Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Mar 22;72(Pt 4):534–537. doi: 10.1107/S2056989016004394

Synthesis and crystal structure of trans-di­chlorido[3-methyl-1-(4-vinyl­benz­yl)-1H-imidazol-3-ium-2-yl-κC 2](4-phenyl­pyridine-κN)palladium(II)

Maitham H Majeed a, Ola F Wendt a,*
PMCID: PMC4910322  PMID: 27375883

In the title compound, [Pd(C11H9N)(C13H14N2)Cl2], the PdII ion is coordinated by two Cl anions, one carbene C atom and one pyridine N atom in a slightly distorted square-planar geometry. In the crystal, the mol­ecules are linked through weak C—H⋯Cl hydrogen bonds into a tape structure.

Keywords: crystal structure, palladium, N-heterocyclic carbenes, monomers for polymerization, 1-methyl-3-(4-vinyl­benz­yl)imidazole

Abstract

The title compound, [PdCl2(C11H9N)(C13H14N2)], represents a new class of palladium-based polymerizable monomer which could give a potentially catalytically active polymer. It was synthesized via transmetallation from the corresponding silver complex. The PdII ion coordinates two Cl anions, one C atom from the N-heterocyclic carbene (NHC) ligand and one N atom from the 4-phenyl­pyridine ligand, displaying a slightly distorted square-planar geometry. The dihedral angle between the imidazole ring and the pyridine ring is 34.53 (8)°. The Pd—C bond length between the NHC ligand and the PdII ion is 1.9532 (16) Å. In the crystal, weak non-classical C—H⋯Cl hydrogen bonds link the mol­ecules into a tape structure along [101]. A weak π–π inter­action is also observed [centroid–centroid distance = 3.9117 (11) Å].

Chemical context  

In the last few years, palladium complexes with N-heterocyclic carbene ligands (Pd-NHCs) have received attention, inter alia as catalysts for cross-coupling in organic synthesis (Hadei et al., 2005; Nasielski et al., 2010; Valente et al., 2010, 2012). NHC complexes derived from vinyl imidazolium salts are of growing significance in organometallic transformations because of their potential as precursors in heterogeneous catalysis, biocompatibility, anti-microbial activity and fuel cell applications (Dani et al., 2015; Ghazali-Esfahani et al., 2013; Anderson & Long, 2010; Kim et al., 2005; Kuzmicz et al., 2014; Seo & Chung, 2014; Li et al., 2011). The crystal structures of 1-methyl-3-(4-vinyl­benz­yl) imidazolium hexa­fluorido­phosphate and silver complexes with 1-methyl-3-(4-vinyl­benz­yl) imidazole as a carbene ligand have been reported previously (Lu et al., 2009, 2010). Here we report on the crystal structure of a new type of Pd-NHC complex belonging to the group of PEPPSI (pyridine-enhanced precatalyst preparation stabilization and initiation) catalysts, which are stable towards air and moisture, and have the advantage of being easy to synthesize and handle (Hadei et al., 2005).

Structural commentary  

In the title compound, the PdII ion coordinates the five-membered NHC ligand with a Pd1—C4 bond length of 1.9532 (16) Å and the 4-phenyl­pyridine ligand with a Pd1—N3 bond length of 2.0938 (14) Å. The two mutually trans Cl ions fulfil the coordination sphere (Fig. 1). Bond angles in the so-formed distorted square-plane are all close to 90° with the C4—Pd1—Cl angles slightly less than 90° and the others slightly more. The C4—Pd1—N3 angle shows an expected value 179.52 (6)°, while Cl1—Pd1—Cl2 exhibits a slightly distorted angle of 176.789 (17)°, probably due to the steric influence of the aromatic rings (Sevinçek et al., 2007). The dihedral angle between the N1/C4/N2/C3/C2 and C6–C11 rings in the NHC ligand is 77.90 (5)°.graphic file with name e-72-00534-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of the title compound (4). All non-H atoms are represented as displacement ellipsoids drawn at the 50% probability level and H atoms as small spheres with arbitrary radii.

The dihedral angles between the N1/C4/N2/C3/C2 ring on one hand and the N3/C14–C18 and C19–C24 rings on the other are 34.53 (8) and 65.78 (7)°, respectively. The C12—C13 bond length of the vinyl group is 1.299 (3) Å, corroborating the double-bond character. The same goes for the C2—C3 distance which is 1.330 (3) Å. The N2—C4—Pd1—N3, N1—C4—Pd1—Cl2, C18—N3—Pd1—Cl2 and C17—C16—C19—C24 torsion angles are −30 (7), 81.15 (15), −49.40 (15) and 32.42 (3)°, respectively. A Cambridge Structural Database (CSD) search to validate the Pd—Cl and Pd—N bonding was performed over 47 entries. The Cl—Pd—Cl and N—C—N angles range from 170 to 180° and from 104.8 to 106.2°, respectively; the Pd—Cl bond lengths are in the range 2.286–2.318 Å. The bond lengths and angles of the title compound 4 are comparable to the literature values.

Supra­molecular features  

In addition to dispersion inter­actions, the crystal of title compound 4 shows a π–π inter­action between the C19–C24 phenyl rings of neighbouring mol­ecules with a centroid–centroid distance of 3.9117 (11) Å (Fig. 2). Two weak non-classical C—H⋯Cl hydrogen bonds are detected (Table 1). No C—H⋯π contacts are present in the crystal packing diagram of compound 4 (Fig. 3).

Figure 2.

Figure 2

The dimer of the title compound (4) linked through the π–π inter­action.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯Cl1i 0.95 2.81 3.6021 (18) 142
C23—H23⋯Cl2ii 0.95 2.74 3.6537 (19) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 3.

Figure 3

A crystal packing diagram of the title compound (4). The non-classical C—H⋯Cl hydrogen bonds are shown by dotted lines.

Synthesis and crystallization  

General: Solvents and chemicals were purchased from commercial suppliers and used as received. The imidazolium salts 1 and 2 were prepared according to previously reported procedures (Kim et al., 2005; Lu et al., 2009). The title compound 4 was synthesized according to the carbene silver(I) route, as shown in Fig. 4. Transmetallation of the ligand from the tetra­meric silver complex 2 gave the chlorido-bridged palladium dimer 3. Cleavage of the dimer with phenyl­pyridine afforded complex 4 in excellent yield. With its vinyl groups it can serve as a precursor in co-polymerization reactions with e.g. styrene to form polymeric materials with catalytic properties.

Figure 4.

Figure 4

Synthesis pathway of the title compound (4).

[PdCl2(bmim)]2 (3). A 100 ml Schlenk flask was charged with 2 (7.0 g, 20.5 mmol), 50 ml of dry CH2Cl2 and Pd(PhCN)2Cl2 (7.8 g, 20.5 mmol). The mixture was stirred for 48 h at room temperature, during which time the solution changed colour to cloudy light brown. It was filtered through Celite and the filtrate was reduced to ca 10 ml. Upon addition of n-hexane, a light-brown solid was formed, which was collected on a frit and dried under vacuum to give 5.97 g (yield 78%).

[PdCl2(bmbim)(4-Phenyl­pyridine)] (4). 4-Phenyl­pyridine (0.085 g, 0.55 mmol) was added to a 40 ml solution of 3 (0.25 g, 0.26 mmol) in dry CH3CN and stirred at ambient temperature for 24 h, during which time the solution changed colour to clear yellow. The mixture was filtered through Celite and all solvents were evaporated. The solids were dissolved in CH2Cl2 and, upon addition of n-hexane, a yellow solid was formed, which was collected on a frit and dried under vacuum to give 0.153 g (93%) of 4.

Single crystals of 4 suitable for X-ray diffraction were obtained by slow diffusion of n-hexane into a saturated CH2Cl2 solution of the compound.

Refinement details  

Crystal data and structure refinement details are summarized in Table 2. H atoms were treated as riding, with C—H = 0.95–0.99 Å, and with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula [PdCl2(C11H9N)(C13H14N2)]
M r 530.75
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 183
a, b, c (Å) 7.8768 (3), 12.2939 (5), 12.6120 (4)
α, β, γ (°) 95.692 (3), 97.267 (3), 103.574 (3)
V3) 1167.09 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.04
Crystal size (mm) 0.39 × 0.27 × 0.1
 
Data collection
Diffractometer Agilent Xcalibur Ruby
Absorption correction Analytical (CrysAlis PRO; Agilent, 2012)
T min, T max 0.727, 0.916
No. of measured, independent and observed [I > 2σ(I)] reflections 28730, 7116, 6179
R int 0.037
(sin θ/λ)max−1) 0.714
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.027, 0.068, 1.04
No. of reflections 7116
No. of parameters 272
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.42

Computer programs: CrysAlis PRO (Agilent, 2012), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL2013 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) Global, I. DOI: 10.1107/S2056989016004394/is5447sup1.cif

e-72-00534-sup1.cif (846.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016004394/is5447Isup2.hkl

e-72-00534-Isup2.hkl (565.3KB, hkl)

Numbering for the assignment of NMR spectra. DOI: 10.1107/S2056989016004394/is5447sup3.tif

CCDC reference: 1468135

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The Swedish Research Council and Kungl. Vetenskapsakademien are gratefully acknowledged for financial support. We are grateful to the tutors of the Zurich School of Crystallography 2015 for their assistance with the data collection and guidance during the structure determination of the reported compound.

supplementary crystallographic information

Crystal data

[PdCl2(C11H9N)(C13H14N2)] Z = 2
Mr = 530.75 F(000) = 536
Triclinic, P1 Dx = 1.510 Mg m3
a = 7.8768 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.2939 (5) Å Cell parameters from 11991 reflections
c = 12.6120 (4) Å θ = 2.5–32.8°
α = 95.692 (3)° µ = 1.04 mm1
β = 97.267 (3)° T = 183 K
γ = 103.574 (3)° Plate, clear light yellow
V = 1167.09 (8) Å3 0.39 × 0.27 × 0.1 mm

Data collection

Agilent Xcalibur Ruby diffractometer 7116 independent reflections
Radiation source: Enhance (Mo) X-ray Source 6179 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
Detector resolution: 10.4498 pixels mm-1 θmax = 30.5°, θmin = 2.5°
ω scans h = −11→11
Absorption correction: analytical (CrysAlis PRO; Agilent, 2012) k = −17→17
Tmin = 0.727, Tmax = 0.916 l = −18→18
28730 measured reflections

Refinement

Refinement on F2 Primary atom site location: iterative
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0295P)2 + 0.2776P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
7116 reflections Δρmax = 0.45 e Å3
272 parameters Δρmin = −0.42 e Å3
0 restraints

Special details

Experimental. NMR spectra were acquired on a Bruker Avance 400 F T–NMR spectrometer (1H: 400.1 MHz). Residual solvent peaks were used as an internal reference. Elemental analyses were performed by H. Kolbe Microanalytisches Laboratorium, Mülheim an der Ruhr, Germany. The atomic numbering refers to Figure S1.(3):1H NMR (400 MHz, CDCl3): δ 7.42 (s, 8H, H-4, H5, H7 and H8), 6.87 (d, J = 1.9 Hz, 2H, H11), 6.75–6.65 (m, overlapping, 2H, H2), 6.70 (d, J = 1.8 Hz, 2H, H10), 5.82 (s, 4H, H9), 5.76 (d, J = 17.6 Hz, 2H, H1B), (5.28 (d, J = 10.9 Hz, 2H, H1A), 4.21 (s, 6H, H12). 13C NMR (400 MHz, CDCl3): δ 141.7 (C13), 138.2 (C6), 136.3 (C2), 134.2 (C3), 129.3 (C4 and C8), 127.0 (C5 and C7), 121.9 and 124.0 (C10 and C11 of imidazolyl), 114.9 (C1), 54.6 (C9), 38.4 (C12). Anal. Calcd for C26H28Cl4N4Pd2: C, 41.57; H, 3.76; N, 7.46. Found: C, 41.93; H, 4.21; N, 7.22.(4):1H NMR (400 MHz, CDCl3): δ 9.02 (dd, J=5.2, 1.5 Hz, 2H, H14 and H18), 7.65 – 7.4 (m, 9H, H4, H5, H7, H8, H19, H20, H21, H22 and H23), 7.56 (dd, J=5.2, J=1.6 Hz, H15 and H17), 6.89 (d, J=2.0 Hz, 1H, H11), 6.75 – 6.65 (m, overlapping, 1H, H2), 6.72 (d, J = 1.8 Hz, 1H, H10), 5.84 (s, 2H, H9), 5.76 (d, J=17.6 Hz, 1H, H1B), 5.27 (d, J=10.9 Hz, 1H, H1A), 4.21 (s, 3H, H12). 13C NMR (400 MHz, CDCl3): δ 151.4 (C14, C18), 150.6 (C16), 150.0 (C13), 137.9 (C24), 137.0 (C6), 136.4 (C2), 135.0 (C3), 130.0 (C21), 129.4 (C20 and C22), 129.3 (C4 and C8), 127.3 (C5 and C7), 126.9 (C19 and C23), 123.6 (C11 of imidazolyl), 122.4 (C15 and C17), 121.4 (C10 of imidazolyl), 114.6 (C1), 54.5 (C9), 38.2 (C12). Anal. Calcd for C32H29Cl2N3Pd: C, 60.73; H, 4.62; N, 6.64. Found: C, 60.52; H, 4.48; N, 6.52.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd1 0.07483 (2) 0.20492 (2) 0.94817 (2) 0.02792 (4)
Cl1 0.25183 (7) 0.15753 (5) 1.08527 (4) 0.05106 (13)
Cl2 −0.11307 (6) 0.25396 (4) 0.81746 (3) 0.03823 (10)
N3 0.17729 (19) 0.11549 (12) 0.83251 (11) 0.0321 (3)
N2 0.0464 (2) 0.39712 (13) 1.10216 (12) 0.0370 (3)
N1 −0.17080 (19) 0.25232 (13) 1.09351 (11) 0.0334 (3)
C5 0.2103 (3) 0.47133 (16) 1.08373 (16) 0.0429 (4)
H5A 0.1881 0.5452 1.0705 0.051*
H5B 0.2460 0.4386 1.0177 0.051*
C24 0.3205 (2) −0.12292 (16) 0.51023 (13) 0.0363 (4)
H24 0.2130 −0.1060 0.4829 0.044*
C15 0.4285 (2) 0.07047 (14) 0.76901 (13) 0.0309 (3)
H15 0.5536 0.0852 0.7759 0.037*
C8 0.4998 (3) 0.45500 (17) 1.34428 (16) 0.0457 (5)
H8 0.4936 0.4133 1.4038 0.055*
C19 0.4004 (2) −0.08203 (14) 0.61662 (13) 0.0305 (3)
C3 −0.0648 (3) 0.42689 (18) 1.17048 (17) 0.0487 (5)
H3 −0.0477 0.4979 1.2132 0.058*
C20 0.5571 (2) −0.10877 (15) 0.65431 (14) 0.0353 (4)
H20 0.6125 −0.0824 0.7267 0.042*
C21 0.6333 (3) −0.17316 (16) 0.58797 (16) 0.0424 (4)
H21 0.7408 −0.1905 0.6147 0.051*
C12 0.7988 (3) 0.56108 (19) 1.43218 (19) 0.0500 (5)
H12 0.7857 0.5128 1.4866 0.060*
C17 0.1405 (2) −0.02490 (17) 0.68094 (15) 0.0405 (4)
H17 0.0623 −0.0784 0.6261 0.049*
C23 0.3973 (3) −0.18787 (16) 0.44476 (14) 0.0419 (4)
H23 0.3415 −0.2158 0.3727 0.050*
C2 −0.2001 (3) 0.33722 (19) 1.16486 (16) 0.0464 (5)
H2 −0.2982 0.3322 1.2025 0.056*
C14 0.3524 (2) 0.13006 (14) 0.83849 (13) 0.0313 (3)
H14 0.4277 0.1845 0.8938 0.038*
C4 −0.0199 (2) 0.28953 (14) 1.05559 (12) 0.0293 (3)
C16 0.3223 (2) −0.01184 (14) 0.68806 (13) 0.0307 (3)
C9 0.6520 (2) 0.53798 (15) 1.34155 (15) 0.0381 (4)
C18 0.0733 (2) 0.03931 (17) 0.75286 (15) 0.0414 (4)
H18 −0.0511 0.0293 0.7458 0.050*
C10 0.6572 (3) 0.59587 (16) 1.25243 (18) 0.0442 (5)
H10 0.7605 0.6522 1.2475 0.053*
C13 0.9444 (3) 0.6404 (2) 1.4456 (2) 0.0688 (7)
H13A 0.9643 0.6910 1.3936 0.083*
H13B 1.0309 0.6478 1.5074 0.083*
C7 0.3571 (3) 0.43155 (17) 1.26257 (16) 0.0458 (5)
H7 0.2548 0.3740 1.2666 0.055*
C1 −0.2837 (2) 0.13842 (17) 1.06416 (16) 0.0420 (4)
H1A −0.2245 0.0847 1.0957 0.050*
H1B −0.3069 0.1198 0.9855 0.050*
H1C −0.3958 0.1340 1.0916 0.050*
C11 0.5146 (3) 0.57258 (16) 1.17113 (17) 0.0420 (4)
H11 0.5212 0.6133 1.1110 0.050*
C6 0.3612 (2) 0.49074 (14) 1.17516 (15) 0.0364 (4)
C22 0.5534 (3) −0.21261 (16) 0.48248 (16) 0.0445 (5)
H22 0.6062 −0.2564 0.4366 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.02640 (7) 0.03243 (7) 0.02598 (7) 0.00963 (5) 0.00443 (4) 0.00293 (5)
Cl1 0.0572 (3) 0.0779 (4) 0.0306 (2) 0.0436 (3) 0.0032 (2) 0.0073 (2)
Cl2 0.0344 (2) 0.0448 (2) 0.0344 (2) 0.01076 (18) −0.00241 (16) 0.00783 (17)
N3 0.0300 (7) 0.0359 (7) 0.0292 (7) 0.0078 (6) 0.0048 (5) −0.0002 (6)
N2 0.0376 (8) 0.0355 (8) 0.0384 (8) 0.0100 (6) 0.0104 (6) 0.0001 (6)
N1 0.0301 (7) 0.0385 (8) 0.0347 (7) 0.0119 (6) 0.0097 (6) 0.0055 (6)
C5 0.0469 (11) 0.0357 (9) 0.0435 (10) 0.0038 (8) 0.0093 (8) 0.0057 (8)
C24 0.0365 (9) 0.0418 (9) 0.0276 (8) 0.0062 (7) 0.0030 (7) 0.0018 (7)
C15 0.0274 (8) 0.0335 (8) 0.0288 (7) 0.0026 (6) 0.0052 (6) 0.0003 (6)
C8 0.0509 (12) 0.0423 (10) 0.0433 (10) 0.0062 (9) 0.0134 (9) 0.0084 (8)
C19 0.0313 (8) 0.0314 (8) 0.0265 (7) 0.0036 (6) 0.0063 (6) 0.0014 (6)
C3 0.0529 (12) 0.0475 (11) 0.0493 (11) 0.0202 (10) 0.0173 (9) −0.0060 (9)
C20 0.0399 (9) 0.0368 (9) 0.0283 (8) 0.0094 (7) 0.0039 (7) 0.0027 (7)
C21 0.0424 (10) 0.0402 (10) 0.0480 (10) 0.0160 (8) 0.0084 (8) 0.0062 (8)
C12 0.0462 (11) 0.0481 (11) 0.0577 (12) 0.0158 (9) 0.0108 (10) 0.0030 (10)
C17 0.0305 (9) 0.0487 (11) 0.0350 (9) 0.0044 (8) 0.0003 (7) −0.0104 (8)
C23 0.0528 (12) 0.0415 (10) 0.0270 (8) 0.0041 (9) 0.0086 (8) −0.0019 (7)
C2 0.0428 (11) 0.0583 (12) 0.0437 (10) 0.0205 (9) 0.0169 (9) 0.0014 (9)
C14 0.0297 (8) 0.0329 (8) 0.0283 (7) 0.0041 (6) 0.0032 (6) 0.0002 (6)
C4 0.0269 (7) 0.0341 (8) 0.0288 (7) 0.0111 (6) 0.0047 (6) 0.0045 (6)
C16 0.0307 (8) 0.0336 (8) 0.0260 (7) 0.0048 (6) 0.0051 (6) 0.0020 (6)
C9 0.0361 (9) 0.0329 (9) 0.0465 (10) 0.0110 (7) 0.0126 (8) −0.0019 (8)
C18 0.0271 (8) 0.0521 (11) 0.0400 (9) 0.0069 (8) 0.0025 (7) −0.0067 (8)
C10 0.0361 (10) 0.0341 (9) 0.0621 (12) 0.0044 (8) 0.0162 (9) 0.0051 (9)
C13 0.0519 (14) 0.0694 (16) 0.0778 (17) 0.0064 (12) −0.0015 (13) 0.0109 (14)
C7 0.0427 (11) 0.0412 (10) 0.0475 (11) −0.0039 (8) 0.0107 (9) 0.0073 (8)
C1 0.0322 (9) 0.0443 (10) 0.0498 (11) 0.0056 (8) 0.0108 (8) 0.0115 (8)
C11 0.0445 (11) 0.0327 (9) 0.0510 (11) 0.0075 (8) 0.0167 (9) 0.0100 (8)
C6 0.0396 (9) 0.0281 (8) 0.0423 (9) 0.0085 (7) 0.0133 (8) 0.0000 (7)
C22 0.0563 (12) 0.0360 (9) 0.0436 (10) 0.0128 (9) 0.0178 (9) 0.0002 (8)

Geometric parameters (Å, º)

Pd1—Cl1 2.2901 (5) C20—H20 0.9500
Pd1—Cl2 2.2957 (4) C20—C21 1.381 (3)
Pd1—N3 2.0938 (14) C21—H21 0.9500
Pd1—C4 1.9532 (16) C21—C22 1.385 (3)
N3—C14 1.340 (2) C12—H12 0.9500
N3—C18 1.342 (2) C12—C9 1.474 (3)
N2—C5 1.456 (2) C12—C13 1.299 (3)
N2—C3 1.387 (2) C17—H17 0.9500
N2—C4 1.346 (2) C17—C16 1.393 (2)
N1—C2 1.390 (2) C17—C18 1.379 (3)
N1—C4 1.335 (2) C23—H23 0.9500
N1—C1 1.455 (2) C23—C22 1.374 (3)
C5—H5A 0.9900 C2—H2 0.9500
C5—H5B 0.9900 C14—H14 0.9500
C5—C6 1.505 (3) C9—C10 1.389 (3)
C24—H24 0.9500 C18—H18 0.9500
C24—C19 1.398 (2) C10—H10 0.9500
C24—C23 1.381 (3) C10—C11 1.377 (3)
C15—H15 0.9500 C13—H13A 0.9500
C15—C14 1.370 (2) C13—H13B 0.9500
C15—C16 1.396 (2) C7—H7 0.9500
C8—H8 0.9500 C7—C6 1.379 (3)
C8—C9 1.386 (3) C1—H1A 0.9800
C8—C7 1.380 (3) C1—H1B 0.9800
C19—C20 1.389 (3) C1—H1C 0.9800
C19—C16 1.473 (2) C11—H11 0.9500
C3—H3 0.9500 C11—C6 1.389 (3)
C3—C2 1.330 (3) C22—H22 0.9500
Cl1—Pd1—Cl2 176.789 (17) C18—C17—C16 120.49 (15)
N3—Pd1—Cl1 91.21 (4) C24—C23—H23 119.6
N3—Pd1—Cl2 91.74 (4) C22—C23—C24 120.84 (17)
C4—Pd1—Cl1 89.00 (5) C22—C23—H23 119.6
C4—Pd1—Cl2 88.05 (5) N1—C2—H2 126.5
C4—Pd1—N3 179.52 (6) C3—C2—N1 107.06 (17)
C14—N3—Pd1 120.15 (10) C3—C2—H2 126.5
C14—N3—C18 117.38 (15) N3—C14—C15 123.39 (14)
C18—N3—Pd1 122.42 (12) N3—C14—H14 118.3
C3—N2—C5 124.98 (16) C15—C14—H14 118.3
C4—N2—C5 125.18 (15) N2—C4—Pd1 127.87 (12)
C4—N2—C3 109.84 (16) N1—C4—Pd1 125.92 (12)
C2—N1—C1 126.16 (16) N1—C4—N2 106.14 (14)
C4—N1—C2 109.98 (15) C15—C16—C19 121.06 (15)
C4—N1—C1 123.85 (14) C17—C16—C15 116.29 (15)
N2—C5—H5A 108.7 C17—C16—C19 122.64 (14)
N2—C5—H5B 108.7 C8—C9—C12 119.2 (2)
N2—C5—C6 114.40 (16) C8—C9—C10 117.57 (19)
H5A—C5—H5B 107.6 C10—C9—C12 123.22 (18)
C6—C5—H5A 108.7 N3—C18—C17 122.41 (17)
C6—C5—H5B 108.7 N3—C18—H18 118.8
C19—C24—H24 119.9 C17—C18—H18 118.8
C23—C24—H24 119.9 C9—C10—H10 119.6
C23—C24—C19 120.21 (18) C11—C10—C9 120.80 (18)
C14—C15—H15 120.0 C11—C10—H10 119.6
C14—C15—C16 119.97 (15) C12—C13—H13A 120.0
C16—C15—H15 120.0 C12—C13—H13B 120.0
C9—C8—H8 119.2 H13A—C13—H13B 120.0
C7—C8—H8 119.2 C8—C7—H7 119.6
C7—C8—C9 121.6 (2) C6—C7—C8 120.78 (18)
C24—C19—C16 121.42 (16) C6—C7—H7 119.6
C20—C19—C24 118.45 (16) N1—C1—H1A 109.5
C20—C19—C16 120.13 (14) N1—C1—H1B 109.5
N2—C3—H3 126.5 N1—C1—H1C 109.5
C2—C3—N2 106.98 (17) H1A—C1—H1B 109.5
C2—C3—H3 126.5 H1A—C1—H1C 109.5
C19—C20—H20 119.6 H1B—C1—H1C 109.5
C21—C20—C19 120.86 (16) C10—C11—H11 119.3
C21—C20—H20 119.6 C10—C11—C6 121.41 (19)
C20—C21—H21 119.9 C6—C11—H11 119.3
C20—C21—C22 120.15 (19) C7—C6—C5 123.98 (17)
C22—C21—H21 119.9 C7—C6—C11 117.86 (19)
C9—C12—H12 116.5 C11—C6—C5 118.16 (18)
C13—C12—H12 116.5 C21—C22—H22 120.3
C13—C12—C9 126.9 (2) C23—C22—C21 119.49 (18)
C16—C17—H17 119.8 C23—C22—H22 120.3
C18—C17—H17 119.8
Pd1—N3—C14—C15 176.64 (14) C2—N1—C4—Pd1 −177.10 (14)
Pd1—N3—C18—C17 −175.65 (16) C2—N1—C4—N2 −0.1 (2)
N2—C5—C6—C7 9.5 (3) C14—N3—C18—C17 1.9 (3)
N2—C5—C6—C11 −171.03 (16) C14—C15—C16—C19 −176.13 (16)
N2—C3—C2—N1 0.4 (2) C14—C15—C16—C17 2.4 (3)
C5—N2—C3—C2 179.58 (19) C4—N2—C5—C6 −105.5 (2)
C5—N2—C4—Pd1 −2.7 (3) C4—N2—C3—C2 −0.4 (2)
C5—N2—C4—N1 −179.71 (17) C4—N1—C2—C3 −0.2 (2)
C24—C19—C20—C21 0.7 (3) C16—C15—C14—N3 −1.3 (3)
C24—C19—C16—C15 −149.10 (17) C16—C19—C20—C21 −179.11 (16)
C24—C19—C16—C17 32.4 (3) C16—C17—C18—N3 −0.6 (3)
C24—C23—C22—C21 0.9 (3) C9—C8—C7—C6 −0.3 (3)
C8—C9—C10—C11 1.2 (3) C9—C10—C11—C6 −0.1 (3)
C8—C7—C6—C5 −179.13 (19) C18—N3—C14—C15 −1.0 (3)
C8—C7—C6—C11 1.4 (3) C18—C17—C16—C15 −1.6 (3)
C19—C24—C23—C22 −0.5 (3) C18—C17—C16—C19 176.99 (19)
C19—C20—C21—C22 −0.3 (3) C10—C11—C6—C5 179.26 (18)
C3—N2—C5—C6 74.5 (3) C10—C11—C6—C7 −1.2 (3)
C3—N2—C4—Pd1 177.26 (14) C13—C12—C9—C8 −175.0 (2)
C3—N2—C4—N1 0.3 (2) C13—C12—C9—C10 4.7 (3)
C20—C19—C16—C15 30.7 (2) C7—C8—C9—C12 178.69 (19)
C20—C19—C16—C17 −147.77 (19) C7—C8—C9—C10 −1.0 (3)
C20—C21—C22—C23 −0.5 (3) C1—N1—C2—C3 178.86 (19)
C12—C9—C10—C11 −178.52 (18) C1—N1—C4—Pd1 3.8 (2)
C23—C24—C19—C20 −0.3 (3) C1—N1—C4—N2 −179.15 (16)
C23—C24—C19—C16 179.52 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C20—H20···Cl1i 0.95 2.81 3.6021 (18) 142
C23—H23···Cl2ii 0.95 2.74 3.6537 (19) 162

Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x, −y, −z+1.

References

  1. Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  2. Anderson, E. B. & Long, T. E. (2010). Polymer, 51, 2447–2454.
  3. Dani, A., Groppo, E., Barolo, C., Vitillo, J. G. & Bordiga, S. (2015). J. Mater. Chem. A, 3, 8508–8518.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Ghazali-Esfahani, S., Song, H. B., Păunescu, E., Bobbink, F. D., Liu, H. Z., Fei, Z. F., Laurenczy, G., Bagherzadeh, M., Yan, N. & Dyson, P. J. (2013). Green Chem. 15, 1584–1589.
  6. Hadei, N., Kantchev, E. A. B., O’Brien, C. J. & Organ, M. G. (2005). Org. Lett. 7, 3805–3807. [DOI] [PubMed]
  7. Kim, J. H., Kim, J. W., Shokouhimehr, M. & Lee, Y. S. (2005). J. Org. Chem. 70, 6714–6720. [DOI] [PubMed]
  8. Kuzmicz, D., Coupillaud, P., Men, Y., Vignolle, J., Vendraminetto, G., Ambrogi, M., Taton, D. & Yuan, J. Y. (2014). Polymer, 55, 3423–3430.
  9. Li, W., Fang, J., Lv, M., Chen, C., Chi, X., Yang, Y. & Zhang, Y. (2011). J. Mater. Chem. 21, 11340–11346.
  10. Lu, X. Y., Chen, F., Xu, W. F. & Chen, X. T. (2009). Inorg. Chim. Acta, 362, 5113–5116.
  11. Lu, X.-Y., Sun, J.-F., Zhang, L. & Chen, X.-T. (2010). Acta Cryst. E66, o378. [DOI] [PMC free article] [PubMed]
  12. Nasielski, J., Hadei, N., Achonduh, G., Kantchev, E. A. B., O’Brien, C. J., Lough, A. & Organ, M. G. (2010). Chem. Eur. J. 16, 10844–10853. [DOI] [PubMed]
  13. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  14. Seo, U. R. & Chung, Y. K. (2014). RSC Adv. 4, 32371–32374.
  15. Sevinçek, R., Türkmen, H., Aygün, M., Çetinkaya, B. & García-Granda, S. (2007). Acta Cryst. C63, m277–m279. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  17. Valente, C., Belowich, M. E., Hadei, N. & Organ, M. G. (2010). Eur. J. Org. Chem. pp. 4343–4354.
  18. Valente, C., Çalimsiz, S., Hoi, K. H., Mallik, D., Sayah, M. & Organ, M. G. (2012). Angew. Chem. Int. Ed. 51, 3314–3332. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) Global, I. DOI: 10.1107/S2056989016004394/is5447sup1.cif

e-72-00534-sup1.cif (846.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016004394/is5447Isup2.hkl

e-72-00534-Isup2.hkl (565.3KB, hkl)

Numbering for the assignment of NMR spectra. DOI: 10.1107/S2056989016004394/is5447sup3.tif

CCDC reference: 1468135

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES