Skip to main content
Data in Brief logoLink to Data in Brief
. 2016 May 30;8:360–363. doi: 10.1016/j.dib.2016.05.056

Data in support of qPCR primer design and verification in a Pink1 −/− rat model of Parkinson disease

Cynthia A Kelm-Nelson a,, Sharon A Stevenson b, Michelle R Ciucci a,c,d
PMCID: PMC4909782  PMID: 27331115

Abstract

Datasets provided in this article represent the Rattus norvegicus primer design and verification used in Pink1 −/− and wildtype Long Evans brain tissue. Accessible tables include relevant information, accession numbers, sequences, temperatures and product length, describing primer design specific to the transcript amplification use. Additionally, results of Sanger sequencing of qPCR reaction products (FASTA aligned sequences) are presented for genes of interest. Results and further interpretation and discussion can be found in the original research article “Atp13a2 expression in the periaqueductal gray is decreased in the Pink1 −/− rat model of Parkinson disease” [1].


Specifications table

Subject area Biology
More specific subject area Neurobiology of disease
Type of data Tables
How data was acquired National Center for Biotechnology Information (NCBI) Primer Blast was used to design primers and Sanger sequencing was used for primer confirmation.
Data format Raw
Experimental factors Netprimer® (PREMIER Biosoft, Palo Alto, CA, USA) was used to examine secondary structure of all primers designed through NCBI Primer Blast to avoid primer products. Non-template controls were run with each primer pair to check for formation of primer-dimers and non-specific amplification products.
Experimental features Specificity for each primer pair was confirmed using melt curve analysis; all primer runs yielded single peak melt curves indicating amplification of single gene products. Furthermore, the qPCR reaction product for each gene was sequenced using Sanger sequencing with both forward and reverse primers at the University of Wisconsin Biotechnology Center to confirm that sequences match intended targets.
Data source location Madison, Wisconsin, USA
Data accessibility Data are within this article

Value of the data

  • Data presented here allows for experimental replication.

  • Data can be used as a benchmark for other researchers using rat brain tissue.

  • Primers can then be manufactured and used in alternative models of Parkinson disease and then compared to this data set.

1. Data

Table 1 describes the rat (Rattus norvegicus) primer information including gene name, gene abbreviation, GenBank® accession numbers, experimental primer sequences, melt temperature and product length (base pairs) for each gene (Pink1, Asyn, Th, D1, D2, Atp13a2, Gba, Cflar, Gabrb2, Gad1, Gad2) as well as reference genes (Gapdh, βactin).

Table 1.

Rattus norvegicus primer information.

Gene Gene abbreviation Accession number Direction Sequences T (°C) Product (bp)
Gapdh glyceraldehyde-3-phosphate dehydrogenase Gapdh NM_017008.4 Forward GGATACTGAGAGCAAGAGAGA 59 106
Reverse TTATGGGGTCTGGGATGGAA


 

 

 

 

 

 


Actb actin, beta βactin NM_031144.3 Forward TGTGGATTGGTGGCTCTATC 59 149
Reverse AGAAAGGGTGTAAAACGCAG


 

 

 

 

 

 


Pink1 PTEN induced putative kinase 1 Pink1 Primers created from Dave et al. [2] Forward CATGGCTTTGGATGGAGAGT 58 n/a
Reverse TGGGAGTTTGCTCTTCAAGG


 

 

 

 

 

 


Snca synuclein, alpha (non-A4 component of amyloid precursor) Asyn NM_019169.2 Forward TCAGCCCAGAGCCTTTCAC 58 165
Reverse AGCCACAACTCCCTCCTTG


 

 

 

 

 

 


Th tyrosine hydroxylase Th NM_012740.3 Forward CTTTGACCCAGACACAGCA 59 123
Reverse TGGATACGAGAGGCATAGTTC


 

 

 

 

 

 


Drd1 dopamine receptor D1 D1 NM_012546.2 Forward GCTGGCTCCCTTTCTTCATC 60 111
Reverse CACCCAAACCACACAAACAC


 

 

 

 

 

 


Drd2 dopamine receptor D2 D2 NM_012547.1 Forward TCCTTGACCTTCCTCTTGGG 60 188
Reverse CCTGACACTGATGTTGCCTG


 

 

 

 

 

 


Atp13a2 ATPase type 13A2 Atp13a2 NM_001173432.1 Forward CTTCTCTCTGTCTGGCTTCC 60 95
Reverse TCCTCAGTCCGTTGGTGTAG


 

 

 

 

 

 


Gba glucosidase, beta, acid Gba NM_001127639.1 Forward GAGCAGAGTGTTCGGTTAGG 60 115
Reverse GATTCAGGGCAAGGTTCCAG


 

 

 

 

 

 


Cflar CASP8 and FADD-like apoptosis regulator Cflar NM_001033864.2 Forward GTGCTGCTGATGGAGATTGG 60 107
Reverse CTCTTGTCCTTGGCTACCTTG


 

 

 

 

 

 


Gabrb2 gamma-aminobutyric acid (GABA) A receptor, beta 2 Gabrb2 NM_012957.2 Forward GGTGCTTTGTCTTTGTCTTTATGG 61 130
Reverse CGCATCTTCTCGTTGTTGG


 

 

 

 

 

 


Gad1 glutamate decarboxylase 1 Gad1 NM_017007.1 Forward GACACTTGAACAGTAGAGACCC 61 116
Reverse TGTAGGACGCAGGTTGGTAG


 

 

 

 

 

 


Gad2 glutamate decarboxylase 2 Gad2 NM_012563.1 Forward CCAGGCTCATCGCATTCAC 61 190
Reverse GCACTCACCAGGAAAGGAAC

Table 2 describes the results of Sanger sequencing of qPCR reaction product for each amplification product from the University of Wisconsin Biotechnology Center. Confirmed results presented are FASTA sequences confirmed through NCBI Nucleotide BLAST software.

Table 2.

Results of Sanger sequencing of qPCR reaction product.

Gene FASTA (Aligned Sequence)
Gapdh ATCCCAACTCGGCCCCCAACACTGAGCATCTCCCTCACAATTTCCATCCCAGACCCCCATAA
βactin AGATGTGGATCAGCAAGCAGGAGTACGATGAGTCCGGCCCCTCCATCGTGCACCGCAAATGCTTCTAGGCGGACTGTTAC
PINK1 CTCTTCTCATTTTTCCCGACCAC
Asyn GGGGAAAACAGGAGGAATCAGAGTTCTGCGGAAGCCTAGAGAGCCGTGTGGAGCAAAGATACATCTTTAGCCATGGATGT
Th CCAGCCTGTGTACTTTGTGTCCGAGAGCTTCAATGACGCCAAGGACAAGCTCAGG
D1 GGCTCCCTTTCTTCATCTCGAACTGTATGGTGCCCTTCTGTGGCTCTGAGGAGACCCAGCCAT
D2 TTCCTTGACCTTCCTCTTGGGCACAGAAACTAGCTCAGTGGTCGAGCACACCCTGATCGCTGG
Atp13a2 CGGTGTCTAAGGGGGCACCCTTCCGCCAGCCGCTCTACACCAACGGACTGAGGAA
Gba GCAACTGTTACCACGTCAATTCCATG
Cflar CTGATGGAGATTGGGGAGAATTTGAATCAATCTGATGTATCCTCCTTAATTT
Gabrb2 TCTTCTTTGGGAGAGGACCCCAGCGCCAAAAGAAAGCAGCTGAGAAAGCTGCTAATGCCAACAACGAGAAGATGCG
Gad1 GCATCTTCCACGCCTTCGCCTGCAACCTCCTCGAACGCGGGAGCGGATCCTAATACTACCAACCTGCGTCCTACAA
Gad2 GCCTTGGGGATCGGAACAGACAGCGTGATTCTGATTAAATGTGATGAGAGAGGGAAAATGATCCCATCTGACCTTGAAAG

2. Experimental design, materials and methods

Netprimer (PREMIER Biosoft, Palo Alto, CA, USA) was used to examine secondary structure of all primers designed through NCBI Primer Blast to avoid primer products (Table 1). The Pink1 gene primer was used based on a previous publication [2]. Non-template controls were run with each primer pair to check for formation of primer-dimers and non-specific amplification products. Specificity for each primer pair was confirmed using melt curve analysis; all primer runs yielded single peak melt curves indicating amplification of single gene products. Furthermore, the qPCR reaction product for each gene was sequenced using Sanger sequencing with both forward and reverse primers at the University of Wisconsin Biotechnology Center (Table 2). FASTA sequences were entered into the NCBI Nucleotide BLAST software to confirm that sequences matched intended targets.

Footnotes

Transparency document

Transparency data associated with this article can be found in the online version at doi:10.1016/j.dib.2016.05.056.

Transparency document. Supplementary material

Supplementary material

mmc1.docx (12.4KB, docx)

References

  • 1.Kelm-Nelson C.A., Stevenson S.A., Ciucci M.R. Atp13a2 expression in the periaqueductal gray is decreased in the Pink1 −/− rat model of Parkinson disease. Neurosci. Lett. 2016;621:75–82. doi: 10.1016/j.neulet.2016.04.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Dave K.D. Phenotypic characterization of recessive gene knockout rat models of Parkinson׳s disease. Neurobiol. Dis. 2014;70(0):190–203. doi: 10.1016/j.nbd.2014.06.009. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary material

mmc1.docx (12.4KB, docx)

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES