Abstract
Tibial motor nerve conduction velocity was measured in rats, before and two months after the induction of diabetes with streptozotocin. A second group of diabetic animals was also administered 1% dietary myoinositol supplements. An analysis of variance was performed on these data. Myoinositol supplements had no effect whatsoever. The period of diabetes had a statistically significant and quantitatively marginal effect (a decrease of 2.2 m s-1) on conduction velocity. This is considerably less than in previous reports. The reasons for this are discussed. Tibial motor nerve conduction velocity was also measured in a group of alloxan-diabetic rabbits two months after the induction of diabetes and in an age-matched control group. Conduction velocity was again slightly but significantly less in the diabetic animals.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BIRREN J. E., WALL P. D. Age changes in conduction velocity, refractory period, number of fibers, connective tissue space and blood vessels in sciatic nerve of rats. J Comp Neurol. 1956 Feb;104(1):1–16. doi: 10.1002/cne.901040102. [DOI] [PubMed] [Google Scholar]
- Clements R. S., Jr Diabetic neuropathy--new concepts of its etiology. Diabetes. 1979 Jun;28(6):604–611. doi: 10.2337/diab.28.6.604. [DOI] [PubMed] [Google Scholar]
- Clements R. S., Jr, Vourganti B., Kuba T., Oh S. J., Darnell B. Dietary myo-inositol intake and peripheral nerve function in diabetic neuropathy. Metabolism. 1979 Apr;28(4 Suppl 1):477–483. doi: 10.1016/0026-0495(79)90060-x. [DOI] [PubMed] [Google Scholar]
- ELIASSON S. G. NERVE CONDUCTION CHANGES IN EXPERIMENTAL DIABETES. J Clin Invest. 1964 Dec;43:2353–2358. doi: 10.1172/JCI105109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eliasson S. G. Properties of isolated nerve fibres from alloxanized rats. J Neurol Neurosurg Psychiatry. 1969 Dec;32(6):525–529. doi: 10.1136/jnnp.32.6.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goto I., Peters H. A. Serial in vivo determination of motor conduction velocity in tails of allaxanized non-diabetic and diabetic rats. J Neurol Sci. 1974 Jun;22(2):177–182. doi: 10.1016/0022-510x(74)90219-6. [DOI] [PubMed] [Google Scholar]
- Greene D. A., De Jesus P. V., Jr, Winegrad A. I. Effects of insulin and dietary myoinositol on impaired peripheral motor nerve conduction velocity in acute streptozotocin diabetes. J Clin Invest. 1975 Jun;55(6):1326–1336. doi: 10.1172/JCI108052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gregersen G., Børsting H., Theil P., Servo C. Myoinositol and function of peripheral nerves in human diabetics. A controlled clinical trial. Acta Neurol Scand. 1978 Oct;58(4):241–248. doi: 10.1111/j.1600-0404.1978.tb02884.x. [DOI] [PubMed] [Google Scholar]
- Gregersen G. Diabetic neuropathy: influence of age, sex, metabolic control, and duration of diabetes on motor conduction velocity. Neurology. 1967 Oct;17(10):972–980. doi: 10.1212/wnl.17.10.972. [DOI] [PubMed] [Google Scholar]
- Hendrickson H. S., Reinertsen J. L. Phosphoinositide interconversion: a model for control of Na + and K + permeability in the nerve axon membrane. Biochem Biophys Res Commun. 1971 Sep;44(5):1258–1264. doi: 10.1016/s0006-291x(71)80221-8. [DOI] [PubMed] [Google Scholar]
- Hildebrand J., Joffroy A., Graff G., Coërs C. Neuromuscular changes with alloxan hyperglycemia. Electrophysiological, biochemical, and histological study in rats. Arch Neurol. 1968 Jun;18(6):633–641. doi: 10.1001/archneur.1968.00470360055005. [DOI] [PubMed] [Google Scholar]
- Jakobsen J. Axonal dwindling in early experimental diabetes. I. A study of cross sectioned nerves. Diabetologia. 1976 Dec;12(6):539–546. doi: 10.1007/BF01220629. [DOI] [PubMed] [Google Scholar]
- Jakobsen J. Axonal dwindling in early experimental diabetes. II. A study of isolated nerve fibres. Diabetologia. 1976 Dec;12(6):547–553. doi: 10.1007/BF01220630. [DOI] [PubMed] [Google Scholar]
- Jakobsen J. Early and preventable changes of peripheral nerve structure and function in insulin-deficient diabetic rats. J Neurol Neurosurg Psychiatry. 1979 Jun;42(6):509–518. doi: 10.1136/jnnp.42.6.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jakobsen J., Lundbaek K. Neuropathy in experimental diabetes: an animal model. Br Med J. 1976 Jul 31;2(6030):278–279. doi: 10.1136/bmj.2.6030.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jefferys J. G., Brismar T. Analysis of peripheral nerve function in streptozotocin diabetic rats. J Neurol Sci. 1980 Dec;48(3):435–444. doi: 10.1016/0022-510x(80)90114-8. [DOI] [PubMed] [Google Scholar]
- Jefferys J. G., Palmano K. P., Sharma A. K., Thomas P. K. Influence of dietary myoinositol on nerve conduction and inositol phospholipids in normal and diabetic rats. J Neurol Neurosurg Psychiatry. 1978 Apr;41(4):333–339. doi: 10.1136/jnnp.41.4.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kai M., Hawthorne J. N. Physiological significance of polyphosphoinositides in brain. Ann N Y Acad Sci. 1969 Oct 17;165(2):761–773. [PubMed] [Google Scholar]
- Miyoshi T., Goto I. Serial in vivo determinations of nerve conduction velocity in rat tails. Physiological and pathological changes. Electroencephalogr Clin Neurophysiol. 1973 Aug;35(2):125–131. doi: 10.1016/0013-4694(73)90168-5. [DOI] [PubMed] [Google Scholar]
- Powell H. C., Ward H. W., Garrett R. S., Orloff M. J., Lampert P. W. Glycogen accumulation in the nerves and kidney of chronically diabetic rats. A quantitative electron microscopic study. J Neuropathol Exp Neurol. 1979 Mar;38(2):114–127. doi: 10.1097/00005072-197903000-00004. [DOI] [PubMed] [Google Scholar]
- Powell H., Knox D., Lee S., Charters A. C., Orloff M., Garrett R., Lampert P. Alloxan diabetic neuropathy: electron microscopic studies. Neurology. 1977 Jan;27(1):60–66. doi: 10.1212/wnl.27.1.60. [DOI] [PubMed] [Google Scholar]
- Salway J. G., Whitehead L., Finnegan J. A., Karunanayaka A., Barnett D., Payne R. B. Effect of myo-inositol on peripheral-nerve function in diabetes. Lancet. 1978 Dec 16;2(8103):1282–1284. doi: 10.1016/s0140-6736(78)92043-3. [DOI] [PubMed] [Google Scholar]
- Schlaepfer W. W., Gerritsen G. C., Dulin W. E. Segmental demyelination in the distal peripheral nerves of chronically diabetic Chinese hamsters. Diabetologia. 1974 Nov;10 (Suppl):541–548. doi: 10.1007/BF01221984. [DOI] [PubMed] [Google Scholar]
- Sharma A. K., Bajada S., Thomas P. K. Age changes in the tibial and plantar nerves of the rat. J Anat. 1980 Mar;130(Pt 2):417–428. [PMC free article] [PubMed] [Google Scholar]
- Sharma A. K., Thomas P. K., De Molina A. F. Peripheral nerve fiber size in experimental diabetes. Diabetes. 1977 Jul;26(7):689–692. doi: 10.2337/diab.26.7.689. [DOI] [PubMed] [Google Scholar]
- Sharma A. K., Thomas P. K. Peripheral nerve structure and function in experimental diabetes. J Neurol Sci. 1974 Sep;23(1):1–15. doi: 10.1016/0022-510x(74)90136-1. [DOI] [PubMed] [Google Scholar]
- Sima A. A., Robertson D. M. Peripheral neuropathy in mutant diabetic mouse [C57BL/Ks (db/db)]. Acta Neuropathol. 1978 Feb 20;41(2):85–89. doi: 10.1007/BF00689757. [DOI] [PubMed] [Google Scholar]
- Sima A. A., Robertson D. M. Peripheral neuropathy in the diabetic mutant mouse. An ultrastructural study. Lab Invest. 1979 Jun;40(6):627–632. [PubMed] [Google Scholar]
- Stewart M. A., Sherman W. R., Kurien M. M., Moonsammy G. I., Wisgerhof M. Polyol accumulations in nervous tissue of rats with experimental diabetes and galactosaemia. J Neurochem. 1967 Nov;14(11):1057–1066. doi: 10.1111/j.1471-4159.1967.tb09516.x. [DOI] [PubMed] [Google Scholar]
- Thomas P. K., King R. H., Sharma A. K. Changes with age in the peripheral nerves of the rat. An ultrastructural study. Acta Neuropathol. 1980;52(1):1–6. doi: 10.1007/BF00687222. [DOI] [PubMed] [Google Scholar]
- Ward J. D., Barnes C. G., Fisher D. J., Jessop J. D., Baker R. W. Improvement in nerve conduction following treatment in newly diagnosed diabetics. Lancet. 1971 Feb 27;1(7696):428–430. doi: 10.1016/s0140-6736(71)92415-9. [DOI] [PubMed] [Google Scholar]