Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 May 27;72(Pt 6):864–867. doi: 10.1107/S205698901600829X

Synthesis and crystal structure of NaMgFe(MoO4)3

Manel Mhiri a,*, Abdessalem Badri a, Mongi Ben Amara a
PMCID: PMC4908571  PMID: 27308061

The iron molybdate NaMgFe(MoO4)3 is isostructural with α-NaFe2(MoO4)3 and its structure is built up from [Mg,Fe]2O10 units of edge-sharing [Mg,Fe]O6 octa­hedra which are linked to each other through the common corners of [MoO4] tetra­hedra. The resulting anionic three-dimensional framework leads to the formation of channels along the [101] direction, where the Na+ cations are located.

Keywords: crystal structure, iron molybdate, anionic framework, Na–Fe–Mo–O system

Abstract

The iron molybdate NaMgFe(MoO4)3 {sodium magnesium iron(III) tris­[molybdate(VI)]} has been synthesized by the flux method. This compound is isostructural with α-NaFe2(MoO4)3 and crystallizes in the triclinic space group P-1. Its structure is built up from [Mg,Fe]2O10 units of edge-sharing [Mg,Fe]O6 octa­hedra which are linked to each other through the common corners of [MoO4] tetra­hedra. The resulting anionic three-dimensional framework leads to the formation of channels along the [101] direction in which the Na+ cations are located.

Chemical context  

Iron molybdates have been subject to very intensive research as a result of their numerous applications including as catalysts (Tian et al., 2011), multiferroic properties and more recently as a possible positive electrode in rechargeable batteries (Sinyakov et al., 1978; Mączka et al., 2011; Devi & Varadaraju, 2012). In these materials, the anionic framework is constructed from MoO4 tetra­hedra linked to the iron coordination polyhedra, leading to a large variety of crystal structures with a high capacity for cationic and anionic substitutions.

Until now, a total of six orthomolybdate compounds have been reported in the Na–Fe–Mo–O system: Na9Fe(MoO4)6 (Savina et al., 2013); NaFe(MoO4)2 (Klevtsova, 1975); α-NaFe2(MoO4)3, β-NaFe2(MoO4)3 and Na3Fe2(MoO4)3 (Muessig et al., 2003); NaFe4(MoO4)5 (Ehrenberg et al., 2006). Their structures are described in terms of three-dimensional networks of isolated [MoO4] tetra­hedra and [FeO6] octa­hedra. The sodium and mixed-valence iron molybdate NaFe2(MoO4)3 exhibits two polymorphs, both crystallizing in the triclinic system. The low-temperature α-phase changes irreversibly at high temperature into a β-phase. In addition to these orthomolybdate compounds, another phase with the formula Na3Fe2Mo5O16 and with layers of Mo3O13 units consisting of [MoO6] octa­hedra has been synthesized and characterized (Bramnik et al., 2003). In addition, Kozhevnikova & Imekhenova (2009) have investigated the Na2MoO4MMoO4–Fe2(MoO4)3 system (M = Mg, Mn, Ni, Co) and have attributed the Nasicon-type structure with space group R Inline graphic c (Kotova & Kozhevnikova, 2003; Kozhevnikova & Imekhenova, 2009) to the phase of variable composition Na(1−x) M (1−x)Fe(1+x)(MoO4)3. More recently, NaNiFe(MoO4)3 and NaZnFe(MoO4)3 (Mhiri et al., 2015) were found to be isostructural to β-NaFe2(MoO4)3 and to have a good ionic conductivity with low activation energy, close to those of Nasicon-type compounds with similar formula such as AZr2(PO4)3 (A = Na, Li). As an extension of the previous work, we report here on the synthesis and characterization by X-ray diffraction of a new compound, NaMgFe(MoO4)3, which is isostructural with α-NaFe2(MoO4)3.

Structural commentary  

The title NaMgFe(MoO4)3 structure is based on a three-dimensional framework of [Mg,Fe]2O10 units of edge-sharing [Mg,Fe]O6 octa­hedra, connected to each other through the common corners of [MoO4] tetra­hedra. All [Mg,Fe]2O10 units are parallel to [1Inline graphic0] (Fig. 1). In this structure, two types of layers (A and B), similar to those observed in α-NaFe2(MoO4)3, are aligned parallel to (110) with the sequence –ABB′–ABB′– and stacked along [001]. B′ layers are obtained from B by an inversion centre located on the A planes (Fig. 2). The resulting anionic three-dimensional framework leads to the formation of channels along [101] in which the sodium ions are located (Fig. 3).

Figure 1.

Figure 1

[Mg,Fe]2O10 units parallel to [1Inline graphic0] in NaMgFe(MoO4)3 structure. [Mg,Fe]2O10 dimers are shown in blue and MoO4 tetra­hedra in purple.

Figure 2.

Figure 2

Projection of the NaMgFe(MoO4)3 structure along the b axis. [Mg,Fe]2O10 dimers are shown in blue; MoO4 tetra­hedra in purple and Na+ cations as green spheres.

Figure 3.

Figure 3

Channels along [101] in the structure of NaMgFe(MoO4)3. [Mg,Fe]2O10 dimers are shown in blue, MoO4 tetra­hedra in purple and Na+ cations as green spheres.

In the title structure, all atoms are located in general positions. The three crystallographically different molybdenum atoms have a tetra­hedral coordination with Mo—O distances between 1.715 (3) and 1.801 (2) Å. The mean distances (Mo1—O = 1.762, Mo2—O = 1.766 and Mo3—O = 1.760 Å) are in good accordance with those usually observed in molybdates (Abrahams et al., 1967; Harrison & Cheetham, 1989; Smit et al., 2006). The [Mg,Fe]—O distances and the cis O—[Mg,Fe]—O angles in the [Mg,Fe]2O10 units range from 2.003 (3) to 2.099 (3) Å and from 81.2 (1) to 177.8 (1)°, respectively. This dispersion reflects a slight distortion of the [Mg,Fe]O6 octa­hedra. The average distances [Mg,Fe]1—O = 2.059 and [Mg,Fe]2—O = 2.013 Å lie between the values of 1.990 Å observed for six-coordinated Fe3+ in LiFe(MoO4)2 (van der Lee et al. 2008) and 2.072 Å reported for Mg2+ with the same coordination in NaMg3Al(MoO4)5 (Hermanowicz et al., 2006). This result is related to the disordered distribution of Fe3+ and Mg2+ in both sites. Assuming sodium–oxygen distances below 3.13 Å (Donnay & Allmann, 1970), the Na site is surrounded by five oxygen atoms (Fig. 4).

Figure 4.

Figure 4

The environment of the Na+ cation showing displacement ellipsoids drawn at the 50% probability level.

Synthesis and crystallization  

Crystals of the title compound were grown in a flux of sodium dimolybdate Na2Mo2O7 with an atomic ratio Na:Mg:Fe:Mo = 5:1:1:7. Appropriate amounts of the starting reactants NaNO3, Mg(NO3)2·6H2O, Fe(NO3)3·9H2O and (NH4)6Mo7O24·4H2O were dissolved in nitric acid and the resulting solution was evaporated to dryness. The dry residue was then placed in a platinum crucible and slowly heated in air up to 673 K for 24 h to remove H2O and NH3. The mixture was ground in an agate mortar, melted for 2 h at 1123 K and then cooled to room temperature at a rate of 5 K h−1. Crystals without regular shape were separated from the flux by washing in boiling water.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. The application of the direct methods revealed two sites, labeled M(1) and M(2), statistic­ally occupied by the Fe3+ and Mg2+ ions. This distribution was supported by the M1—O and M2—O distances which are between the classical values for pure Mg—O and Fe—O bonds. Succeeding difference Fourier synthesis led to the positions of all the remaining atoms.

Table 1. Experimental details.

Crystal data
Chemical formula NaMgFe(MoO4)3
M r 582.97
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 6.900 (4), 6.928 (1), 11.055 (1)
α, β, γ (°) 80.24 (1), 83.55 (2), 80.22 (3)
V3) 511.3 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 5.15
Crystal size (mm) 0.28 × 0.14 × 0.07
 
Data collection
Diffractometer Enraf–Nonius TurboCAD-4
Absorption correction ψ scan (North et al., 1968)
T min, T max 0.478, 0.695
No. of measured, independent and observed [I > 2σ(I)] reflections 3429, 2983, 2850
R int 0.014
(sin θ/λ)max−1) 0.703
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.025, 0.068, 1.19
No. of reflections 2983
No. of parameters 168
No. of restraints 4
Δρmax, Δρmin (e Å−3) 1.47, −1.60

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare et al., 1993), SHELXL2014/7 (Sheldrick, 201), DIAMOND (Brandenburg & Putz, 1999) and WinGX publication routines (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S205698901600829X/br2259sup1.cif

e-72-00864-sup1.cif (292.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901600829X/br2259Isup2.hkl

e-72-00864-Isup2.hkl (238.3KB, hkl)

CCDC reference: 1481125

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

FeMgMo3NaO12 Z = 2
Mr = 582.97 F(000) = 542
Triclinic, P1 Dx = 3.786 Mg m3
a = 6.900 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 6.928 (1) Å Cell parameters from 25 reflections
c = 11.055 (1) Å θ = 9.1–11.4°
α = 80.24 (1)° µ = 5.15 mm1
β = 83.55 (2)° T = 293 K
γ = 80.22 (3)° Prism, brown
V = 511.3 (3) Å3 0.28 × 0.14 × 0.07 mm

Data collection

Enraf–Nonius TurboCAD-4 diffractometer Rint = 0.014
Radiation source: fine-focus sealed tube θmax = 30.0°, θmin = 3.0°
non–profiled ω/2τ scans h = −9→9
Absorption correction: ψ scan (North et al., 1968) k = −9→9
Tmin = 0.478, Tmax = 0.695 l = −1→15
3429 measured reflections 2 standard reflections every 120 min
2983 independent reflections intensity decay: 1.1%
2850 reflections with I > 2σ(I)

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0308P)2 + 2.3858P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068 (Δ/σ)max = 0.001
S = 1.19 Δρmax = 1.47 e Å3
2983 reflections Δρmin = −1.60 e Å3
168 parameters Extinction correction: SHELXL2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
4 restraints Extinction coefficient: 0.0074 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Na 0.8586 (4) 0.5914 (4) 0.8148 (4) 0.0757 (12)
Mg1 0.8152 (1) 0.1703 (1) 0.50854 (8) 0.00851 (16) 0.7558 (7)
Fe1 0.8152 (1) 0.1703 (1) 0.50854 (8) 0.00851 (16) 0.2442 (7)
Mg2 0.77528 (8) 0.77491 (8) 0.11025 (5) 0.00785 (12) 0.2442 (7)
Fe2 0.77528 (8) 0.77491 (8) 0.11025 (5) 0.00785 (12) 0.7558 (7)
Mo1 0.75910 (4) 0.10066 (4) 0.85110 (2) 0.00799 (8)
O11 0.8166 (4) 0.8508 (4) 0.9264 (2) 0.0125 (5)
O12 0.9297 (4) 0.2547 (4) 0.8737 (3) 0.0146 (5)
O13 0.5170 (4) 0.2053 (4) 0.8938 (3) 0.0158 (5)
O14 0.7784 (5) 0.0889 (4) 0.6953 (2) 0.0185 (5)
Mo2 0.70522 (4) 0.28318 (4) 0.18835 (3) 0.00950 (8)
O21 0.4579 (4) 0.3458 (5) 0.2289 (3) 0.0232 (6)
O22 0.7436 (4) 0.0675 (4) 0.1148 (3) 0.0185 (5)
O23 0.8372 (4) 0.2322 (4) 0.3205 (2) 0.0173 (5)
O24 0.8015 (4) 0.4878 (4) 0.0918 (2) 0.0148 (5)
Mo3 0.27372 (4) 0.29658 (4) 0.54507 (2) 0.00732 (8)
O31 0.1224 (4) 0.1328 (4) 0.5056 (2) 0.0113 (4)
O32 0.2458 (5) 0.2976 (4) 0.7045 (2) 0.0194 (5)
O33 0.5183 (4) 0.2083 (4) 0.5042 (3) 0.0172 (5)
O34 0.2067 (4) 0.5383 (4) 0.4690 (3) 0.0153 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Na 0.0293 (12) 0.0255 (11) 0.186 (4) 0.0089 (9) −0.0496 (18) −0.0429 (17)
Mg1 0.0079 (4) 0.0081 (4) 0.0091 (4) −0.0007 (3) −0.0018 (3) 0.0001 (3)
Fe1 0.0079 (4) 0.0081 (4) 0.0091 (4) −0.0007 (3) −0.0018 (3) 0.0001 (3)
Mg2 0.0080 (2) 0.0073 (2) 0.0079 (2) −0.00174 (18) −0.00177 (18) 0.00103 (18)
Fe2 0.0080 (2) 0.0073 (2) 0.0079 (2) −0.00174 (18) −0.00177 (18) 0.00103 (18)
Mo1 0.00697 (13) 0.00870 (13) 0.00770 (13) −0.00175 (9) −0.00095 (9) 0.00122 (9)
O11 0.0163 (12) 0.0106 (11) 0.0094 (11) −0.0013 (9) −0.0021 (9) 0.0019 (8)
O12 0.0112 (11) 0.0152 (12) 0.0182 (12) −0.0052 (9) −0.0040 (9) 0.0003 (10)
O13 0.0090 (11) 0.0178 (12) 0.0194 (13) −0.0009 (9) −0.0016 (9) −0.0005 (10)
O14 0.0258 (14) 0.0185 (13) 0.0092 (11) −0.0021 (11) −0.0017 (10) 0.0018 (10)
Mo2 0.01041 (14) 0.00802 (13) 0.00985 (13) −0.00235 (9) −0.00173 (9) 0.00076 (9)
O21 0.0133 (12) 0.0295 (16) 0.0261 (15) −0.0028 (11) −0.0017 (11) −0.0026 (12)
O22 0.0226 (14) 0.0110 (12) 0.0229 (14) −0.0050 (10) −0.0032 (11) −0.0017 (10)
O23 0.0192 (13) 0.0188 (13) 0.0125 (12) −0.0009 (10) −0.0033 (10) 0.0005 (10)
O24 0.0203 (13) 0.0100 (11) 0.0129 (11) −0.0016 (9) 0.0019 (9) −0.0012 (9)
Mo3 0.00771 (13) 0.00787 (13) 0.00674 (13) −0.00290 (9) −0.00105 (9) −0.00015 (9)
O31 0.0093 (10) 0.0089 (10) 0.0167 (12) −0.0027 (8) −0.0026 (9) −0.0027 (9)
O32 0.0266 (15) 0.0239 (14) 0.0088 (11) −0.0081 (11) −0.0019 (10) −0.0010 (10)
O33 0.0107 (11) 0.0198 (13) 0.0212 (13) −0.0025 (10) −0.0018 (10) −0.0025 (10)
O34 0.0189 (13) 0.0086 (11) 0.0179 (12) −0.0027 (9) −0.0027 (10) 0.0008 (9)

Geometric parameters (Å, º)

Na—O21i 2.244 (4) Mg2—O32i 2.019 (3)
Na—O12 2.296 (4) Mg2—O12ii 2.036 (3)
Na—O11 2.308 (4) Mo1—O14 1.727 (3)
Na—O24ii 2.604 (4) Mo1—O13 1.751 (3)
Na—O23ii 2.772 (5) Mo1—O12 1.780 (3)
Mg1—O33 2.025 (3) Mo1—O11vii 1.789 (3)
Mg1—O23 2.044 (3) Mo2—O21 1.715 (3)
Mg1—O14 2.045 (3) Mo2—O23 1.761 (3)
Mg1—O34i 2.054 (3) Mo2—O22 1.787 (3)
Mg1—O31iii 2.089 (3) Mo2—O24 1.799 (3)
Mg1—O31iv 2.099 (3) Mo3—O33 1.731 (3)
Mg2—O13i 2.003 (3) Mo3—O32 1.753 (3)
Mg2—O24 2.009 (3) Mo3—O34 1.753 (3)
Mg2—O22v 2.010 (3) Mo3—O31 1.801 (2)
Mg2—O11vi 2.012 (3)
O21i—Na—O12 106.29 (15) O24—Mg2—O11vi 90.58 (11)
O21i—Na—O11 92.34 (14) O22v—Mg2—O11vi 85.22 (11)
O12—Na—O11 131.5 (2) O13i—Mg2—O32i 91.56 (12)
O21i—Na—O24ii 169.3 (2) O24—Mg2—O32i 90.53 (12)
O12—Na—O24ii 71.63 (12) O22v—Mg2—O32i 93.77 (12)
O11—Na—O24ii 81.96 (12) O11vi—Mg2—O32i 175.79 (12)
O21i—Na—O23ii 125.19 (19) O13i—Mg2—O12ii 176.14 (11)
O12—Na—O23ii 115.39 (14) O24—Mg2—O12ii 90.70 (12)
O11—Na—O23ii 85.84 (12) O22v—Mg2—O12ii 91.08 (12)
O24ii—Na—O23ii 63.66 (10) O11vi—Mg2—O12ii 91.24 (11)
O33—Mg1—O23 88.07 (12) O32i—Mg2—O12ii 84.69 (12)
O33—Mg1—O14 88.89 (12) O14—Mo1—O13 108.16 (14)
O23—Mg1—O14 174.80 (12) O14—Mo1—O12 106.87 (14)
O33—Mg1—O34i 89.20 (12) O13—Mo1—O12 110.69 (13)
O23—Mg1—O34i 93.92 (12) O14—Mo1—O11vii 106.05 (13)
O14—Mg1—O34i 90.26 (12) O13—Mo1—O11vii 111.66 (13)
O33—Mg1—O31iii 177.80 (12) O12—Mo1—O11vii 113.08 (12)
O23—Mg1—O31iii 89.73 (11) O21—Mo2—O23 110.07 (14)
O14—Mg1—O31iii 93.30 (12) O21—Mo2—O22 109.36 (15)
O34i—Mg1—O31iii 91.09 (11) O23—Mo2—O22 109.03 (13)
O33—Mg1—O31iv 98.59 (12) O21—Mo2—O24 110.70 (14)
O23—Mg1—O31iv 88.75 (11) O23—Mo2—O24 105.75 (13)
O14—Mg1—O31iv 87.53 (11) O22—Mo2—O24 111.86 (13)
O34i—Mg1—O31iv 171.86 (11) O33—Mo3—O32 108.10 (14)
O31iii—Mg1—O31iv 81.22 (11) O33—Mo3—O34 110.71 (13)
O13i—Mg2—O24 88.40 (12) O32—Mo3—O34 109.21 (14)
O13i—Mg2—O22v 90.10 (12) O33—Mo3—O31 108.43 (13)
O24—Mg2—O22v 175.47 (12) O32—Mo3—O31 109.96 (13)
O13i—Mg2—O11vi 92.52 (11) O34—Mo3—O31 110.40 (12)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x+1, y, z; (iv) −x+1, −y, −z+1; (v) x, y+1, z; (vi) x, y, z−1; (vii) x, y−1, z.

References

  1. Abrahams, S. C. (1967). J. Chem. Phys. 46, 2052–2063.
  2. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  3. Bramnik, K. G., Muessig, E. & Ehrenberg, H. (2003). J. Solid State Chem. 176, 192–197.
  4. Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  5. Devi, M. & Varadaraju, U. V. (2012). Electrochem. Commun. 18, 112–115.
  6. Donnay, G. & Allmann, R. (1970). Am. Mineral. 55, 1003–1015.
  7. Ehrenberg, H., Muessig, E., Bramnik, K. G., Kampe, P. & Hansen, T. (2006). Solid State Sci. 8, 813–820.
  8. Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonuis, Delft, The Netherlands.
  9. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  10. Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
  11. Harrison, W. T. A. & Cheetham, A. K. (1989). Acta Cryst. C45, 178–180.
  12. Hermanowicz, K., Mączka, M., Wołcyrz, M., Tomaszewski, P. E., Paściak, M. & Hanuza, J. (2006). J. Solid State Chem. 179, 685–695.
  13. Klevtsova, R. F. (1975). Dokl. Akad. Nauk SSSR, 221, 1322–1325.
  14. Kotova, I. Yu. & Kozhevnikova, N. M. (2003). Russ. J. Appl. Chem. 76, 1572–1576.
  15. Kozhevnikova, N. M. & Imekhenova, A. V. (2009). Russ. J. Inorg. Chem. 54, 638–643.
  16. Lee, A. van der, Beaurain, M. & Armand, P. (2008). Acta Cryst. C64, i1–i4. [DOI] [PubMed]
  17. Mączka, M., Ptak, M., Luz-Lima, C., Freire, P. T. C., Paraguassu, W., Guerini, S. & Hanuza, J. (2011). J. Solid State Chem. 184, 2812–2817.
  18. Mhiri, M., Badri, A., Lopez, M. L., Pico, C. & Ben Amara, M. (2015). Ionics, 21, 2511–2522.
  19. Muessig, E., Bramnik, K. G. & Ehrenberg, H. (2003). Acta Cryst. B59, 611–616. [DOI] [PubMed]
  20. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  21. Savina, A. A., Solodovnikov, S. F., Basovich, O. M., Solodovnikova, Z. A., Belov, D. A., Pokholok, K. V., Gudkova, I. A. Yu., Stefanovich, S., Lazoryak, B. I. & Khaikina, E. G. (2013). J. Solid State Chem. 205, 149–153.
  22. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  23. Sinyakov, E. V., Dudnik, E. F., Stolpakova, T. M. & Orlov, O. L. (1978). Ferroelectrics, 21, 579–581.
  24. Smit, J. P., Stair, P. C. & Poeppelmeier, K. R. (2006). Chem. Eur. J. 12, 5944–5953. [DOI] [PubMed]
  25. Tian, S. H., Tu, Y. T., Chen, D. S., Chen, X. & Xiong, Y. (2011). Chem. Eng. J. 169, 31–37.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S205698901600829X/br2259sup1.cif

e-72-00864-sup1.cif (292.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901600829X/br2259Isup2.hkl

e-72-00864-Isup2.hkl (238.3KB, hkl)

CCDC reference: 1481125

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES