Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 May 15;89(10):4382–4386. doi: 10.1073/pnas.89.10.4382

A leucine-to-proline mutation in the putative first transmembrane domain of the 22-kDa peripheral myelin protein in the trembler-J mouse.

U Suter 1, J J Moskow 1, A A Welcher 1, G J Snipes 1, B Kosaras 1, R L Sidman 1, A M Buchberg 1, E M Shooter 1
PMCID: PMC49086  PMID: 1374899

Abstract

Peripheral myelin protein PMP-22 is a potential growth-regulating myelin protein that is expressed by Schwann cells and predominantly localized in compact peripheral myelin. A point mutation in the Pmp-22 gene of inbred trembler (Tr) mice was identified and proposed to be responsible for the Tr phenotype, which is characterized by paralysis of the limbs as well as tremors and transient seizures. In support of this hypothesis, we now report the fine mapping of the Pmp-22 gene to the immediate vicinity of the Tr locus on mouse chromosome 11. Furthermore, we have found a second point mutation in the Pmp-22 gene of trembler-J (TrJ) mice, which results in the substitution of a leucine residue by a proline residue in the putative first transmembrane region of the PMP-22 polypeptide. Tr and TrJ were previously mapped genetically as possible allelic mutations giving rise to similar, but not identical, phenotypes. This finding is consistent with the discovery of two different mutations in physicochemically similar domains of the PMP-22 protein. Our results strengthen the hypothesis that mutations in the Pmp-22 gene can lead to heterogeneous forms of peripheral neuropathies and offer clues toward possible explanations for the dominant inheritance of these disorders.

Full text

PDF
4382

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buchberg A. M., Brownell E., Nagata S., Jenkins N. A., Copeland N. G. A comprehensive genetic map of murine chromosome 11 reveals extensive linkage conservation between mouse and human. Genetics. 1989 May;122(1):153–161. doi: 10.1093/genetics/122.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buchberg A. M., Moskow J. J., Buckwalter M. S., Camper S. A. Mouse chromosome 11. Mamm Genome. 1991;1(Spec No):S158–S191. doi: 10.1007/BF00656492. [DOI] [PubMed] [Google Scholar]
  3. Campagnoni A. T., Macklin W. B. Cellular and molecular aspects of myelin protein gene expression. Mol Neurobiol. 1988 Spring;2(1):41–89. doi: 10.1007/BF02935632. [DOI] [PubMed] [Google Scholar]
  4. Colombo M. P., Martinotti A., Howard T. A., Schneider C., D'Eustachio P., Seldin M. F. Localization of growth arrest-specific genes on mouse chromosomes 1, 7, 8, 11, 13, and 16. Mamm Genome. 1992;2(2):130–134. doi: 10.1007/BF00353861. [DOI] [PubMed] [Google Scholar]
  5. De Leon M., Welcher A. A., Suter U., Shooter E. M. Identification of transcriptionally regulated genes after sciatic nerve injury. J Neurosci Res. 1991 Aug;29(4):437–448. doi: 10.1002/jnr.490290404. [DOI] [PubMed] [Google Scholar]
  6. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eghbali B., Kessler J. A., Reid L. M., Roy C., Spray D. C. Involvement of gap junctions in tumorigenesis: transfection of tumor cells with connexin 32 cDNA retards growth in vivo. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10701–10705. doi: 10.1073/pnas.88.23.10701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Henry E. W., Cowen J. S., Sidman R. L. Comparison of Trembler and Trembler-J mouse phenotypes: varying severity of peripheral hypomyelination. J Neuropathol Exp Neurol. 1983 Nov;42(6):688–706. doi: 10.1097/00005072-198311000-00008. [DOI] [PubMed] [Google Scholar]
  9. Henry E. W., Sidman R. L. Long lives for homozygous trembler mutant mice despite virtual absence of peripheral nerve myelin. Science. 1988 Jul 15;241(4863):344–346. doi: 10.1126/science.3388045. [DOI] [PubMed] [Google Scholar]
  10. Henry E. W., Sidman R. L. The murine mutation trembler-J: proof of semidominant expression by use of the linked vestigial tail marker. J Neurogenet. 1983 Sep;1(1):39–52. doi: 10.3109/01677068309107071. [DOI] [PubMed] [Google Scholar]
  11. Jenkins N. A., Copeland N. G., Taylor B. A., Lee B. K. Organization, distribution, and stability of endogenous ecotropic murine leukemia virus DNA sequences in chromosomes of Mus musculus. J Virol. 1982 Jul;43(1):26–36. doi: 10.1128/jvi.43.1.26-36.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lemke G. Unwrapping the genes of myelin. Neuron. 1988 Sep;1(7):535–543. doi: 10.1016/0896-6273(88)90103-1. [DOI] [PubMed] [Google Scholar]
  13. Lupski J. R., de Oca-Luna R. M., Slaugenhaupt S., Pentao L., Guzzetta V., Trask B. J., Saucedo-Cardenas O., Barker D. F., Killian J. M., Garcia C. A. DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell. 1991 Jul 26;66(2):219–232. doi: 10.1016/0092-8674(91)90613-4. [DOI] [PubMed] [Google Scholar]
  14. Manfioletti G., Ruaro M. E., Del Sal G., Philipson L., Schneider C. A growth arrest-specific (gas) gene codes for a membrane protein. Mol Cell Biol. 1990 Jun;10(6):2924–2930. doi: 10.1128/mcb.10.6.2924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miyatake S., Otsuka T., Yokota T., Lee F., Arai K. Structure of the chromosomal gene for granulocyte-macrophage colony stimulating factor: comparison of the mouse and human genes. EMBO J. 1985 Oct;4(10):2561–2568. doi: 10.1002/j.1460-2075.1985.tb03971.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Morgan L., Jessen K. R., Mirsky R. The effects of cAMP on differentiation of cultured Schwann cells: progression from an early phenotype (04+) to a myelin phenotype (P0+, GFAP-, N-CAM-, NGF-receptor-) depends on growth inhibition. J Cell Biol. 1991 Feb;112(3):457–467. doi: 10.1083/jcb.112.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pham-Dinh D., Popot J. L., Boespflug-Tanguy O., Landrieu P., Deleuze J. F., Boué J., Jollès P., Dautigny A. Pelizaeus-Merzbacher disease: a valine to phenylalanine point mutation in a putative extracellular loop of myelin proteolipid. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7562–7566. doi: 10.1073/pnas.88.17.7562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rappold G. A., Vosberg H. P. Chromosomal localization of a human myosin heavy-chain gene by in situ hybridization. Hum Genet. 1983;65(2):195–197. doi: 10.1007/BF00286663. [DOI] [PubMed] [Google Scholar]
  19. Readhead C., Popko B., Takahashi N., Shine H. D., Saavedra R. A., Sidman R. L., Hood L. Expression of a myelin basic protein gene in transgenic shiverer mice: correction of the dysmyelinating phenotype. Cell. 1987 Feb 27;48(4):703–712. doi: 10.1016/0092-8674(87)90248-0. [DOI] [PubMed] [Google Scholar]
  20. Rojas C. V., Wang J. Z., Schwartz L. S., Hoffman E. P., Powell B. R., Brown R. H., Jr A Met-to-Val mutation in the skeletal muscle Na+ channel alpha-subunit in hyperkalaemic periodic paralysis. Nature. 1991 Dec 5;354(6352):387–389. doi: 10.1038/354387a0. [DOI] [PubMed] [Google Scholar]
  21. Snipes G. J., Suter U., Welcher A. A., Shooter E. M. Characterization of a novel peripheral nervous system myelin protein (PMP-22/SR13). J Cell Biol. 1992 Apr;117(1):225–238. doi: 10.1083/jcb.117.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Spreyer P., Kuhn G., Hanemann C. O., Gillen C., Schaal H., Kuhn R., Lemke G., Müller H. W. Axon-regulated expression of a Schwann cell transcript that is homologous to a 'growth arrest-specific' gene. EMBO J. 1991 Dec;10(12):3661–3668. doi: 10.1002/j.1460-2075.1991.tb04933.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Suter U., Welcher A. A., Ozcelik T., Snipes G. J., Kosaras B., Francke U., Billings-Gagliardi S., Sidman R. L., Shooter E. M. Trembler mouse carries a point mutation in a myelin gene. Nature. 1992 Mar 19;356(6366):241–244. doi: 10.1038/356241a0. [DOI] [PubMed] [Google Scholar]
  24. Ting-Beall H. P., Lees M. B., Robertson J. D. Interactions of Folch-Lees proteolipid apoprotein with planar lipid bilayers. J Membr Biol. 1979 Dec 12;51(1):33–46. doi: 10.1007/BF01869342. [DOI] [PubMed] [Google Scholar]
  25. Welcher A. A., Suter U., De Leon M., Snipes G. J., Shooter E. M. A myelin protein is encoded by the homologue of a growth arrest-specific gene. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7195–7199. doi: 10.1073/pnas.88.16.7195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Weydert A., Daubas P., Caravatti M., Minty A., Bugaisky G., Cohen A., Robert B., Buckingham M. Sequential accumulation of mRNAs encoding different myosin heavy chain isoforms during skeletal muscle development in vivo detected with a recombinant plasmid identified as coding for an adult fast myosin heavy chain from mouse skeletal muscle. J Biol Chem. 1983 Nov 25;258(22):13867–13874. [PubMed] [Google Scholar]
  27. de Cózar M., Lucas M., Monreal J. Ionophoric properties of the proteolipid apoprotein from bovine brain myelin. Biochem Int. 1987 May;14(5):833–841. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES