly distorted trigonal–bipyramidal geometry.

Chemical context  

Atom Transfer Radical Addition (ATRA) reactions involve the formation of carbon–carbon bonds through the addition of saturated poly-halogenated hydro­carbons to alkenes (Eckenhoff & Pintauer, 2010). First reported by Kharasch in the 1940s (Kharasch et al., 1945), the reaction incorporates halogen-group functionalities within products which can be used as starting reagents in further functionalization reactions (Iqbal et al., 1994). Subsequently, ATRA reactions have emerged as some of the most atom-economical methods for simultaneously forming C—C and C—X bonds, leading to the production of more attractive mol­ecules (Eckenhoff & Pintauer, 2010). Most ATRA reactions proceed in the presence of a free-radical precursor or transition metal complex (catalyst), as the halogen-atom transfer agent and have been efficiently catalyzed by complexes incorporating nickel, ruthenium, iron, and copper (Eckenhoff et al., 2008). Studies suggest that the type of ligands used in ATRA reactions significantly influence the behavior of the catalyst generated due to different steric and electronic inter­actions with the metal atom (Matyjaszewski et al., 2001). Copper complexes made with tetra­dentate nitro­gen-based ligands such as tris­[2-(di­methyl­amino)­eth­yl]amine (Me6TREN), 1,4,8,11-tetra­aza-1,4,8,11-tetra­methyl­cyclo­tetra­decane (Me6CYCLAM), and tris­(pyridin-2-yl­meth­yl)amine (TPMA) are currently some of the most active multi-dentate ligand structures used in atom-transfer radical reactions (Tang et al., 2008). Given the significance and application of complexes made from these tetra­dentate ligands, we report on the synthesis and crystal structure of the title compound [CuBr(C18H18N4)]Br (I) which incorporates tris(pyridin-2-yl­meth­yl)amine.graphic file with name e-72-00801-scheme1.jpg

Structural commentary  

There are three crystallographically independent copper(II) atoms within the asymmetric unit reported herein (Fig. 1). Each of the atoms adopts a slightly distorted trigonal–bipyramidal geometry and is coordinated by the four nitro­gen atoms of the tris­(pyridin-2-yl­meth­yl)amine ligand and one bromine atom (Table 1). The amine nitro­gen and bromine atoms adopt the apical positions of the coordination environment and the pyridine nitro­gen atoms are located in the equatorial plane. Derived metrics (bond lengths and angles) from the copper atoms to their respective coordinating atoms are typical (MOGUL analysis; Bruno et al., 2004). The τ-5 values for Cu1, Cu2 and Cu3 are 0.99, 0.99 and 0.89, respectively (Addison et al., 1984); the latter deviates the most from ideal geometry due to the disorder present in that mol­ecule.

Figure 1.

Figure 1

Labeling scheme for [tris­(pyridin-2-ylmeth­yl)amine]­copper(II) bromide. Atomic displacement ellipsoids depicted at 50% probability and H atoms as spheres of arbitrary radius. Some labels are omitted for clarity.

Table 1. Selected geometric parameters (Å, °).

Cu1—N3 2.037 (7) Cu2—N6 2.071 (6)
Cu1—N1 2.054 (6) Cu2—Br2 2.3664 (12)
Cu1—N4 2.060 (6) Cu3—N11 2.004 (10)
Cu1—N2 2.060 (7) Cu3—N10 2.045 (7)
Cu1—Br1 2.3781 (12) Cu3—N9 2.046 (6)
Cu2—N5 2.035 (6) Cu3—N12 2.115 (6)
Cu2—N7 2.060 (6) Cu3—Br3 2.3715 (11)
Cu2—N8 2.061 (7)    
       
N3—Cu1—N1 81.5 (3) N8—Cu2—N6 118.1 (2)
N3—Cu1—N4 119.7 (3) N5—Cu2—Br2 177.8 (2)
N1—Cu1—N4 80.4 (3) N7—Cu2—Br2 97.18 (19)
N3—Cu1—N2 120.1 (3) N8—Cu2—Br2 98.5 (2)
N1—Cu1—N2 81.5 (3) N6—Cu2—Br2 100.86 (19)
N4—Cu1—N2 113.3 (3) N11—Cu3—N10 126.2 (4)
N3—Cu1—Br1 98.9 (2) N11—Cu3—N9 82.6 (3)
N1—Cu1—Br1 179.4 (2) N10—Cu3—N9 81.3 (3)
N4—Cu1—Br1 99.82 (18) N11—Cu3—N12 118.1 (4)
N2—Cu1—Br1 97.8 (2) N10—Cu3—N12 110.5 (4)
N5—Cu2—N7 81.3 (3) N9—Cu3—N12 83.3 (3)
N5—Cu2—N8 81.0 (3) N11—Cu3—Br3 97.3 (3)
N7—Cu2—N8 118.7 (3) N10—Cu3—Br3 98.4 (2)
N5—Cu2—N6 81.2 (3) N9—Cu3—Br3 179.7 (2)
N7—Cu2—N6 116.3 (2) N12—Cu3—Br3 97.0 (2)

One of the three independent cations exhibits positional disorder of the pyridin-2-yl­methyl groups (see Refinement below for specific details). Despite this disorder, the connectivity is unequivocal. Unlike the polymorphic structure (Eckenhoff et al., 2008) that has crystallographically imposed symmetry on the pyridin-2-yl­methyl arms, the pyridin-2-yl­methyl groups on the cations reported here have geometries independent of the others. Furthermore, the structure here is mixture of Δ and Λ conformations of the ligand, whereas Eckenhoff’s structure has chirally resolved upon crystallization.

Supra­molecular features  

The prominent feature of the crystal packing within this structure is the excessive positional disorder of the outer-sphere bromine anions. These are observed in a channel within the lattice (Fig. 2) that presumably has unresolvable solvent of crystallization also present. Because there are no prominent charge surfaces, packing is solely due to van der Waals inter­actions.

Figure 2.

Figure 2

Packing diagram of [tris­(pyridin-2-ylmeth­yl)amine]­copper(II) bromide, viewed along the b axis, highlighting the channels in which disordered bromine ions reside. H atoms and the minor disorder components are omitted for clarity. Atomic displacement parameters depicted at 50% probability.

Database survey  

There are six reported copper(II) bromide structures deposited in the Cambridge Structure Database incorporating the tris­(pyridin-2-yl­meth­yl)amine ligand derivatives (Groom et al., 2016; CSD Version 5.37 plus one update). Of those six structures, one is a dimer incorporating two bridging bromine ligands (Maiti et al., 2007) and the remaining five are monomers. Out of the five monomer structures, three incorporate methyl or meth­oxy electron-withdrawing groups (Kaur et al., 2015), while one incorporates hydroxyl electron-donating groups (He et al., 2000). The final structure is a polymorph of that presented here: it incorporates an unsubstituted TPMA ligand framework but adopts a different space group (cubic, P213) and unit-cell parameters (a = 12.633 Å) due to lack of disorder in the ligand framework (Eckenhoff et al., 2008). Of the six total reported structures, four adopt similar distorted five-coordinate geometries as observed in complex (I), while two adopt a distorted six-coordinate geometry about the metal atom.

Synthesis and crystallization  

Synthesis of tris­(pyridin-2-yl­meth­yl)amine (TPMA) ligand: the TPMA ligand was synthesized according to modified literature procedures (Britovsek et al., 2005). A 500 mL round-bottom flask was charged with 100 mL of di­chloro­methane solvent. While mixing, 2-(amino­meth­yl)pyridine (1.62 mL, 15.0 mmol) and sodium tri­acet­oxy­borohydride (9.63 g, 44.2 mmol) were added, generating a clear-colored solution. 2-Pyridine­carboxaldehyde (3.38 g, 31.54 mmol) was slowly added to the mixture, producing a yellow-colored solution. The reaction was allowed to mix for 24 h and inter­rupted with the addition of sodium hydrogen carbonate until a pH of 10 was achieved. Extractions were performed on the resulting solution with ethyl acetate and the organic layers collected. The organic layer was subsequently dried using magnesium sulfate (MgSO4) and solvent removed using a rotary evaporator to generate a yellow residue. This residue was dried under vacuum for three h to produce the desired ligand as a yellow solid (4.43 g, 97%). 1H NMR (CDCl3, 400 MHz): δ3.86 (s, 2H), δ7.51 (d, 1H), δ7.63 (t, 1H), δ 8.52 (d, 1H). 13C NMR (CDCl3, 400 MHz): δ 60.60, 122.35, 123.32, 136.59, 149.35, 159.81. FT–IR (solid) v (cm−1): 3048 (s), 3009 (s), 2920 (s), 2803 (s), 1585 (s), 1566 (s), 970 (s), 745 (s).graphic file with name e-72-00801-scheme2.jpg

Synthesis of tris(pyridin-2-yl­meth­yl)amine copper(II) bromide complex: TPMA (0.500 g, 1.72 mmol) was dissolved in 15 mL methanol in a 100 mL round-bottom flask. Copper(II) bromide (0.384 g, 1.72 mmol) was added to the flask to give a greenish-blue-colored solution. The reaction was allowed to mix for one hour then 30 mL of diethyl ether was transferred into the flask, facilitating the precipitation of the desired complex as a green powder. The mixture was filtered and the precipitate washed with excess diethyl ether solvent. The precipitate was dried under vacuum for 30 minutes to yield a green-colored solid (1.44 g, 94%). TOF–ESI–MS: (m/z) [M – (Br)]+ calculated for C18H18N4CuBr = 432.00, found 432.03. FT–IR (solid): v (cm−1) = 3337 (b), 2018 (s), 1600 (s), 1473 (s), 1426 (s), 1257 (s), 1150 (s), 1015 (s), 949 (s), 837 (s). UV–Vis: λmax (MeOH) = 700 nm. Green-colored single crystals suitable for X-ray analysis were obtained by slow diffusion of diethyl ether into a concentrated complex solution made in methanol.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The two ordered cations, the major occupancy component of the disordered cation and all outer-sphere bromine atoms were modeled with anisotropic atomic displacement parameters. The minor occupancy component of the disordered cation was modeled with isotropic atomic displacement parameters. Hydrogen atoms were included in geometrically calculated positions with C—H = 0.99 (methyl­ene) and 0.95 Å (aromatic) and U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula [CuBr(C18H18N4)]Br
M r 513.72
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 120
a, b, c (Å) 11.5415 (7), 15.2747 (9), 19.9663 (12)
α, β, γ (°) 88.425 (2), 75.894 (2), 69.650 (2)
V3) 3194.4 (3)
Z 6
Radiation type Mo Kα
μ (mm−1) 4.79
Crystal size (mm) 0.30 × 0.30 × 0.26
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2015)
T min, T max 0.688, 0.862
No. of measured, independent and observed [I > 2σ(I)] reflections 25682, 13032, 10550
R int 0.020
(sin θ/λ)max−1) 0.626
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.086, 0.254, 1.04
No. of reflections 13032
No. of parameters 769
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 3.78, −1.50

Computer programs: APEX3 and SAINT (Bruker, 2015), SHELXT2014/2 (Sheldrick, 2015a ), SHELXL2014/7 (Sheldrick, 2015b ), XP (Bruker, 2015) and publCIF (Westrip, 2010).

The disorder of the pyridin-2-yl­methyl groups was observed as residual electron density oriented in approximately a mirror to the major occupancy components. The occupancies of the two components were refined summed to unity, yielding an approximately 0.67:0.33 ratio. The pyridine rings for both components were constrained to an ideal hexa­gon, with C—C = 1.39 Å.

All of the outer-sphere, non-coordinating bromine counter-ions were found to be disordered over multiple sites. Initially, occupancies were refined freely to identify possible site pairings. One bromine (Br4) was found to be nearly fully located at one site. In subsequent refinement cycles, residual density adjacent to the site was revealed and ultimately modeled as a bromine disordered over two sites with occupancies 0.80:0.20. Two bromine sites whose occupancies refined independently to nearly 50% were both set to 50% occupancy and assumed to be disorder of the same bromine atom (Br5/5A). Final residual electron density ranging from 8 to 13 e Å−3 was observed. Because an additional bromine was required for charge balance and there were no other counter-ions used during synthesis, it was assumed that the final bromine was disordered over multiple sites, presumably in concert with solvent from crystallization. Ultimately, seven locations were refined as partial-occupancy bromine atoms with a total occupancy summed to unity, yielding a 0.13:0.17:0.17:0.20:0.11:0.12:0.10 ratio of sites. The solvent contribution could not be reliably modeled.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016007568/lh5812sup1.cif

e-72-00801-sup1.cif (796.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016007568/lh5812Isup2.hkl

CCDC reference: 1478413

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank all students who participated in this laboratory experiment for their contribution and the University of Notre Dame for instrument support.

supplementary crystallographic information

Crystal data

[CuBr(C18H18N4)]Br Z = 6
Mr = 513.72 F(000) = 1518
Triclinic, P1 Dx = 1.602 Mg m3
a = 11.5415 (7) Å Mo Kα radiation, λ = 0.71073 Å
b = 15.2747 (9) Å Cell parameters from 9798 reflections
c = 19.9663 (12) Å θ = 2.4–26.3°
α = 88.425 (2)° µ = 4.79 mm1
β = 75.894 (2)° T = 120 K
γ = 69.650 (2)° Block, green
V = 3194.4 (3) Å3 0.30 × 0.30 × 0.26 mm

Data collection

Bruker APEXII diffractometer 13032 independent reflections
Radiation source: fine-focus sealed tube 10550 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1 Rint = 0.020
combination of ω and φ–scans θmax = 26.4°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2015) h = −14→14
Tmin = 0.688, Tmax = 0.862 k = −19→19
25682 measured reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: real-space vector search
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.254 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1449P)2 + 25.6015P] where P = (Fo2 + 2Fc2)/3
13032 reflections (Δ/σ)max = 0.027
769 parameters Δρmax = 3.78 e Å3
1 restraint Δρmin = −1.50 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The outer sphere bromine anion atoms were all found to be disordered over multiple sites. Br4/4A was found to occupy two sites close to each other and was refined with occupancies summed to unity yielding an approximate 0.83:0.17 ratio. Br5/5A was modeled as two half occupancy bromine atoms from an initial, independent, refinement of the occupancies for these sites. Br6 is disordered over multiple sites. Occupancies of the sites were refined summed to unity yielding an approximately 0.14:0.17:0.17:0.20:0.11:0.12:0.09 ratio of site occupancies. Attempts to model this disorder as undifferentiated solvent did not meet with success. Furthermore, because the electron density associated with this is located within the enveloped developed by SQUEEZE, this routine could not be employed. The result is that there is some additional residual electron density that cannot be reliably accounted for. Presumably there is solvent of crystallization present at the sites when they are not occupied by anions. This was not modeled.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.29355 (9) 0.21210 (6) 0.12631 (5) 0.0349 (2)
Br1 0.28112 (9) 0.08631 (6) 0.19713 (5) 0.0542 (3)
N1 0.3062 (6) 0.3198 (4) 0.0645 (3) 0.0357 (14)
N2 0.4733 (6) 0.1456 (5) 0.0635 (4) 0.0431 (16)
N3 0.2663 (7) 0.3099 (5) 0.2015 (4) 0.0418 (16)
N4 0.1495 (6) 0.2241 (4) 0.0789 (3) 0.0337 (13)
C1 0.3979 (9) 0.2781 (6) −0.0032 (4) 0.046 (2)
H1A 0.4339 0.3246 −0.0260 0.055*
H1B 0.3527 0.2608 −0.0340 0.055*
C2 0.5051 (8) 0.1917 (6) 0.0084 (5) 0.046 (2)
C3 0.6262 (10) 0.1613 (8) −0.0350 (6) 0.063 (3)
H3 0.6477 0.1957 −0.0734 0.076*
C4 0.7151 (10) 0.0802 (9) −0.0217 (8) 0.080 (4)
H4 0.7995 0.0590 −0.0506 0.096*
C5 0.6831 (10) 0.0305 (8) 0.0323 (7) 0.069 (3)
H5 0.7430 −0.0270 0.0405 0.082*
C6 0.5597 (8) 0.0659 (7) 0.0757 (5) 0.051 (2)
H6 0.5368 0.0326 0.1146 0.061*
C7 0.3496 (9) 0.3801 (6) 0.1005 (4) 0.0426 (18)
H7A 0.3277 0.4429 0.0819 0.051*
H7B 0.4434 0.3530 0.0934 0.051*
C8 0.2855 (8) 0.3877 (6) 0.1763 (4) 0.0413 (18)
C9 0.2535 (10) 0.4680 (7) 0.2179 (5) 0.057 (2)
H9 0.2657 0.5227 0.1988 0.068*
C10 0.2035 (11) 0.4664 (8) 0.2878 (5) 0.063 (3)
H10 0.1798 0.5206 0.3176 0.075*
C11 0.1881 (11) 0.3863 (9) 0.3143 (5) 0.065 (3)
H11 0.1563 0.3841 0.3626 0.078*
C12 0.2189 (10) 0.3083 (8) 0.2701 (5) 0.055 (2)
H12 0.2065 0.2533 0.2884 0.066*
C13 0.1770 (8) 0.3701 (6) 0.0540 (4) 0.0396 (17)
H13A 0.1834 0.4080 0.0131 0.048*
H13B 0.1233 0.4128 0.0949 0.048*
C14 0.1174 (8) 0.3004 (5) 0.0431 (4) 0.0365 (16)
C15 0.0359 (9) 0.3132 (7) 0.0003 (4) 0.047 (2)
H15 0.0122 0.3689 −0.0235 0.056*
C16 −0.0100 (8) 0.2432 (7) −0.0068 (4) 0.050 (2)
H16 −0.0625 0.2485 −0.0379 0.060*
C17 0.0196 (9) 0.1657 (7) 0.0305 (4) 0.0453 (19)
H17 −0.0135 0.1176 0.0267 0.054*
C18 0.0975 (8) 0.1589 (6) 0.0734 (4) 0.0407 (18)
H18 0.1159 0.1061 0.1005 0.049*
Cu2 0.78574 (9) 1.03414 (6) 0.22801 (5) 0.0341 (2)
Br2 0.94552 (9) 0.97310 (6) 0.12441 (4) 0.0507 (3)
N5 0.6517 (6) 1.0824 (5) 0.3189 (3) 0.0366 (14)
N6 0.7077 (6) 1.1724 (4) 0.2059 (3) 0.0346 (13)
N7 0.9054 (6) 1.0078 (4) 0.2935 (3) 0.0345 (13)
N8 0.6826 (7) 0.9480 (4) 0.2270 (4) 0.0428 (16)
C19 0.6282 (9) 1.1832 (6) 0.3303 (5) 0.046 (2)
H19A 0.6920 1.1906 0.3528 0.055*
H19B 0.5424 1.2139 0.3615 0.055*
C20 0.6366 (7) 1.2294 (5) 0.2629 (4) 0.0374 (17)
C21 0.5785 (8) 1.3247 (6) 0.2589 (5) 0.047 (2)
H21 0.5261 1.3640 0.2990 0.056*
C22 0.5998 (9) 1.3609 (6) 0.1940 (5) 0.051 (2)
H22 0.5631 1.4263 0.1899 0.061*
C23 0.6724 (9) 1.3040 (6) 0.1362 (5) 0.048 (2)
H23 0.6865 1.3288 0.0920 0.058*
C24 0.7246 (8) 1.2095 (6) 0.1439 (5) 0.0415 (18)
H24 0.7743 1.1691 0.1040 0.050*
C25 0.7049 (8) 1.0265 (7) 0.3737 (4) 0.0457 (19)
H25A 0.6898 0.9664 0.3753 0.055*
H25B 0.6613 1.0611 0.4194 0.055*
C26 0.8459 (8) 1.0079 (6) 0.3590 (4) 0.0407 (18)
C27 0.9092 (10) 0.9863 (7) 0.4114 (5) 0.052 (2)
H27 0.8644 0.9841 0.4578 0.062*
C28 1.0400 (11) 0.9678 (8) 0.3942 (6) 0.061 (3)
H28 1.0858 0.9550 0.4291 0.074*
C29 1.1022 (10) 0.9683 (7) 0.3262 (6) 0.057 (2)
H29 1.1919 0.9542 0.3135 0.068*
C30 1.0333 (9) 0.9894 (6) 0.2762 (5) 0.0443 (19)
H30 1.0761 0.9910 0.2293 0.053*
C31 0.5351 (8) 1.0677 (6) 0.3124 (5) 0.048 (2)
H31A 0.4885 1.1177 0.2860 0.057*
H31B 0.4784 1.0701 0.3589 0.057*
C32 0.5716 (8) 0.9739 (6) 0.2755 (6) 0.055 (3)
C33 0.4913 (10) 0.9229 (8) 0.2883 (10) 0.093 (5)
H33 0.4125 0.9444 0.3224 0.112*
C34 0.5301 (13) 0.8390 (9) 0.2492 (12) 0.128 (8)
H34 0.4785 0.8011 0.2567 0.154*
C35 0.6430 (12) 0.8119 (7) 0.2002 (9) 0.085 (5)
H35 0.6709 0.7546 0.1733 0.102*
C36 0.7173 (11) 0.8676 (6) 0.1895 (6) 0.058 (3)
H36 0.7951 0.8483 0.1545 0.069*
Cu3 0.78179 (9) 0.55333 (7) 0.25199 (4) 0.0332 (2)
Br3 0.84691 (9) 0.53090 (6) 0.12962 (4) 0.0474 (2)
N9 0.7248 (6) 0.5733 (5) 0.3575 (3) 0.0336 (13)
C37 0.6067 (11) 0.5541 (8) 0.3805 (6) 0.036 (3) 0.672 (8)
H37A 0.5608 0.5841 0.4274 0.043* 0.672 (8)
H37B 0.6266 0.4858 0.3830 0.043* 0.672 (8)
C38 0.5254 (6) 0.5897 (6) 0.3329 (3) 0.040 (3) 0.672 (8)
C39 0.3929 (7) 0.6198 (7) 0.3517 (4) 0.048 (3) 0.672 (8)
H39 0.3490 0.6207 0.3987 0.058* 0.672 (8)
C40 0.3247 (6) 0.6484 (7) 0.3016 (6) 0.059 (4) 0.672 (8)
H40 0.2341 0.6690 0.3144 0.071* 0.672 (8)
C41 0.3889 (10) 0.6470 (9) 0.2328 (5) 0.073 (9) 0.672 (8)
H41 0.3423 0.6666 0.1986 0.087* 0.672 (8)
C42 0.5214 (10) 0.6170 (8) 0.2140 (3) 0.064 (11) 0.672 (8)
H42 0.5653 0.6160 0.1670 0.077* 0.672 (8)
N10 0.5897 (6) 0.5883 (6) 0.2641 (4) 0.036 (2) 0.672 (8)
C43 0.7222 (10) 0.6622 (8) 0.3746 (6) 0.033 (2) 0.672 (8)
H43A 0.7308 0.6644 0.4226 0.040* 0.672 (8)
H43B 0.6388 0.7092 0.3727 0.040* 0.672 (8)
C44 0.8253 (9) 0.6864 (6) 0.3276 (4) 0.036 (3) 0.672 (8)
C45 0.8754 (10) 0.7504 (6) 0.3455 (5) 0.047 (3) 0.672 (8)
H45 0.8435 0.7812 0.3904 0.056* 0.672 (8)
C46 0.9721 (10) 0.7694 (7) 0.2977 (7) 0.049 (5) 0.672 (8)
H46 1.0064 0.8131 0.3099 0.059* 0.672 (8)
C47 1.0188 (10) 0.7243 (10) 0.2320 (6) 0.043 (5) 0.672 (8)
H47 1.0849 0.7373 0.1993 0.052* 0.672 (8)
C48 0.9687 (12) 0.6603 (10) 0.2141 (4) 0.043 (5) 0.672 (8)
H48 1.0005 0.6295 0.1691 0.052* 0.672 (8)
N11 0.8719 (11) 0.6413 (7) 0.2618 (5) 0.038 (4) 0.672 (8)
C49 0.8310 (12) 0.4950 (8) 0.3817 (6) 0.035 (2) 0.672 (8)
H49A 0.9063 0.5142 0.3762 0.042* 0.672 (8)
H49B 0.8000 0.4871 0.4315 0.042* 0.672 (8)
C50 0.8702 (8) 0.4041 (4) 0.3422 (3) 0.036 (3) 0.672 (8)
C51 0.9133 (9) 0.3163 (5) 0.3678 (3) 0.041 (3) 0.672 (8)
H51 0.9169 0.3109 0.4148 0.049* 0.672 (8)
C52 0.9512 (9) 0.2362 (4) 0.3246 (5) 0.046 (3) 0.672 (8)
H52 0.9807 0.1762 0.3421 0.055* 0.672 (8)
C53 0.9460 (11) 0.2441 (5) 0.2558 (4) 0.045 (4) 0.672 (8)
H53 0.9719 0.1894 0.2263 0.053* 0.672 (8)
C54 0.9028 (12) 0.3319 (7) 0.2302 (3) 0.051 (5) 0.672 (8)
H54 0.8992 0.3373 0.1831 0.061* 0.672 (8)
N12 0.8649 (10) 0.4120 (5) 0.2734 (4) 0.031 (2) 0.672 (8)
C37A 0.5973 (18) 0.6729 (13) 0.3737 (10) 0.023 (4)* 0.328 (8)
H37C 0.5488 0.6781 0.4226 0.028* 0.328 (8)
H37D 0.6252 0.7275 0.3653 0.028* 0.328 (8)
C38A 0.5180 (11) 0.6709 (10) 0.3282 (6) 0.025 (4)* 0.328 (8)
C39A 0.3857 (11) 0.7107 (10) 0.3429 (6) 0.040 (6)* 0.328 (8)
H39A 0.3389 0.7423 0.3867 0.048* 0.328 (8)
C40A 0.3221 (9) 0.7041 (12) 0.2935 (7) 0.030 (5)* 0.328 (8)
H40A 0.2317 0.7313 0.3036 0.036* 0.328 (8)
C41A 0.3907 (12) 0.6578 (13) 0.2294 (6) 0.026 (7)* 0.328 (8)
H41A 0.3472 0.6534 0.1957 0.031* 0.328 (8)
C42A 0.5229 (12) 0.6180 (10) 0.2147 (5) 0.012 (8)* 0.328 (8)
H42A 0.5698 0.5864 0.1709 0.015* 0.328 (8)
N10A 0.5866 (9) 0.6246 (8) 0.2641 (6) 0.017 (4)* 0.328 (8)
C43A 0.8177 (18) 0.6049 (14) 0.3841 (10) 0.023 (4)* 0.328 (8)
H43C 0.7719 0.6422 0.4285 0.028* 0.328 (8)
H43D 0.8860 0.5489 0.3934 0.028* 0.328 (8)
C44A 0.8751 (18) 0.6595 (12) 0.3373 (8) 0.032 (6)* 0.328 (8)
C45A 0.9284 (19) 0.7224 (13) 0.3536 (7) 0.026 (5)* 0.328 (8)
H45A 0.9212 0.7376 0.4006 0.031* 0.328 (8)
C46A 0.992 (2) 0.7630 (15) 0.3010 (11) 0.041 (9)* 0.328 (8)
H46A 1.0286 0.8060 0.3122 0.049* 0.328 (8)
C47A 1.003 (2) 0.7407 (19) 0.2323 (9) 0.031 (8)* 0.328 (8)
H47A 1.0463 0.7685 0.1964 0.037* 0.328 (8)
C48A 0.949 (3) 0.6778 (18) 0.2160 (7) 0.019 (6)* 0.328 (8)
H48A 0.9565 0.6626 0.1690 0.023* 0.328 (8)
N11A 0.886 (2) 0.6372 (13) 0.2685 (10) 0.016 (6)* 0.328 (8)
C49A 0.6874 (19) 0.5069 (14) 0.3899 (10) 0.023 (4)* 0.328 (8)
H49C 0.5988 0.5162 0.3885 0.028* 0.328 (8)
H49D 0.6915 0.5074 0.4389 0.028* 0.328 (8)
C50A 0.7774 (15) 0.4172 (9) 0.3521 (7) 0.028 (4)* 0.328 (8)
C51A 0.8117 (16) 0.3309 (10) 0.3808 (6) 0.042 (6)* 0.328 (8)
H51A 0.7801 0.3263 0.4289 0.051* 0.328 (8)
C52A 0.8923 (17) 0.2511 (8) 0.3392 (8) 0.040 (7)* 0.328 (8)
H52A 0.9157 0.1920 0.3588 0.048* 0.328 (8)
C53A 0.9385 (18) 0.2577 (10) 0.2688 (8) 0.027 (6)* 0.328 (8)
H53A 0.9935 0.2031 0.2403 0.032* 0.328 (8)
C54A 0.9041 (17) 0.3441 (13) 0.2401 (6) 0.009 (4)* 0.328 (8)
H54A 0.9357 0.3486 0.1920 0.011* 0.328 (8)
N12A 0.8236 (15) 0.4238 (10) 0.2818 (7) 0.027 (6)* 0.328 (8)
Br4 0.2753 (9) 0.6342 (2) 0.06977 (13) 0.0424 (9) 0.80 (4)
Br4A 0.320 (5) 0.626 (2) 0.0748 (10) 0.046 (6) 0.20 (4)
Br5 0.9243 (4) 0.4418 (2) 0.53149 (17) 0.1024 (11) 0.5
Br5A 0.66590 (18) 0.18484 (14) 0.53556 (10) 0.0538 (5) 0.5
Br6A 0.6049 (11) 0.0709 (6) 0.5606 (3) 0.083 (4) 0.136 (3)
Br6B 0.3821 (5) 0.4517 (7) 0.4322 (2) 0.085 (3) 0.171 (3)
Br6C 0.8053 (6) −0.1392 (5) 0.5725 (4) 0.059 (2) 0.167 (3)
Br6D 0.7729 (6) −0.1886 (7) 0.5463 (3) 0.090 (3) 0.198 (3)
Br6E 0.4331 (9) 0.1069 (7) 0.5323 (4) 0.053 (3) 0.107 (3)
Br6F 0.5711 (7) 0.5148 (6) 0.0703 (4) 0.051 (2) 0.125 (3)
Br6G 1.0726 (13) 0.7636 (11) 0.4667 (8) 0.078 (4) 0.096 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0329 (5) 0.0306 (5) 0.0386 (5) −0.0070 (4) −0.0112 (4) 0.0110 (4)
Br1 0.0519 (5) 0.0450 (5) 0.0618 (6) −0.0129 (4) −0.0160 (4) 0.0285 (4)
N1 0.044 (4) 0.033 (3) 0.032 (3) −0.016 (3) −0.009 (3) 0.005 (3)
N2 0.034 (3) 0.041 (4) 0.052 (4) −0.010 (3) −0.011 (3) 0.000 (3)
N3 0.043 (4) 0.047 (4) 0.038 (4) −0.011 (3) −0.023 (3) 0.010 (3)
N4 0.036 (3) 0.033 (3) 0.029 (3) −0.009 (3) −0.008 (2) 0.002 (2)
C1 0.049 (5) 0.049 (5) 0.038 (4) −0.022 (4) 0.000 (4) 0.001 (4)
C2 0.043 (5) 0.044 (5) 0.053 (5) −0.021 (4) −0.006 (4) −0.004 (4)
C3 0.060 (6) 0.059 (6) 0.068 (7) −0.031 (5) 0.007 (5) −0.011 (5)
C4 0.039 (5) 0.065 (7) 0.117 (11) −0.016 (5) 0.015 (6) −0.020 (7)
C5 0.043 (5) 0.056 (6) 0.094 (9) −0.001 (5) −0.015 (5) −0.006 (6)
C6 0.038 (4) 0.047 (5) 0.063 (6) −0.007 (4) −0.016 (4) −0.001 (4)
C7 0.051 (5) 0.037 (4) 0.046 (5) −0.018 (4) −0.018 (4) 0.011 (3)
C8 0.046 (4) 0.043 (4) 0.045 (5) −0.017 (4) −0.027 (4) 0.008 (3)
C9 0.067 (6) 0.054 (6) 0.055 (6) −0.014 (5) −0.034 (5) −0.003 (4)
C10 0.074 (7) 0.069 (7) 0.047 (5) −0.014 (5) −0.033 (5) −0.008 (5)
C11 0.064 (6) 0.094 (9) 0.039 (5) −0.018 (6) −0.026 (5) −0.004 (5)
C12 0.065 (6) 0.069 (6) 0.039 (5) −0.023 (5) −0.027 (4) 0.011 (4)
C13 0.047 (4) 0.035 (4) 0.033 (4) −0.005 (3) −0.017 (3) 0.005 (3)
C14 0.040 (4) 0.036 (4) 0.028 (4) −0.006 (3) −0.010 (3) 0.002 (3)
C15 0.050 (5) 0.054 (5) 0.031 (4) −0.005 (4) −0.020 (4) 0.009 (4)
C16 0.041 (5) 0.073 (6) 0.035 (4) −0.015 (4) −0.014 (4) −0.007 (4)
C17 0.048 (5) 0.056 (5) 0.034 (4) −0.025 (4) −0.004 (3) −0.008 (4)
C18 0.041 (4) 0.047 (5) 0.031 (4) −0.015 (4) −0.003 (3) −0.002 (3)
Cu2 0.0355 (5) 0.0312 (5) 0.0343 (5) −0.0097 (4) −0.0087 (4) −0.0037 (4)
Br2 0.0523 (5) 0.0471 (5) 0.0380 (5) −0.0038 (4) −0.0037 (4) −0.0084 (4)
N5 0.033 (3) 0.039 (3) 0.038 (3) −0.014 (3) −0.007 (3) −0.002 (3)
N6 0.030 (3) 0.030 (3) 0.042 (4) −0.008 (2) −0.009 (3) −0.006 (3)
N7 0.035 (3) 0.034 (3) 0.038 (3) −0.016 (3) −0.011 (3) 0.003 (3)
N8 0.046 (4) 0.026 (3) 0.064 (5) −0.007 (3) −0.034 (4) 0.003 (3)
C19 0.046 (5) 0.043 (5) 0.045 (5) −0.014 (4) −0.007 (4) −0.011 (4)
C20 0.032 (4) 0.035 (4) 0.047 (4) −0.014 (3) −0.008 (3) −0.002 (3)
C21 0.038 (4) 0.040 (4) 0.058 (5) −0.008 (4) −0.011 (4) −0.011 (4)
C22 0.049 (5) 0.034 (4) 0.070 (6) −0.010 (4) −0.020 (4) 0.000 (4)
C23 0.050 (5) 0.034 (4) 0.059 (5) −0.013 (4) −0.013 (4) 0.009 (4)
C24 0.037 (4) 0.039 (4) 0.045 (5) −0.011 (3) −0.007 (3) 0.001 (3)
C25 0.042 (4) 0.051 (5) 0.038 (4) −0.013 (4) −0.005 (3) 0.000 (4)
C26 0.047 (5) 0.036 (4) 0.042 (4) −0.014 (3) −0.017 (4) 0.001 (3)
C27 0.063 (6) 0.054 (5) 0.038 (5) −0.014 (4) −0.023 (4) 0.011 (4)
C28 0.076 (7) 0.062 (6) 0.065 (7) −0.031 (5) −0.042 (6) 0.015 (5)
C29 0.054 (6) 0.057 (6) 0.073 (7) −0.026 (5) −0.032 (5) 0.014 (5)
C30 0.048 (5) 0.039 (4) 0.056 (5) −0.024 (4) −0.020 (4) 0.011 (4)
C31 0.030 (4) 0.043 (5) 0.066 (6) −0.013 (3) −0.007 (4) 0.001 (4)
C32 0.034 (4) 0.035 (4) 0.110 (8) −0.011 (4) −0.044 (5) 0.011 (5)
C33 0.031 (5) 0.054 (6) 0.200 (17) −0.011 (5) −0.045 (7) −0.001 (8)
C34 0.057 (8) 0.049 (7) 0.30 (3) −0.019 (6) −0.089 (12) −0.016 (10)
C35 0.069 (8) 0.040 (5) 0.159 (14) −0.002 (5) −0.073 (9) −0.022 (7)
C36 0.071 (6) 0.029 (4) 0.084 (7) −0.006 (4) −0.058 (6) 0.000 (4)
Cu3 0.0383 (5) 0.0402 (5) 0.0208 (4) −0.0115 (4) −0.0105 (3) 0.0043 (3)
Br3 0.0607 (5) 0.0542 (5) 0.0224 (4) −0.0158 (4) −0.0081 (3) 0.0019 (3)
N9 0.034 (3) 0.051 (4) 0.023 (3) −0.020 (3) −0.014 (2) 0.004 (3)
C37 0.042 (6) 0.035 (6) 0.026 (5) −0.012 (5) −0.003 (4) −0.002 (4)
C38 0.044 (6) 0.034 (6) 0.042 (7) −0.010 (5) −0.018 (5) −0.008 (5)
C39 0.037 (6) 0.046 (7) 0.060 (8) −0.006 (5) −0.019 (6) −0.013 (6)
C40 0.043 (8) 0.054 (9) 0.085 (12) −0.012 (6) −0.033 (8) −0.007 (8)
C41 0.078 (14) 0.065 (12) 0.100 (18) −0.026 (9) −0.067 (13) 0.001 (10)
C42 0.10 (2) 0.043 (10) 0.078 (16) −0.032 (9) −0.067 (14) 0.009 (7)
N10 0.053 (6) 0.028 (6) 0.033 (5) −0.014 (4) −0.021 (4) −0.005 (4)
C43 0.034 (6) 0.033 (6) 0.029 (5) −0.005 (4) −0.011 (4) −0.002 (4)
C44 0.049 (7) 0.031 (6) 0.030 (6) −0.009 (5) −0.018 (5) 0.004 (4)
C45 0.035 (7) 0.042 (7) 0.057 (8) 0.002 (6) −0.020 (6) −0.007 (6)
C46 0.031 (7) 0.030 (7) 0.082 (13) −0.005 (5) −0.013 (7) −0.002 (6)
C47 0.024 (6) 0.032 (7) 0.065 (10) 0.001 (6) −0.014 (6) 0.018 (6)
C48 0.032 (8) 0.030 (8) 0.054 (9) 0.006 (6) −0.014 (6) 0.016 (5)
N11 0.040 (7) 0.038 (7) 0.028 (6) −0.003 (5) −0.008 (5) 0.000 (4)
C49 0.047 (6) 0.031 (5) 0.027 (5) −0.010 (5) −0.018 (5) 0.002 (4)
C50 0.038 (6) 0.036 (6) 0.028 (5) −0.002 (5) −0.012 (4) 0.000 (4)
C51 0.041 (7) 0.043 (7) 0.034 (6) −0.008 (5) −0.010 (5) 0.013 (5)
C52 0.049 (8) 0.036 (6) 0.041 (7) −0.011 (6) 0.001 (6) 0.005 (5)
C53 0.041 (7) 0.034 (7) 0.054 (8) −0.010 (5) −0.008 (6) −0.007 (6)
C54 0.051 (9) 0.049 (9) 0.052 (9) −0.016 (7) −0.011 (7) −0.018 (7)
N12 0.032 (6) 0.035 (6) 0.025 (5) −0.008 (5) −0.010 (4) 0.005 (4)
Br4 0.043 (2) 0.0419 (7) 0.0400 (7) −0.0046 (8) −0.0224 (8) 0.0031 (5)
Br4A 0.055 (12) 0.051 (6) 0.040 (4) −0.028 (7) −0.011 (5) 0.002 (4)
Br5 0.119 (2) 0.106 (2) 0.0821 (19) −0.060 (2) 0.0087 (17) −0.0372 (17)
Br5A 0.0488 (10) 0.0572 (11) 0.0579 (11) −0.0253 (8) −0.0048 (8) −0.0256 (9)
Br6A 0.164 (9) 0.078 (5) 0.015 (3) −0.090 (6) 0.034 (4) −0.004 (3)
Br6B 0.037 (3) 0.206 (9) 0.010 (2) −0.043 (4) −0.0021 (18) 0.001 (3)
Br6C 0.053 (3) 0.075 (4) 0.048 (4) −0.036 (3) 0.006 (3) 0.021 (3)
Br6D 0.054 (3) 0.139 (7) 0.023 (2) 0.023 (4) 0.004 (2) −0.005 (3)
Br6E 0.056 (5) 0.070 (6) 0.042 (4) −0.044 (5) 0.006 (4) 0.001 (4)
Br6F 0.048 (4) 0.060 (5) 0.048 (4) −0.017 (3) −0.018 (3) −0.007 (3)
Br6G 0.070 (8) 0.102 (10) 0.088 (9) −0.050 (7) −0.042 (7) 0.051 (8)

Geometric parameters (Å, º)

Cu1—N3 2.037 (7) C36—H36 0.9500
Cu1—N1 2.054 (6) Cu3—N12A 1.977 (12)
Cu1—N4 2.060 (6) Cu3—N11 2.004 (10)
Cu1—N2 2.060 (7) Cu3—N10 2.045 (7)
Cu1—Br1 2.3781 (12) Cu3—N9 2.046 (6)
N1—C7 1.465 (11) Cu3—N10A 2.088 (9)
N1—C13 1.485 (10) Cu3—N11A 2.114 (17)
N1—C1 1.495 (10) Cu3—N12 2.115 (6)
N2—C2 1.335 (12) Cu3—Br3 2.3715 (11)
N2—C6 1.339 (11) N9—C49A 1.33 (2)
N3—C8 1.346 (11) N9—C43 1.398 (13)
N3—C12 1.347 (12) N9—C37 1.456 (13)
N4—C14 1.337 (10) N9—C43A 1.52 (2)
N4—C18 1.348 (11) N9—C49 1.551 (12)
C1—C2 1.521 (13) N9—C37A 1.68 (2)
C1—H1A 0.9900 C37—C38 1.459 (13)
C1—H1B 0.9900 C37—H37A 0.9900
C2—C3 1.379 (13) C37—H37B 0.9900
C3—C4 1.374 (18) C38—C39 1.3900
C3—H3 0.9500 C38—N10 1.3900
C4—C5 1.353 (18) C39—C40 1.3900
C4—H4 0.9500 C39—H39 0.9500
C5—C6 1.401 (14) C40—C41 1.3900
C5—H5 0.9500 C40—H40 0.9500
C6—H6 0.9500 C41—C42 1.3900
C7—C8 1.502 (12) C41—H41 0.9500
C7—H7A 0.9900 C42—N10 1.3900
C7—H7B 0.9900 C42—H42 0.9500
C8—C9 1.388 (13) C43—C44 1.475 (14)
C9—C10 1.377 (15) C43—H43A 0.9900
C9—H9 0.9500 C43—H43B 0.9900
C10—C11 1.370 (17) C44—C45 1.3900
C10—H10 0.9500 C44—N11 1.3900
C11—C12 1.391 (15) C45—C46 1.3900
C11—H11 0.9500 C45—H45 0.9500
C12—H12 0.9500 C46—C47 1.3900
C13—C14 1.499 (12) C46—H46 0.9500
C13—H13A 0.9900 C47—C48 1.3900
C13—H13B 0.9900 C47—H47 0.9500
C14—C15 1.382 (11) C48—N11 1.3900
C15—C16 1.373 (14) C48—H48 0.9500
C15—H15 0.9500 C49—C50 1.485 (12)
C16—C17 1.367 (14) C49—H49A 0.9900
C16—H16 0.9500 C49—H49B 0.9900
C17—C18 1.363 (12) C50—C51 1.3900
C17—H17 0.9500 C50—N12 1.3900
C18—H18 0.9500 C51—C52 1.3900
Cu2—N5 2.035 (6) C51—H51 0.9500
Cu2—N7 2.060 (6) C52—C53 1.3900
Cu2—N8 2.061 (7) C52—H52 0.9500
Cu2—N6 2.071 (6) C53—C54 1.3900
Cu2—Br2 2.3664 (12) C53—H53 0.9500
N5—C31 1.475 (11) C54—N12 1.3900
N5—C19 1.482 (11) C54—H54 0.9500
N5—C25 1.488 (11) C37A—C38A 1.45 (2)
N6—C24 1.346 (11) C37A—H37C 0.9900
N6—C20 1.352 (10) C37A—H37D 0.9900
N7—C26 1.320 (11) C38A—C39A 1.3900
N7—C30 1.360 (11) C38A—N10A 1.3900
N8—C32 1.341 (13) C39A—C40A 1.3900
N8—C36 1.339 (11) C39A—H39A 0.9500
C19—C20 1.500 (12) C40A—C41A 1.3900
C19—H19A 0.9900 C40A—H40A 0.9500
C19—H19B 0.9900 C41A—C42A 1.3900
C20—C21 1.384 (12) C41A—H41A 0.9500
C21—C22 1.395 (14) C42A—N10A 1.3900
C21—H21 0.9500 C42A—H42A 0.9500
C22—C23 1.367 (14) C43A—C44A 1.43 (2)
C22—H22 0.9500 C43A—H43C 0.9900
C23—C24 1.377 (12) C43A—H43D 0.9900
C23—H23 0.9500 C44A—C45A 1.3900
C24—H24 0.9500 C44A—N11A 1.3900
C25—C26 1.505 (12) C45A—C46A 1.3900
C25—H25A 0.9900 C45A—H45A 0.9500
C25—H25B 0.9900 C46A—C47A 1.3900
C26—C27 1.387 (12) C46A—H46A 0.9500
C27—C28 1.390 (15) C47A—C48A 1.3900
C27—H27 0.9500 C47A—H47A 0.9500
C28—C29 1.374 (16) C48A—N11A 1.3900
C28—H28 0.9500 C48A—H48A 0.9500
C29—C30 1.387 (13) C49A—C50A 1.49 (2)
C29—H29 0.9500 C49A—H49C 0.9900
C30—H30 0.9500 C49A—H49D 0.9900
C31—C32 1.503 (13) C50A—C51A 1.3900
C31—H31A 0.9900 C50A—N12A 1.3900
C31—H31B 0.9900 C51A—C52A 1.3900
C32—C33 1.380 (14) C51A—H51A 0.9500
C33—C34 1.39 (2) C52A—C53A 1.3900
C33—H33 0.9500 C52A—H52A 0.9500
C34—C35 1.36 (2) C53A—C54A 1.3900
C34—H34 0.9500 C53A—H53A 0.9500
C35—C36 1.384 (17) C54A—N12A 1.3900
C35—H35 0.9500 C54A—H54A 0.9500
N3—Cu1—N1 81.5 (3) N11—Cu3—N10 126.2 (4)
N3—Cu1—N4 119.7 (3) N12A—Cu3—N9 77.5 (5)
N1—Cu1—N4 80.4 (3) N11—Cu3—N9 82.6 (3)
N3—Cu1—N2 120.1 (3) N10—Cu3—N9 81.3 (3)
N1—Cu1—N2 81.5 (3) N12A—Cu3—N10A 113.6 (6)
N4—Cu1—N2 113.3 (3) N9—Cu3—N10A 80.5 (4)
N3—Cu1—Br1 98.9 (2) N12A—Cu3—N11A 121.0 (8)
N1—Cu1—Br1 179.4 (2) N9—Cu3—N11A 79.7 (6)
N4—Cu1—Br1 99.82 (18) N10A—Cu3—N11A 115.0 (7)
N2—Cu1—Br1 97.8 (2) N11—Cu3—N12 118.1 (4)
C7—N1—C13 111.9 (6) N10—Cu3—N12 110.5 (4)
C7—N1—C1 112.2 (7) N9—Cu3—N12 83.3 (3)
C13—N1—C1 110.0 (6) N12A—Cu3—Br3 102.8 (5)
C7—N1—Cu1 107.6 (5) N11—Cu3—Br3 97.3 (3)
C13—N1—Cu1 107.1 (5) N10—Cu3—Br3 98.4 (2)
C1—N1—Cu1 107.9 (5) N9—Cu3—Br3 179.7 (2)
C2—N2—C6 119.3 (8) N10A—Cu3—Br3 99.2 (3)
C2—N2—Cu1 114.5 (6) N11A—Cu3—Br3 100.3 (5)
C6—N2—Cu1 126.0 (7) N12—Cu3—Br3 97.0 (2)
C8—N3—C12 119.1 (8) C43—N9—C37 117.6 (8)
C8—N3—Cu1 113.2 (6) C49A—N9—C43A 118.1 (12)
C12—N3—Cu1 127.2 (7) C43—N9—C49 111.6 (7)
C14—N4—C18 118.0 (7) C37—N9—C49 108.0 (8)
C14—N4—Cu1 114.7 (5) C49A—N9—C37A 107.2 (12)
C18—N4—Cu1 126.8 (5) C43A—N9—C37A 99.7 (10)
N1—C1—C2 109.9 (7) C49A—N9—Cu3 114.9 (9)
N1—C1—H1A 109.7 C43—N9—Cu3 107.3 (6)
C2—C1—H1A 109.7 C37—N9—Cu3 107.8 (5)
N1—C1—H1B 109.7 C43A—N9—Cu3 109.9 (8)
C2—C1—H1B 109.7 C49—N9—Cu3 103.4 (5)
H1A—C1—H1B 108.2 C37A—N9—Cu3 105.0 (7)
N2—C2—C3 121.7 (9) N9—C37—C38 110.6 (8)
N2—C2—C1 115.2 (7) N9—C37—H37A 109.5
C3—C2—C1 123.1 (9) C38—C37—H37A 109.5
C4—C3—C2 118.8 (11) N9—C37—H37B 109.5
C4—C3—H3 120.6 C38—C37—H37B 109.5
C2—C3—H3 120.6 H37A—C37—H37B 108.1
C5—C4—C3 120.3 (10) C39—C38—N10 120.0
C5—C4—H4 119.9 C39—C38—C37 124.6 (7)
C3—C4—H4 119.9 N10—C38—C37 115.3 (7)
C4—C5—C6 118.5 (10) C40—C39—C38 120.0
C4—C5—H5 120.7 C40—C39—H39 120.0
C6—C5—H5 120.7 C38—C39—H39 120.0
N2—C6—C5 121.3 (10) C39—C40—C41 120.0
N2—C6—H6 119.3 C39—C40—H40 120.0
C5—C6—H6 119.3 C41—C40—H40 120.0
N1—C7—C8 108.6 (7) C42—C41—C40 120.0
N1—C7—H7A 110.0 C42—C41—H41 120.0
C8—C7—H7A 110.0 C40—C41—H41 120.0
N1—C7—H7B 110.0 N10—C42—C41 120.0
C8—C7—H7B 110.0 N10—C42—H42 120.0
H7A—C7—H7B 108.3 C41—C42—H42 120.0
N3—C8—C9 122.3 (9) C42—N10—C38 120.0
N3—C8—C7 115.4 (7) C42—N10—Cu3 127.7 (4)
C9—C8—C7 122.2 (8) C38—N10—Cu3 112.1 (4)
C10—C9—C8 118.3 (10) N9—C43—C44 112.2 (8)
C10—C9—H9 120.9 N9—C43—H43A 109.2
C8—C9—H9 120.9 C44—C43—H43A 109.2
C11—C10—C9 119.7 (10) N9—C43—H43B 109.2
C11—C10—H10 120.2 C44—C43—H43B 109.2
C9—C10—H10 120.2 H43A—C43—H43B 107.9
C10—C11—C12 119.8 (10) C45—C44—N11 120.0
C10—C11—H11 120.1 C45—C44—C43 123.8 (7)
C12—C11—H11 120.1 N11—C44—C43 116.2 (7)
N3—C12—C11 120.8 (10) C46—C45—C44 120.0
N3—C12—H12 119.6 C46—C45—H45 120.0
C11—C12—H12 119.6 C44—C45—H45 120.0
N1—C13—C14 109.4 (6) C45—C46—C47 120.0
N1—C13—H13A 109.8 C45—C46—H46 120.0
C14—C13—H13A 109.8 C47—C46—H46 120.0
N1—C13—H13B 109.8 C46—C47—C48 120.0
C14—C13—H13B 109.8 C46—C47—H47 120.0
H13A—C13—H13B 108.2 C48—C47—H47 120.0
N4—C14—C15 122.4 (8) C47—C48—N11 120.0
N4—C14—C13 114.1 (7) C47—C48—H48 120.0
C15—C14—C13 123.5 (7) N11—C48—H48 120.0
C16—C15—C14 118.1 (8) C48—N11—C44 120.0
C16—C15—H15 121.0 C48—N11—Cu3 129.4 (6)
C14—C15—H15 121.0 C44—N11—Cu3 110.6 (6)
C17—C16—C15 120.2 (8) C50—C49—N9 112.4 (7)
C17—C16—H16 119.9 C50—C49—H49A 109.1
C15—C16—H16 119.9 N9—C49—H49A 109.1
C18—C17—C16 118.5 (8) C50—C49—H49B 109.1
C18—C17—H17 120.7 N9—C49—H49B 109.1
C16—C17—H17 120.7 H49A—C49—H49B 107.9
N4—C18—C17 122.7 (8) C51—C50—N12 120.0
N4—C18—H18 118.7 C51—C50—C49 125.7 (6)
C17—C18—H18 118.7 N12—C50—C49 114.3 (6)
N5—Cu2—N7 81.3 (3) C52—C51—C50 120.0
N5—Cu2—N8 81.0 (3) C52—C51—H51 120.0
N7—Cu2—N8 118.7 (3) C50—C51—H51 120.0
N5—Cu2—N6 81.2 (3) C51—C52—C53 120.0
N7—Cu2—N6 116.3 (2) C51—C52—H52 120.0
N8—Cu2—N6 118.1 (2) C53—C52—H52 120.0
N5—Cu2—Br2 177.8 (2) C54—C53—C52 120.0
N7—Cu2—Br2 97.18 (19) C54—C53—H53 120.0
N8—Cu2—Br2 98.5 (2) C52—C53—H53 120.0
N6—Cu2—Br2 100.86 (19) N12—C54—C53 120.0
C31—N5—C19 111.0 (7) N12—C54—H54 120.0
C31—N5—C25 111.6 (7) C53—C54—H54 120.0
C19—N5—C25 111.9 (7) C54—N12—C50 120.0
C31—N5—Cu2 107.3 (5) C54—N12—Cu3 128.6 (4)
C19—N5—Cu2 108.3 (5) C50—N12—Cu3 111.2 (4)
C25—N5—Cu2 106.6 (5) C38A—C37A—N9 108.1 (13)
C24—N6—C20 119.2 (7) C38A—C37A—H37C 110.1
C24—N6—Cu2 127.7 (5) N9—C37A—H37C 110.1
C20—N6—Cu2 113.0 (5) C38A—C37A—H37D 110.1
C26—N7—C30 119.4 (7) N9—C37A—H37D 110.1
C26—N7—Cu2 113.1 (5) H37C—C37A—H37D 108.4
C30—N7—Cu2 127.5 (6) C39A—C38A—N10A 120.0
C32—N8—C36 117.7 (8) C39A—C38A—C37A 126.4 (11)
C32—N8—Cu2 113.4 (6) N10A—C38A—C37A 113.6 (11)
C36—N8—Cu2 128.6 (7) C38A—C39A—C40A 120.0
N5—C19—C20 110.5 (7) C38A—C39A—H39A 120.0
N5—C19—H19A 109.5 C40A—C39A—H39A 120.0
C20—C19—H19A 109.5 C41A—C40A—C39A 120.0
N5—C19—H19B 109.5 C41A—C40A—H40A 120.0
C20—C19—H19B 109.5 C39A—C40A—H40A 120.0
H19A—C19—H19B 108.1 C40A—C41A—C42A 120.0
N6—C20—C21 121.7 (8) C40A—C41A—H41A 120.0
N6—C20—C19 115.9 (7) C42A—C41A—H41A 120.0
C21—C20—C19 122.4 (8) N10A—C42A—C41A 120.0
C20—C21—C22 117.5 (8) N10A—C42A—H42A 120.0
C20—C21—H21 121.3 C41A—C42A—H42A 120.0
C22—C21—H21 121.3 C42A—N10A—C38A 120.0
C23—C22—C21 121.2 (8) C42A—N10A—Cu3 122.9 (7)
C23—C22—H22 119.4 C38A—N10A—Cu3 116.7 (7)
C21—C22—H22 119.4 C44A—C43A—N9 113.8 (15)
C22—C23—C24 117.9 (9) C44A—C43A—H43C 108.8
C22—C23—H23 121.0 N9—C43A—H43C 108.8
C24—C23—H23 121.0 C44A—C43A—H43D 108.8
N6—C24—C23 122.4 (8) N9—C43A—H43D 108.8
N6—C24—H24 118.8 H43C—C43A—H43D 107.7
C23—C24—H24 118.8 C45A—C44A—N11A 120.0
N5—C25—C26 110.0 (7) C45A—C44A—C43A 127.1 (14)
N5—C25—H25A 109.7 N11A—C44A—C43A 112.6 (14)
C26—C25—H25A 109.7 C44A—C45A—C46A 120.0
N5—C25—H25B 109.7 C44A—C45A—H45A 120.0
C26—C25—H25B 109.7 C46A—C45A—H45A 120.0
H25A—C25—H25B 108.2 C47A—C46A—C45A 120.0
N7—C26—C27 122.8 (8) C47A—C46A—H46A 120.0
N7—C26—C25 116.1 (7) C45A—C46A—H46A 120.0
C27—C26—C25 121.0 (8) C46A—C47A—C48A 120.0
C26—C27—C28 118.2 (9) C46A—C47A—H47A 120.0
C26—C27—H27 120.9 C48A—C47A—H47A 120.0
C28—C27—H27 120.9 N11A—C48A—C47A 120.0
C29—C28—C27 119.2 (9) N11A—C48A—H48A 120.0
C29—C28—H28 120.4 C47A—C48A—H48A 120.0
C27—C28—H28 120.4 C48A—N11A—C44A 120.0
C28—C29—C30 119.6 (10) C48A—N11A—Cu3 123.9 (11)
C28—C29—H29 120.2 C44A—N11A—Cu3 115.7 (11)
C30—C29—H29 120.2 N9—C49A—C50A 105.6 (14)
N7—C30—C29 120.7 (9) N9—C49A—H49C 110.6
N7—C30—H30 119.6 C50A—C49A—H49C 110.6
C29—C30—H30 119.6 N9—C49A—H49D 110.6
N5—C31—C32 109.1 (7) C50A—C49A—H49D 110.6
N5—C31—H31A 109.9 H49C—C49A—H49D 108.7
C32—C31—H31A 109.9 C51A—C50A—N12A 120.0
N5—C31—H31B 109.9 C51A—C50A—C49A 125.5 (12)
C32—C31—H31B 109.9 N12A—C50A—C49A 114.5 (12)
H31A—C31—H31B 108.3 C52A—C51A—C50A 120.0
N8—C32—C33 123.8 (10) C52A—C51A—H51A 120.0
N8—C32—C31 114.6 (7) C50A—C51A—H51A 120.0
C33—C32—C31 121.4 (10) C51A—C52A—C53A 120.0
C32—C33—C34 117.5 (14) C51A—C52A—H52A 120.0
C32—C33—H33 121.2 C53A—C52A—H52A 120.0
C34—C33—H33 121.2 C54A—C53A—C52A 120.0
C35—C34—C33 119.0 (12) C54A—C53A—H53A 120.0
C35—C34—H34 120.5 C52A—C53A—H53A 120.0
C33—C34—H34 120.5 C53A—C54A—N12A 120.0
C34—C35—C36 120.1 (11) C53A—C54A—H54A 120.0
C34—C35—H35 120.0 N12A—C54A—H54A 120.0
C36—C35—H35 120.0 C54A—N12A—C50A 120.0
N8—C36—C35 121.8 (12) C54A—N12A—Cu3 125.2 (8)
N8—C36—H36 119.1 C50A—N12A—Cu3 114.4 (8)
C35—C36—H36 119.1
C7—N1—C1—C2 82.6 (8) C43—N9—C37—C38 82.4 (10)
C13—N1—C1—C2 −152.2 (7) C49—N9—C37—C38 −150.2 (8)
Cu1—N1—C1—C2 −35.7 (8) Cu3—N9—C37—C38 −39.0 (9)
C6—N2—C2—C3 −2.4 (14) N9—C37—C38—C39 −151.0 (7)
Cu1—N2—C2—C3 173.7 (7) N9—C37—C38—N10 31.9 (10)
C6—N2—C2—C1 176.4 (8) N10—C38—C39—C40 0.0
Cu1—N2—C2—C1 −7.5 (10) C37—C38—C39—C40 −177.1 (10)
N1—C1—C2—N2 29.3 (10) C38—C39—C40—C41 0.0
N1—C1—C2—C3 −151.9 (9) C39—C40—C41—C42 0.0
N2—C2—C3—C4 1.3 (16) C40—C41—C42—N10 0.0
C1—C2—C3—C4 −177.3 (10) C41—C42—N10—C38 0.0
C2—C3—C4—C5 1.3 (19) C41—C42—N10—Cu3 −173.6 (6)
C3—C4—C5—C6 −2.9 (19) C39—C38—N10—C42 0.0
C2—N2—C6—C5 0.7 (14) C37—C38—N10—C42 177.3 (9)
Cu1—N2—C6—C5 −174.8 (8) C39—C38—N10—Cu3 174.5 (6)
C4—C5—C6—N2 1.9 (17) C37—C38—N10—Cu3 −8.2 (8)
C13—N1—C7—C8 78.2 (8) C37—N9—C43—C44 −157.2 (8)
C1—N1—C7—C8 −157.7 (7) C49—N9—C43—C44 77.1 (10)
Cu1—N1—C7—C8 −39.2 (7) Cu3—N9—C43—C44 −35.5 (9)
C12—N3—C8—C9 −2.6 (12) N9—C43—C44—C45 −155.1 (7)
Cu1—N3—C8—C9 170.0 (7) N9—C43—C44—N11 25.2 (11)
C12—N3—C8—C7 174.6 (8) N11—C44—C45—C46 0.0
Cu1—N3—C8—C7 −12.8 (9) C43—C44—C45—C46 −179.7 (10)
N1—C7—C8—N3 35.4 (10) C44—C45—C46—C47 0.0
N1—C7—C8—C9 −147.4 (8) C45—C46—C47—C48 0.0
N3—C8—C9—C10 1.7 (14) C46—C47—C48—N11 0.0
C7—C8—C9—C10 −175.3 (9) C47—C48—N11—C44 0.0
C8—C9—C10—C11 0.7 (15) C47—C48—N11—Cu3 −179.6 (8)
C9—C10—C11—C12 −2.1 (16) C45—C44—N11—C48 0.0
C8—N3—C12—C11 1.1 (13) C43—C44—N11—C48 179.7 (9)
Cu1—N3—C12—C11 −170.4 (7) C45—C44—N11—Cu3 179.7 (7)
C10—C11—C12—N3 1.3 (15) C43—C44—N11—Cu3 −0.6 (8)
C7—N1—C13—C14 −158.3 (6) C43—N9—C49—C50 −157.5 (9)
C1—N1—C13—C14 76.3 (8) C37—N9—C49—C50 71.7 (10)
Cu1—N1—C13—C14 −40.7 (7) Cu3—N9—C49—C50 −42.4 (9)
C18—N4—C14—C15 −1.3 (11) N9—C49—C50—C51 −148.6 (7)
Cu1—N4—C14—C15 170.7 (6) N9—C49—C50—N12 33.5 (11)
C18—N4—C14—C13 178.4 (7) N12—C50—C51—C52 0.0
Cu1—N4—C14—C13 −9.6 (8) C49—C50—C51—C52 −177.8 (10)
N1—C13—C14—N4 33.9 (9) C50—C51—C52—C53 0.0
N1—C13—C14—C15 −146.4 (8) C51—C52—C53—C54 0.0
N4—C14—C15—C16 −2.0 (13) C52—C53—C54—N12 0.0
C13—C14—C15—C16 178.3 (8) C53—C54—N12—C50 0.0
C14—C15—C16—C17 3.4 (13) C53—C54—N12—Cu3 −174.5 (7)
C15—C16—C17—C18 −1.5 (13) C51—C50—N12—C54 0.0
C14—N4—C18—C17 3.4 (11) C49—C50—N12—C54 178.1 (9)
Cu1—N4—C18—C17 −167.5 (6) C51—C50—N12—Cu3 175.4 (6)
C16—C17—C18—N4 −2.0 (12) C49—C50—N12—Cu3 −6.5 (8)
C31—N5—C19—C20 −81.9 (9) C49A—N9—C37A—C38A −79.5 (16)
C25—N5—C19—C20 152.8 (7) C43A—N9—C37A—C38A 157.0 (13)
Cu2—N5—C19—C20 35.6 (8) Cu3—N9—C37A—C38A 43.1 (14)
C24—N6—C20—C21 1.3 (12) N9—C37A—C38A—C39A 147.6 (10)
Cu2—N6—C20—C21 178.7 (6) N9—C37A—C38A—N10A −33.2 (16)
C24—N6—C20—C19 −176.9 (7) N10A—C38A—C39A—C40A 0.0
Cu2—N6—C20—C19 0.5 (9) C37A—C38A—C39A—C40A 179.2 (17)
N5—C19—C20—N6 −24.3 (10) C38A—C39A—C40A—C41A 0.0
N5—C19—C20—C21 157.6 (7) C39A—C40A—C41A—C42A 0.0
N6—C20—C21—C22 −2.3 (12) C40A—C41A—C42A—N10A 0.0
C19—C20—C21—C22 175.8 (8) C41A—C42A—N10A—C38A 0.0
C20—C21—C22—C23 1.7 (14) C41A—C42A—N10A—Cu3 172.1 (10)
C21—C22—C23—C24 −0.2 (14) C39A—C38A—N10A—C42A 0.0
C20—N6—C24—C23 0.3 (12) C37A—C38A—N10A—C42A −179.3 (15)
Cu2—N6—C24—C23 −176.6 (6) C39A—C38A—N10A—Cu3 −172.6 (9)
C22—C23—C24—N6 −0.9 (14) C37A—C38A—N10A—Cu3 8.2 (13)
C31—N5—C25—C26 154.8 (7) C49A—N9—C43A—C44A 166.1 (15)
C19—N5—C25—C26 −80.3 (8) C37A—N9—C43A—C44A −78.4 (16)
Cu2—N5—C25—C26 37.9 (8) Cu3—N9—C43A—C44A 31.6 (17)
C30—N7—C26—C27 −2.6 (12) N9—C43A—C44A—C45A 157.4 (13)
Cu2—N7—C26—C27 176.1 (7) N9—C43A—C44A—N11A −28.8 (19)
C30—N7—C26—C25 −178.6 (7) N11A—C44A—C45A—C46A 0.0
Cu2—N7—C26—C25 0.2 (9) C43A—C44A—C45A—C46A 173 (2)
N5—C25—C26—N7 −26.0 (10) C44A—C45A—C46A—C47A 0.0
N5—C25—C26—C27 158.0 (8) C45A—C46A—C47A—C48A 0.0
N7—C26—C27—C28 2.9 (14) C46A—C47A—C48A—N11A 0.0
C25—C26—C27—C28 178.6 (9) C47A—C48A—N11A—C44A 0.0
C26—C27—C28—C29 −2.3 (15) C47A—C48A—N11A—Cu3 172.5 (15)
C27—C28—C29—C30 1.6 (15) C45A—C44A—N11A—C48A 0.0
C26—N7—C30—C29 1.8 (12) C43A—C44A—N11A—C48A −174.3 (19)
Cu2—N7—C30—C29 −176.7 (7) C45A—C44A—N11A—Cu3 −173.1 (14)
C28—C29—C30—N7 −1.3 (14) C43A—C44A—N11A—Cu3 12.6 (16)
C19—N5—C31—C32 159.0 (8) C43A—N9—C49A—C50A −92.7 (16)
C25—N5—C31—C32 −75.6 (9) C37A—N9—C49A—C50A 155.9 (13)
Cu2—N5—C31—C32 40.8 (9) Cu3—N9—C49A—C50A 39.6 (16)
C36—N8—C32—C33 −0.7 (14) N9—C49A—C50A—C51A 151.3 (12)
Cu2—N8—C32—C33 −174.8 (10) N9—C49A—C50A—N12A −31.7 (18)
C36—N8—C32—C31 −176.3 (8) N12A—C50A—C51A—C52A 0.0
Cu2—N8—C32—C31 9.6 (10) C49A—C50A—C51A—C52A 176.9 (18)
N5—C31—C32—N8 −34.0 (11) C50A—C51A—C52A—C53A 0.0
N5—C31—C32—C33 150.3 (11) C51A—C52A—C53A—C54A 0.0
N8—C32—C33—C34 1 (2) C52A—C53A—C54A—N12A 0.0
C31—C32—C33—C34 176.8 (13) C53A—C54A—N12A—C50A 0.0
C32—C33—C34—C35 −1 (2) C53A—C54A—N12A—Cu3 172.3 (13)
C33—C34—C35—C36 0 (2) C51A—C50A—N12A—C54A 0.0
C32—N8—C36—C35 −0.6 (13) C49A—C50A—N12A—C54A −177.2 (16)
Cu2—N8—C36—C35 172.4 (8) C51A—C50A—N12A—Cu3 −173.1 (12)
C34—C35—C36—N8 1.1 (18) C49A—C50A—N12A—Cu3 9.7 (15)

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Britovsek, G. P., England, J. & White, A. P. (2005). Inorg. Chem. 44, 8125–8134. [DOI] [PubMed]
  3. Bruker (2015). APEX3, SAINT, SADABS and XP. Bruker–Nonius AXS Inc. Madison, Wisconsin, USA.
  4. Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. [DOI] [PubMed]
  5. Eckenhoff, W. T., Garrity, S. T. & Pintauer, T. (2008). Eur. J. Inorg. Chem. pp. 563–571.
  6. Eckenhoff, W. T. & Pintauer, T. (2010). Catal. Rev. 52, 1–59.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. He, Z., Chaimungkalanont, P., Craig, D. C. & Colbran, S. B. (2000). J. Chem. Soc. Dalton Trans. pp. 1419–1429.
  9. Iqbal, J., Bhatia, B. & Nayyar, N. K. (1994). Chem. Rev. 94, 519–564.
  10. Kaur, A., Ribelli, T. G., Schröder, K., Matyjaszewski, K. & Pintauer, T. (2015). Inorg. Chem. 54, 1474–1486. [DOI] [PubMed]
  11. Kharasch, M. S., Jensen, E. V. & Urry, W. H. (1945). Science, 102, 128–129. [DOI] [PubMed]
  12. Maiti, D., Woertink, J. S., Vance, M. A., Milligan, A. E., Narducci Sarjeant, A. A., Solomon, E. I. & Karlin, K. D. (2007). J. Am. Chem. Soc. 129, 8882–8892. [DOI] [PubMed]
  13. Matyjaszewski, K., Göbelt, B., Paik, H. & Horwitz, C. (2001). Macromolecules, 34, 430–440.
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Tang, W., Kwak, Y., Braunecker, W., Tsarevsky, N. V., Coote, M. L. & Matyjaszewski, K. (2008). J. Am. Chem. Soc. 130, 10702–10713. [DOI] [PubMed]
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016007568/lh5812sup1.cif

e-72-00801-sup1.cif (796.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016007568/lh5812Isup2.hkl

CCDC reference: 1478413

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES