Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 May 17;72(Pt 6):815–818. doi: 10.1107/S2056989016007805

Crystal structure of 1,3-bis­(1H-benzotriazol-1-yl­meth­yl)benzene

Mario A Macías a,b, Nelson Nuñez-Dallos c, John Hurtado c,*, Leopoldo Suescun a,*
PMCID: PMC4908573  PMID: 27308049

The crystal structure of 1,3-bis­(1H-benzotriazol-1-ylmeth­yl)benzene shows an inter­esting three-dimensional assembly influenced by its non-planar mol­ecular conformation.

Keywords: crystal structure, benzotriazole derivative, benzotriazolophanes, bis­(1H-benzotriazol-1-ylmeth­yl)arene ligands

Abstract

The mol­ecular structure of the title compound, C20H16N6, contains two benzotriazole units bonded to a benzene nucleus in a meta configuration, forming dihedral angles of 88.74 (11) and 85.83 (10)° with the central aromatic ring and 57.08 (9)° with each other. The three-dimensional structure is controlled mainly by weak C—H⋯N and C—H⋯π inter­actions. The mol­ecules are connected in inversion-related pairs, forming the slabs of infinite chains that run along the [-110] and [110] directions.

Chemical context  

Bis(1H-benzotriazol-1-ylmeth­yl)arene compounds are used as precursors for the synthesis of benzotriazolophanes, a class of positively charged cyclo­phanes that have the potential ability to trap anions and guest mol­ecules with high electron density (Rajakumar & Murali, 2000). On the other hand, the study of the self-assembly of helicates from the reaction of metal ions with bis­(1H-benzotriazol-1-ylmeth­yl)arene ligands has been of great inter­est. In these complexes, the metal center coord­inates through the N3-nitro­gen of the benzotriazole ring (O’Keefe & Steel, 2000). We have been inter­ested in the synthesis of metal complexes with ligands derived from benzotriazole, which show high activity as catalysts for oxidative amination of allyl butyl ether (Hurtado et al., 2013).The crystal structures for a number of bis­(1H-benzotriazol-1-ylmeth­yl)arene ligands have been determined: 2,6-bis­(1H-benzotriazol-1-ylmeth­yl)pyridine (Selvanayagam et al., 2002), 1,4-bis­(1H-benzotriazol-1-yl­meth­yl)­benzene tetra­hydrate (Cai et al., 2004) and benzyl 3,5-bis­(1H-benzotriazol-1-yl­meth­yl)­phenyl ether (Selvanayagam et al., 2004). As part of structural studies of the self-assembly process of metal ions with ligands derived from benzotriazole, we report here the crystal structure of the ligand 1,3-bis­(1H-benzotriazol-1-yl­meth­yl)benzene.graphic file with name e-72-00815-scheme1.jpg

Structural commentary  

Fig. 1 shows the mol­ecule of the title compound. The mol­ecular structure is built by two benzotriazole groups describing a meta substitution of the central benzene ring. The dihedral angle between the two benzotriazole units is 57.08 (9)° and those between each benzotriazole moiety (N1–N3/C2–C7) and the central benzene ring are 88.74 (11) and 85.83 (10)° for the A and B groups, respectively. These values differ from the related structures 2,6-bis­(N,N′-benzotriazol-1-ylmeth­yl)pyridine, with a pyridine central ring, where the angle between the two benzotriazole units is 72.49 (6)° and those between the pyridine ring and the two benzotriazole units are 70.26 (6) and 57.70 (7)° (Selvanayagam et al., 2002), and from the 1,4-bis­(1H-benzotriazol-1-ylmeth­yl)benzene tetra­hydrate, with para substitution, where the two benzotriazole units are parallel and the dihedral angle between each benzotriazole unit and the central benzene ring is 74.95 (9)° (Cai et al., 2004).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing anisotropic displacement ellipsoids drawn at the 50% probability level.

Supra­molecular features  

The packing is directed by weak C—H⋯N and C—H⋯π inter­actions as shown in Table 1. Pairs of inversion-related mol­ecules, connected by two equivalent weak C1B—H1BA⋯N3A i [symmetry code: (i) −x + 1, −y + 1, −z + 1] inter­actions form slabs of infinite chains of mol­ecules running along [Inline graphic10]. Each mol­ecule in a slab connects to two translation-equivalent mol­ecules through C4A—H4A⋯N3B ii [symmetry code: (ii) x − 1, y + 1, z] inter­actions (Fig. 2 a). Parallel chains inter­act through C7A—H7ACg1iii [Cg1 is the centroid of the N2B–N1B–C2B–C3B–N3B ring; symmetry code: (iii) 1 − x, y, z] (Fig. 2 b). Since the chains run along the diagonal of the ab plane and ab, the 21 screw axis parallel to b transforms each chain into an orthogonal one, running along [110] (Fig. 2 c). This orthogonal chain inter­acts with the initial one through C4B—H4BCg2iv [Cg2 is the centroid of the C4A-C3A-C2A-C7A-C6A-C5A ring; symmetry code: (iv) Inline graphic − x, −Inline graphic + y, Inline graphic − z] (Fig. 2 b). In this way, each mol­ecule displays four pairs of inter­actions with seven neighbouring mol­ecules. This crystallographic three-dimensional organization differs from the related 1,4-bis­(1H-benzotriazol-1-ylmeth­yl)benzene tetra­hydrate where a two-dimensional network is observed (Cai et al., 2004).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the N1B–N3B/C2B/C3B C2A–C7A rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1B—H1BA⋯N3A i 0.97 2.59 3.409 (4) 142
C4A—H4A⋯N3B ii 0.93 2.66 3.443 (4) 143
C7A—H7ACg1iii 0.93 2.69 3.423 (3) 136
C4B—H4BCg2iv 0.93 2.89 3.481 (3) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

The crystal structure of the title compound showing the hydrogen-bond inter­actions: (a) C—H⋯N along [Inline graphic10], (b) C—H⋯π and (c) orthogonal chains viewed along [001].

Database survey  

A search of the Cambridge Structural Database (CSD Version 5.36 with one update; Groom et al., 2016) for the 1,3-bis­(1H-benzotriazol-1-ylmeth­yl)benzene mol­ecular structure with the possibility of any group replacing the 2,4,5,6-H atoms in the central benzene ring gave four hits, from which two have one additional arene substituent (Br, -OCH2Ph), one has the bis­(1H-benzotriazole-1-yl­methanone) moiety instead of bis­(1H-benzotriazol-1-ylmeth­yl) and the last one corresponds to a more complex mol­ecular structure. When the search also considers heterocyclic compounds, two new hits (in addition to the first four structures) appear, one cyclic bi­pyridine and the related mol­ecular structure 2,6-bis­(1H-benzotriazol-1-yl­meth­yl)pyridine. A search for the 1,4-bis­(1H-benzotriazol-1-ylmeth­yl)-substituted benzene ring gave four hits, one of which corresponds to a ligand with additional methyl groups at the 1,3,5,6-sites of the central benzene ring and the other to its corresponding palladium complex. The remaining two relate to the same compound, viz. 1,4-bis­(1H-benzotriazol-1-yl­meth­yl)benzene tetra­hydrate, a related mol­ecular structure.

Synthesis and crystallization  

m-Xylylene dibromide (1.16 g, 4.4 mmol) was added to a solution of 1H-benzotriazole (1.04 g, 8.7 mmol) in toluene (60 mL), and the mixture was heated at reflux for 72 h. The resulting mixture was filtered, and the toluene solution was concentrated and cooled to give a white solid. Single crystals suitable for X-ray structure analysis were obtained by dissolv­ing the compound in the minimum volume of di­chloro­methane, adding diethyl ether and cooling the solution to 277 K. The title compound formed colorless parallelepipeds. Yield: 668 mg (45%). M.p. 423–424 K. IR (KBr, cm−1): ν 3058 (w), 3031 (w), 2979 (w), 2944 (w), 1613 (m), 1494 (m), 1452 (s), 1228 (s), 1159 (m), 1080 (s), 781 (s), 754 (s), 743 (s). 1H NMR (400 MHz, DMSO-d6): δ (p.p.m.) 8.04 (d, J = 8.3 Hz, 2H), 7.72 (d, J = 8.3 Hz, 2H), 7.47 (t, J = 8.1 Hz, 2H), 7.38 (t, J = 8.2 Hz, 2H), 7.36 (s, 1H), 7.32 (dd, J = 8.5, 6.6 Hz, 1H), 7.25 (d, J = 8.2 Hz, 2H), 5.95 (s, 4H). 13C NMR (100 MHz, DMSO-d6): δ (p.p.m.) 145.3 (C), 136.5 (C), 132.6 (C), 129.3 (CH), 127.5 (CH), 127.4 (CH), 127.2 (CH), 124.0 (CH), 119.2 (CH), 110.6 (CH), 50.7 (CH2). HRMS m/z (ESI) calculated for [C20H16N6+H]+: 341.1509; found 341.1532 [M+H]+.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in calculated positions (C—H: 0.93–0.97 Å) and included as riding contributions with isotropic displacement parameters set at 1.2–1.5 times the U eq value of the parent atom.

Table 2. Experimental details.

Crystal data
Chemical formula C20H16N6
M r 340.39
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 9.3050 (5), 9.4479 (5), 19.5429 (9)
β (°) 99.205 (2)
V3) 1695.94 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.40 × 0.39 × 0.18
 
Data collection
Diffractometer Bruker D8 Venture/Photon 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2013)
T min, T max 0.666, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 28764, 3480, 2830
R int 0.035
(sin θ/λ)max−1) 0.626
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.067, 0.160, 1.42
No. of reflections 3480
No. of parameters 236
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.27

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016007805/bg2585sup1.cif

e-72-00815-sup1.cif (977.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016007805/bg2585Isup2.hkl

e-72-00815-Isup2.hkl (277.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016007805/bg2585Isup3.cml

CCDC reference: 1479416

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The financial support from the Departamento de Química, Facultad de Ciencias and Vicerrectoría de Investigaciones of the Universidad de los Andes is gratefully acknowledged. NND is also grateful to COLCIENCIAS for his doctoral scholarship (Conv. 617). The authors wish to thank ANII (EQC_2012_07), CSIC and Facultad de Química for the funds to purchase the diffractometer. MAM also thanks ANII for his post-doctoral contract (PD_NAC_2014_1_102409).

supplementary crystallographic information

Crystal data

C20H16N6 F(000) = 712
Mr = 340.39 Dx = 1.333 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 9.3050 (5) Å Cell parameters from 9846 reflections
b = 9.4479 (5) Å θ = 3.0–27.1°
c = 19.5429 (9) Å µ = 0.08 mm1
β = 99.205 (2)° T = 293 K
V = 1695.94 (15) Å3 Parallelepiped, colorless
Z = 4 0.40 × 0.39 × 0.18 mm

Data collection

Bruker D8 Venture/Photon 100 CMOS diffractometer 3480 independent reflections
Radiation source: Mo sealed tube 2830 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1 Rint = 0.035
φ and ω scans θmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2013) h = −11→11
Tmin = 0.666, Tmax = 0.746 k = −11→11
28764 measured reflections l = −24→24

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.067 w = 1/[σ2(Fo2) + (0.036P)2 + 0.9412P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.160 (Δ/σ)max < 0.001
S = 1.42 Δρmax = 0.24 e Å3
3480 reflections Δρmin = −0.27 e Å3
236 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0162 (17)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2899 (2) 0.1606 (3) 0.54469 (11) 0.0400 (5)
C2 0.2736 (3) 0.0198 (3) 0.56154 (13) 0.0475 (6)
H2 0.1814 −0.0207 0.5552 0.057*
C3 0.3936 (3) −0.0607 (3) 0.58775 (13) 0.0499 (6)
H3 0.3820 −0.1554 0.5985 0.060*
C4 0.5308 (3) −0.0010 (3) 0.59803 (13) 0.0454 (6)
H4 0.6109 −0.0560 0.6159 0.054*
C5 0.5505 (2) 0.1396 (2) 0.58204 (11) 0.0366 (5)
C6 0.4286 (2) 0.2197 (3) 0.55500 (12) 0.0401 (5)
H6 0.4403 0.3141 0.5437 0.048*
C1A 0.1582 (3) 0.2463 (3) 0.51371 (14) 0.0516 (7)
H1AA 0.1547 0.2522 0.4639 0.062*
H1AB 0.0708 0.1981 0.5223 0.062*
N1A 0.1601 (2) 0.3890 (2) 0.54221 (10) 0.0433 (5)
C2A 0.1399 (2) 0.4294 (2) 0.60655 (12) 0.0380 (5)
N2A 0.1856 (3) 0.5036 (3) 0.50437 (13) 0.0606 (6)
C1B 0.6995 (3) 0.2062 (3) 0.59004 (13) 0.0457 (6)
H1BA 0.7311 0.2092 0.5451 0.055*
H1BB 0.6932 0.3030 0.6059 0.055*
N1B 0.8073 (2) 0.1311 (2) 0.63824 (10) 0.0408 (5)
C3A 0.1528 (3) 0.5760 (3) 0.60636 (14) 0.0458 (6)
N3A 0.1814 (3) 0.6171 (3) 0.54235 (14) 0.0621 (7)
C2B 0.8262 (2) 0.1272 (2) 0.70871 (12) 0.0400 (5)
N2B 0.9063 (2) 0.0455 (2) 0.61519 (12) 0.0530 (6)
C4A 0.1384 (3) 0.6549 (3) 0.66532 (18) 0.0633 (8)
H4A 0.1454 0.7531 0.6658 0.076*
C3B 0.9426 (3) 0.0367 (3) 0.72765 (14) 0.0455 (6)
N3B 0.9888 (2) −0.0122 (2) 0.66848 (14) 0.0589 (6)
C5A 0.1133 (4) 0.5806 (4) 0.72234 (18) 0.0716 (9)
H5A 0.1039 0.6297 0.7626 0.086*
C4B 0.9949 (3) 0.0093 (3) 0.79741 (17) 0.0656 (9)
H4B 1.0748 −0.0492 0.8108 0.079*
C6A 0.1013 (4) 0.4324 (4) 0.72188 (15) 0.0654 (8)
H6A 0.0840 0.3864 0.7618 0.078*
C5B 0.9239 (4) 0.0719 (4) 0.84490 (18) 0.0782 (11)
H5B 0.9553 0.0550 0.8918 0.094*
C7A 0.1143 (3) 0.3539 (3) 0.66457 (13) 0.0504 (6)
H7A 0.1065 0.2557 0.6643 0.060*
C7B 0.7529 (3) 0.1924 (3) 0.75700 (15) 0.0589 (7)
H7B 0.6744 0.2529 0.7439 0.071*
C6B 0.8042 (4) 0.1616 (4) 0.82488 (16) 0.0756 (10)
H6B 0.7580 0.2015 0.8591 0.091*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0383 (12) 0.0479 (14) 0.0339 (11) 0.0014 (10) 0.0059 (9) −0.0096 (10)
C2 0.0445 (13) 0.0528 (15) 0.0460 (14) −0.0082 (12) 0.0102 (11) −0.0078 (11)
C3 0.0537 (15) 0.0423 (14) 0.0545 (15) −0.0078 (12) 0.0106 (12) 0.0013 (12)
C4 0.0477 (13) 0.0418 (13) 0.0466 (13) 0.0024 (11) 0.0074 (11) 0.0043 (11)
C5 0.0393 (12) 0.0386 (12) 0.0324 (11) 0.0002 (10) 0.0067 (9) −0.0014 (9)
C6 0.0422 (12) 0.0378 (12) 0.0396 (12) 0.0009 (10) 0.0048 (10) −0.0001 (10)
C1A 0.0419 (13) 0.0631 (17) 0.0472 (14) 0.0063 (12) −0.0009 (11) −0.0123 (12)
N1A 0.0405 (11) 0.0486 (12) 0.0407 (11) 0.0041 (9) 0.0059 (9) 0.0062 (9)
C2A 0.0316 (11) 0.0408 (12) 0.0414 (12) 0.0029 (9) 0.0052 (9) 0.0043 (10)
N2A 0.0552 (14) 0.0708 (17) 0.0561 (14) 0.0028 (12) 0.0096 (11) 0.0247 (13)
C1B 0.0420 (13) 0.0432 (13) 0.0502 (14) −0.0009 (11) 0.0027 (11) 0.0070 (11)
N1B 0.0351 (10) 0.0399 (11) 0.0474 (11) 0.0040 (8) 0.0071 (8) −0.0005 (9)
C3A 0.0370 (12) 0.0391 (13) 0.0600 (16) 0.0051 (10) 0.0041 (11) 0.0074 (11)
N3A 0.0586 (14) 0.0537 (14) 0.0725 (16) 0.0015 (12) 0.0062 (12) 0.0232 (13)
C2B 0.0373 (12) 0.0360 (12) 0.0466 (13) −0.0016 (10) 0.0061 (10) −0.0005 (10)
N2B 0.0445 (12) 0.0517 (13) 0.0651 (14) 0.0055 (10) 0.0155 (11) −0.0103 (11)
C4A 0.0559 (17) 0.0421 (15) 0.091 (2) 0.0059 (13) 0.0083 (16) −0.0118 (15)
C3B 0.0354 (12) 0.0368 (12) 0.0615 (16) −0.0022 (10) −0.0006 (11) 0.0035 (11)
N3B 0.0445 (12) 0.0496 (13) 0.0823 (17) 0.0103 (10) 0.0087 (12) −0.0032 (12)
C5A 0.067 (2) 0.078 (2) 0.073 (2) 0.0010 (17) 0.0205 (16) −0.0281 (18)
C4B 0.0582 (17) 0.0525 (17) 0.077 (2) −0.0098 (14) −0.0182 (15) 0.0150 (16)
C6A 0.077 (2) 0.072 (2) 0.0515 (16) −0.0086 (17) 0.0232 (15) −0.0035 (15)
C5B 0.100 (3) 0.071 (2) 0.0560 (19) −0.028 (2) −0.0110 (18) 0.0139 (17)
C7A 0.0571 (15) 0.0460 (14) 0.0490 (14) −0.0057 (12) 0.0119 (12) 0.0020 (11)
C7B 0.0622 (17) 0.0583 (17) 0.0587 (17) 0.0045 (14) 0.0176 (14) −0.0055 (14)
C6B 0.102 (3) 0.076 (2) 0.0519 (18) −0.012 (2) 0.0221 (18) −0.0090 (16)

Geometric parameters (Å, º)

C1—C2 1.384 (4) N1B—N2B 1.355 (3)
C1—C6 1.391 (3) N1B—C2B 1.361 (3)
C1—C1A 1.513 (3) C3A—N3A 1.376 (3)
C2—C3 1.380 (4) C3A—C4A 1.397 (4)
C2—H2 0.9300 C2B—C3B 1.383 (3)
C3—C4 1.380 (4) C2B—C7B 1.394 (4)
C3—H3 0.9300 N2B—N3B 1.310 (3)
C4—C5 1.384 (3) C4A—C5A 1.369 (5)
C4—H4 0.9300 C4A—H4A 0.9300
C5—C6 1.395 (3) C3B—N3B 1.376 (4)
C5—C1B 1.507 (3) C3B—C4B 1.396 (4)
C6—H6 0.9300 C5A—C6A 1.404 (5)
C1A—N1A 1.457 (3) C5A—H5A 0.9300
C1A—H1AA 0.9700 C4B—C5B 1.358 (5)
C1A—H1AB 0.9700 C4B—H4B 0.9300
N1A—N2A 1.354 (3) C6A—C7A 1.365 (4)
N1A—C2A 1.355 (3) C6A—H6A 0.9300
C2A—C3A 1.390 (3) C5B—C6B 1.405 (5)
C2A—C7A 1.392 (3) C5B—H5B 0.9300
N2A—N3A 1.308 (4) C7A—H7A 0.9300
C1B—N1B 1.447 (3) C7B—C6B 1.367 (4)
C1B—H1BA 0.9700 C7B—H7B 0.9300
C1B—H1BB 0.9700 C6B—H6B 0.9300
H1BA···N3Ai 2.59 H7A···Cg1iii 2.69
H4A···N3Bii 2.66 H4B···Cg2iv 2.79
C2—C1—C6 119.1 (2) N2B—N1B—C1B 120.9 (2)
C2—C1—C1A 119.8 (2) C2B—N1B—C1B 129.5 (2)
C6—C1—C1A 121.1 (2) N3A—C3A—C2A 108.2 (2)
C3—C2—C1 120.3 (2) N3A—C3A—C4A 131.1 (3)
C3—C2—H2 119.8 C2A—C3A—C4A 120.7 (3)
C1—C2—H2 119.8 N2A—N3A—C3A 108.2 (2)
C2—C3—C4 120.2 (2) N1B—C2B—C3B 104.9 (2)
C2—C3—H3 119.9 N1B—C2B—C7B 132.5 (2)
C4—C3—H3 119.9 C3B—C2B—C7B 122.6 (2)
C3—C4—C5 120.8 (2) N3B—N2B—N1B 109.1 (2)
C3—C4—H4 119.6 C5A—C4A—C3A 116.7 (3)
C5—C4—H4 119.6 C5A—C4A—H4A 121.7
C4—C5—C6 118.5 (2) C3A—C4A—H4A 121.7
C4—C5—C1B 122.0 (2) N3B—C3B—C2B 108.6 (2)
C6—C5—C1B 119.4 (2) N3B—C3B—C4B 130.7 (3)
C1—C6—C5 121.1 (2) C2B—C3B—C4B 120.8 (3)
C1—C6—H6 119.4 N2B—N3B—C3B 107.8 (2)
C5—C6—H6 119.4 C4A—C5A—C6A 122.0 (3)
N1A—C1A—C1 112.5 (2) C4A—C5A—H5A 119.0
N1A—C1A—H1AA 109.1 C6A—C5A—H5A 119.0
C1—C1A—H1AA 109.1 C5B—C4B—C3B 117.1 (3)
N1A—C1A—H1AB 109.1 C5B—C4B—H4B 121.5
C1—C1A—H1AB 109.1 C3B—C4B—H4B 121.5
H1AA—C1A—H1AB 107.8 C7A—C6A—C5A 122.0 (3)
N2A—N1A—C2A 110.1 (2) C7A—C6A—H6A 119.0
N2A—N1A—C1A 121.6 (2) C5A—C6A—H6A 119.0
C2A—N1A—C1A 128.3 (2) C4B—C5B—C6B 121.5 (3)
N1A—C2A—C3A 104.7 (2) C4B—C5B—H5B 119.2
N1A—C2A—C7A 132.7 (2) C6B—C5B—H5B 119.2
C3A—C2A—C7A 122.6 (2) C6A—C7A—C2A 116.0 (3)
N3A—N2A—N1A 108.8 (2) C6A—C7A—H7A 122.0
N1B—C1B—C5 113.11 (19) C2A—C7A—H7A 122.0
N1B—C1B—H1BA 109.0 C6B—C7B—C2B 115.5 (3)
C5—C1B—H1BA 109.0 C6B—C7B—H7B 122.3
N1B—C1B—H1BB 109.0 C2B—C7B—H7B 122.3
C5—C1B—H1BB 109.0 C7B—C6B—C5B 122.5 (3)
H1BA—C1B—H1BB 107.8 C7B—C6B—H6B 118.8
N2B—N1B—C2B 109.6 (2) C5B—C6B—H6B 118.8

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y+1, z; (iii) x−1, y, z; (iv) −x+3/2, y−1/2, −z+3/2.

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the N1B–N3B/C2B/C3B C2A–C7A rings, respectively.

D—H···A D—H H···A D···A D—H···A
C1B—H1BA···N3Ai 0.97 2.59 3.409 (4) 142
C4A—H4A···N3Bii 0.93 2.66 3.443 (4) 143
C7A—H7A···Cg1iii 0.93 2.69 3.423 (3) 136
C4B—H4B···Cg2iv 0.93 2.89 3.481 (3) 132

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y+1, z; (iii) x−1, y, z; (iv) −x+3/2, y−1/2, −z+3/2.

References

  1. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cai, Y.-P., Li, G.-B., He, G.-P., Su, C.-Y., Xu, A.-W. & Zhang, C. (2004). Acta Cryst. E60, o2062–o2064.
  3. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst B72, 171–179. [DOI] [PMC free article] [PubMed]
  4. Hurtado, J., Rojas, R., Pérez, E. & Valderrama, M. (2013). J. Chil. Chem. Soc. 58, 1534–1536.
  5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  6. O’Keefe, B. J. & Steel, P. J. (2000). Inorg. Chem. Commun. 3, 473–475.
  7. Rajakumar, P. & Murali, V. (2000). Tetrahedron, 56, 7995–7999.
  8. Selvanayagam, S., Rajakannan, V., Velmurugan, D., Dhanasekaran, M., Rajakumar, P. & Moon, J.-K. (2002). Acta Cryst. E58, o1190–o1192.
  9. Selvanayagam, S., Velmurugan, D., Ravikumar, K., Dhanasekaran, M. & Rajakumar, P. (2004). Acta Cryst. E60, o2165–o2167.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016007805/bg2585sup1.cif

e-72-00815-sup1.cif (977.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016007805/bg2585Isup2.hkl

e-72-00815-Isup2.hkl (277.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016007805/bg2585Isup3.cml

CCDC reference: 1479416

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES