Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Mar 2;72(Pt 4):428–431. doi: 10.1107/S2056989016003248

Crystal structures of N-(3-fluoro­benzo­yl)benzene­sulfonamide and N-(3-fluoro­benzo­yl)-4-methyl­benzene­sulfonamide

P A Suchetan a,*,, S Naveen b,, N K Lokanath c, H N Lakshmikantha d, K S Srivishnu d, G M Supriya d
PMCID: PMC4910323  PMID: 27375856

In the title compounds, N—H⋯O hydrogen bonds lead to dimers; the dimers are linked by weak inter­actions into a three-dimensional network in one case and chains in the other.

Keywords: crystal structure, N-(aryl­sulfon­yl)aryl­amides, N—H⋯O hydrogen bonds, C—H⋯O inter­actions, C—H⋯π inter­actions

Abstract

The crystal structures of two N-(aryl­sulfon­yl)aryl­amides, namely N-(3-fluoro­benzo­yl)benzene­sulfonamide, C13H10FNO3S, (I), and N-(3-fluoro­benzo­yl)-4-methyl­benzene­sulfonamide, C14H12FNO3S, (II), are described and compared with related structures. The dihedral angle between the benzene rings is 82.73 (10)° in (I) compared to 72.60 (12)° in (II). In the crystal of (I), the mol­ecules are linked by C—H⋯O and C—H⋯π inter­actions, resulting in a three-dimensional grid-like architecture, while C—H⋯O inter­actions lead to one-dimensional ribbons in (II). The crystals of both (I) and (II) feature strong but non-structure-directing N—H⋯O hydrogen bonds with R 2 2(8) ring motifs. The structure of (I) also features π–π stacking inter­actions.

Chemical context  

N-(Aryl­sulfon­yl)aryl­amides have received much attention as they constitute an important class of drugs for Alzheimers disease (Hasegawa et al., 2000), anti­bacterial inhibitors of tRNA synthetases (Banwell et al., 2000), antagonists for angiotensin II (Chang et al., 1994) and as leukotriene D4-receptors (Musser et al., 1990). Further, N-(aryl­sulfon­yl)aryl­amides are known to be potent anti­tumour agents against a broad spectrum of human tumour xenografts (colon, lung, breast, ovary and prostate) in nude mice (Mader et al., 2005). As part of our ongoing work on the synthesis and crystal structures of this class of compound (Gowda et al., 2009a ,b ; Sreenivasa et al., 2014; Suchetan et al., 2010, 2012), compounds (I) and (II) were synthesized and their crystal structures were determined.graphic file with name e-72-00428-scheme1.jpg

Structural commentary  

The meta-fluoro substitution on the benzoyl ring of (I) (Fig. 1) is syn to the N—H bond in the central –C—SO2—N—C(=O)– segment. By contrast, in (II) (Fig. 2), the conformation of the N—H bond is anti with respect to the meta-fluoro substitution on the benzoyl ring. The dihedral angle between the benzene rings is 82.73 (10)° in (I), while, in (II) the value is slightly less [72.60 (12)°]. Further, in (I), the dihedral angle between the benzoic acid ring and the central C8—C7(O3)—N1—S1 segment is 16.54 (10)°, while that between the sulfonamide ring and the C7(O3)—N1—S1—C1 segment is 81.87 (12)°. The corresponding values in (II) are slightly less than those observed in (I), being 12.12 (12) and 57.58 (13)°, respectively.

Figure 1.

Figure 1

A view of the mol­ecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.

Figure 2.

Figure 2

A view of the mol­ecular structure of (II), with displacement ellipsoids drawn at the 50% probability level.

Supra­molecular features  

The crystal structure of (I) features strong N1—H1⋯O1 hydrogen bonds (Table 1) that connect the mol­ecules into Inline graphic(8) dimers (Fig. 3). These dimers are further inter­connected by C9—H9⋯O1 inter­actions, forming Inline graphic(14) ring motifs. C6—H6⋯O3 inter­actions connect these dimers into C7 chains, forming columns propagating along the b-axis direction (Fig. 3). In addition, C4—H4⋯πar­yl (π system of the fluoro­benzoyl ring) inter­actions link the mol­ecules into chains along the c axis. These chains are inter­connected via C2—H2⋯πar­yl (π system of the sulfonyl­benzene ring) and C11—H11⋯πar­yl (π system of the sulfonyl­benzene ring) inter­actions, forming a three-dimensional grid-like structure (Fig. 4). The crystal structure also features π–π (π system of the fluoro­benzoyl ring) stacking inter­actions. It is notable that the N—H⋯O hydrogen bonds present in the crystal structure of (I) has no structure-directing properties (leading only to dimers), while one of the C—H⋯O and the three C—H..πar­yl inter­actions have structure-directing characteristics.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg1 and Cg2 are the centroids of the sulfonyl and benzoyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.81 (3) 2.08 (3) 2.883 (2) 171 (3)
C9—H9⋯O1i 0.93 2.42 3.244 (3) 148
C6—H6⋯O3ii 0.93 2.50 3.294 (3) 143
C2—H2⋯Cg1iii 0.93 2.82 3.474 (2) 129
C4—H4⋯Cg2iv 0.93 2.84 3.582 (2) 137
C11—H11⋯Cg1v 0.93 2.97 3.756 (3) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 3.

Figure 3

Crystal packing of (I), displaying N—H⋯O hydrogen bonds and C—H⋯O inter­actions, which result in columns along the b axis.

Figure 4.

Figure 4

Three-dimensional grid-like architecture formed by various C—H⋯πar­yl inter­actions in (I).

Similar to that observed in the crystal structure of (I), in (II) strong N1—H1⋯O1 hydrogen bonds (Table 2) result in the formation of Inline graphic(8) dimers (Fig. 5). The mol­ecules constituting these dimers are inter­connected into Inline graphic(14) ring motifs via C13—H13⋯O1 inter­actions, as observed in (I). Adjacent dimers are inter­connected via C5—H5⋯O3 inter­actions into Inline graphic(16) rings, thus forming ribbons along the diagonal of the ac plane (Fig. 5). The overall supra­molecular architecture displayed in (II) is one-dimensional, in contrast to the three-dimensional architecture displayed in (I).

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (4) 2.06 (4) 2.937 (3) 177 (3)
C5—H5⋯O3ii 0.93 2.46 3.375 (3) 168
C13—H13⋯O1i 0.93 2.47 3.285 (3) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 5.

Figure 5

One-dimensional ribbons formed in the crystal structure of (II) via N—H⋯O dimeric pairs and various C—H⋯O dimeric pairs.

Database survey  

The crystal structures of five related N-(aryl­sulfon­yl)aryl­amides, namely N-(benzo­yl)benzene­sulfonamide (III), N-(3-chloro­benzo­yl)benzene­sulfonamide (IV), N-(3-methyl­benzo­yl)benzene­sulfonamide (V), N-(benzo­yl)-4-methyl­benzene­sulfon­amide (VI) and N-(3-methyl­benzo­yl)-4-meth­ylbenzene­sulfonamide (VII) have previously been reported. A comparison of the dihedral angle between the two benzene rings in these closely related structures indicates that introducing a methyl substituent into the para position of the benzene­sulfonyl ring lowers the dihedral angle with compound (VII) being an exception. The dihedral angle values are 80.3 (1)° in (III) (Gowda et al., 2009a ), 87.5 (1)° in (IV) (Gowda et al., 2009b ), 83.3 (2), 84.4 (2) and 87.6 (2)° in the three mol­ecules of (V) (Suchetan et al., 2012), 79.4 (1)° in (VI) (Suchetan et al., 2010) and 89.6 (2)° in (VII) (Sreenivasa et al., 2014). This effect is the same as that observed in the present two structures (I) and (II). Furthermore, in (I)–(VII) the conformation of the N—H bond in the central segment is anti to the meta substituent on the benzoyl ring in the presence of a methyl substituent either on the benzoyl ring or the benzene­sulfonyl ring. Otherwise, the conformation is syn as observed in (I) and (IV). A comparison of the crystal structures of (I) and (II) with those previously reported shows that fluoro substitution on the benzoyl ring appears to have a significant effect on the supra­molecular architecture, and also on the type and nature of the inter­molecular inter­actions displayed. For instance, in all the reported structures except (VII), the mol­ecules are linked into one-dimensional infinite C(4) chains via strong structure-directing N—H⋯O hydrogen bonds. The structures do not feature any other type of inter­actions. However, in (I) and (II), the N—H⋯O hydrogen bonds lead to dimers and, in addition, both of them feature other structure-directing inter­actions of the type C—H⋯O or C—H⋯πar­yl. Furthermore, introducing the methyl substit­uent into the benzene­sulfonyl ring of (I) to form (III) reduces the three-dimensional grid-like architecture into a one-dimensional ribbon architecture. However, in (III)–(VII), the introduction of a methyl substituent into the benzene­sulfonyl ring results in no change to the supra­molecular architecture.

Synthesis and crystallization  

Compounds (I) and (II) were prepared by refluxing a mixture of 3-fluoro­benzoic acid, the corresponding substituted benzene­sulfonamides and phospho­rus oxychloride for 3 h on a water bath. The resultant mixtures were cooled and poured into ice-cold water. The solids obtained were filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solutions. The compounds were later reprecipitated by acidifying the filtered solutions with dilute HCl. They were filtered, dried and recrystallized; m.p = 442–444 K for (I) and 422–423 K for (II). Prism-like, colourless single crystals of (I) and (II) were obtained by slow evaporation of the respective solutions of the compounds in methanol (with a few drops of water).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms of the NH groups in (I) and (II) were located in a difference map and later refined freely. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å, and with U iso = 1.2 or 1.5U eq(parent atom). To improve considerably the values of R1, wR2 and GOOF, reflections with very bad agreement (−20 0 0), (−20 0 10) and (−19 1 15) in (I) and (0 6 0) in (II) were omitted from the final refinements.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C13H10FNO3S C14H12FNO3S
M r 279.28 293.31
Crystal system, space group Monoclinic, C2/c Monoclinic, P21/c
Temperature (K) 173 173
a, b, c (Å) 21.4036 (8), 5.7673 (2), 19.5525 (7) 9.0376 (4), 12.2912 (5), 12.1377 (5)
β (°) 92.135 (1) 105.107 (2)
V3) 2411.90 (15) 1301.70 (9)
Z 8 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 2.56 2.40
Crystal size (mm) 0.28 × 0.24 × 0.19 0.28 × 0.22 × 0.18
 
Data collection
Diffractometer Bruker APEXII Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2009) Multi-scan (SADABS; Bruker, 2009)
T min, T max 0.512, 0.614 0.557, 0.649
No. of measured, independent and observed [I > 2σ(I)] reflections 8647, 1985, 1846 8422, 2115, 1796
R int 0.037 0.056
(sin θ/λ)max−1) 0.587 0.583
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.042, 0.133, 0.98 0.050, 0.152, 1.05
No. of reflections 1985 2115
No. of parameters 176 186
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.38 0.45, −0.47

Computer programs: APEX2 and SAINT-Plus (Bruker, 2009), SHELXS97 and SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989016003248/hb7565sup1.cif

e-72-00428-sup1.cif (39.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016003248/hb7565Isup2.hkl

e-72-00428-Isup2.hkl (95.8KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989016003248/hb7565IIsup3.hkl

e-72-00428-IIsup3.hkl (101.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016003248/hb7565Isup4.cml

Supporting information file. DOI: 10.1107/S2056989016003248/hb7565IIsup5.cml

CCDC references: 1418689, 1418688

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are thankful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction data. GMS thanks the Vision Group on Science and Technology (VGST), Karnataka, India, for financial support under its SPiCE project scheme.

supplementary crystallographic information

(I) N-(3-Fluorobenzoyl)benzenesulfonamide . Crystal data

C13H10FNO3S Prism
Mr = 279.28 Dx = 1.538 Mg m3
Monoclinic, C2/c Melting point: 442 K
Hall symbol: -C 2yc Cu Kα radiation, λ = 1.54178 Å
a = 21.4036 (8) Å Cell parameters from 123 reflections
b = 5.7673 (2) Å θ = 4.1–64.8°
c = 19.5525 (7) Å µ = 2.56 mm1
β = 92.135 (1)° T = 173 K
V = 2411.90 (15) Å3 Prism, colourless
Z = 8 0.28 × 0.24 × 0.19 mm
F(000) = 1152

(I) N-(3-Fluorobenzoyl)benzenesulfonamide . Data collection

Bruker APEXII diffractometer 1846 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.037
Graphite monochromator θmax = 64.8°, θmin = 4.1°
phi and φ scans h = −24→24
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −6→5
Tmin = 0.512, Tmax = 0.614 l = −22→22
8647 measured reflections 1 standard reflections every 1 reflections
1985 independent reflections intensity decay: 0.1%

(I) N-(3-Fluorobenzoyl)benzenesulfonamide . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.105P)2 + 2.9874P] where P = (Fo2 + 2Fc2)/3
1985 reflections (Δ/σ)max < 0.001
176 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.38 e Å3

(I) N-(3-Fluorobenzoyl)benzenesulfonamide . Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(I) N-(3-Fluorobenzoyl)benzenesulfonamide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.26504 (2) 0.47902 (9) 0.41244 (2) 0.0162 (2)
F1 0.46178 (7) 0.8164 (3) 0.66939 (7) 0.0325 (4)
O2 0.24567 (7) 0.2440 (3) 0.40478 (8) 0.0220 (4)
O1 0.21912 (7) 0.6490 (3) 0.42975 (8) 0.0230 (4)
O3 0.38206 (7) 0.2258 (3) 0.43259 (8) 0.0233 (4)
N1 0.31971 (9) 0.5057 (3) 0.47405 (10) 0.0174 (4)
C8 0.41781 (9) 0.4102 (4) 0.53566 (11) 0.0175 (5)
C7 0.37286 (10) 0.3690 (3) 0.47665 (11) 0.0176 (5)
C3 0.33096 (10) 0.4990 (4) 0.22344 (12) 0.0205 (5)
H3 0.3305 0.4048 0.1848 0.025*
C9 0.41783 (10) 0.6094 (4) 0.57623 (11) 0.0195 (5)
H9 0.3885 0.7264 0.5684 0.023*
C5 0.36070 (10) 0.8565 (4) 0.27931 (12) 0.0215 (5)
H5 0.3808 0.9994 0.2782 0.026*
C2 0.30217 (10) 0.4254 (4) 0.28191 (11) 0.0180 (5)
H2 0.2828 0.2811 0.2831 0.022*
C6 0.33094 (9) 0.7874 (4) 0.33818 (11) 0.0188 (5)
H6 0.3300 0.8840 0.3762 0.023*
C10 0.46279 (10) 0.6266 (4) 0.62832 (11) 0.0215 (5)
C1 0.30264 (9) 0.5700 (4) 0.33854 (10) 0.0153 (5)
C4 0.36042 (10) 0.7129 (4) 0.22245 (12) 0.0217 (5)
H4 0.3802 0.7605 0.1833 0.026*
C11 0.50814 (11) 0.4618 (4) 0.64123 (12) 0.0247 (5)
H11 0.5383 0.4820 0.6762 0.030*
C13 0.46262 (10) 0.2394 (4) 0.54849 (12) 0.0228 (5)
H13 0.4623 0.1061 0.5217 0.027*
C12 0.50767 (11) 0.2653 (4) 0.60072 (13) 0.0268 (6)
H12 0.5376 0.1504 0.6085 0.032*
H1 0.3091 (14) 0.591 (5) 0.5042 (17) 0.035 (8)*

(I) N-(3-Fluorobenzoyl)benzenesulfonamide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0155 (4) 0.0201 (4) 0.0130 (3) 0.00064 (18) −0.0003 (2) −0.00239 (18)
F1 0.0361 (8) 0.0312 (8) 0.0295 (8) −0.0004 (6) −0.0089 (6) −0.0093 (6)
O2 0.0238 (8) 0.0243 (9) 0.0178 (8) −0.0059 (7) −0.0004 (6) 0.0001 (6)
O1 0.0178 (8) 0.0339 (9) 0.0173 (8) 0.0065 (7) −0.0013 (6) −0.0070 (6)
O3 0.0233 (8) 0.0233 (8) 0.0233 (9) 0.0036 (6) 0.0000 (6) −0.0069 (7)
N1 0.0185 (10) 0.0213 (10) 0.0124 (9) 0.0031 (7) −0.0009 (8) −0.0035 (7)
C8 0.0152 (10) 0.0203 (11) 0.0171 (11) 0.0004 (9) 0.0026 (8) 0.0027 (9)
C7 0.0187 (10) 0.0160 (11) 0.0183 (11) −0.0003 (8) 0.0029 (8) 0.0014 (8)
C3 0.0194 (11) 0.0257 (12) 0.0165 (11) 0.0020 (8) 0.0009 (9) −0.0024 (8)
C9 0.0170 (10) 0.0211 (11) 0.0205 (11) 0.0006 (8) 0.0015 (8) 0.0021 (9)
C5 0.0194 (11) 0.0164 (11) 0.0286 (12) 0.0014 (8) −0.0020 (9) 0.0040 (9)
C2 0.0182 (11) 0.0167 (10) 0.0190 (11) 0.0022 (9) −0.0024 (8) −0.0022 (9)
C6 0.0183 (10) 0.0172 (11) 0.0208 (11) 0.0026 (8) −0.0023 (8) −0.0026 (9)
C10 0.0224 (11) 0.0218 (12) 0.0203 (11) −0.0042 (9) 0.0008 (9) −0.0006 (9)
C1 0.0132 (10) 0.0178 (10) 0.0149 (10) 0.0041 (8) −0.0007 (8) 0.0006 (9)
C4 0.0166 (10) 0.0281 (12) 0.0207 (12) 0.0027 (9) 0.0018 (8) 0.0084 (9)
C11 0.0172 (11) 0.0336 (13) 0.0229 (12) −0.0031 (9) −0.0037 (9) 0.0070 (10)
C13 0.0193 (11) 0.0223 (11) 0.0268 (12) 0.0024 (9) 0.0020 (9) 0.0001 (9)
C12 0.0189 (11) 0.0288 (13) 0.0323 (13) 0.0066 (9) −0.0032 (9) 0.0041 (10)

(I) N-(3-Fluorobenzoyl)benzenesulfonamide . Geometric parameters (Å, º)

S1—O2 1.4238 (16) C9—H9 0.9300
S1—O1 1.4375 (16) C5—C4 1.386 (3)
S1—N1 1.6549 (19) C5—C6 1.394 (3)
S1—C1 1.760 (2) C5—H5 0.9300
F1—C10 1.358 (3) C2—C1 1.386 (3)
O3—C7 1.215 (3) C2—H2 0.9300
N1—C7 1.383 (3) C6—C1 1.392 (3)
N1—H1 0.81 (3) C6—H6 0.9300
C8—C13 1.391 (3) C10—C11 1.375 (3)
C8—C9 1.396 (3) C4—H4 0.9300
C8—C7 1.494 (3) C11—C12 1.383 (4)
C3—C2 1.385 (3) C11—H11 0.9300
C3—C4 1.386 (3) C13—C12 1.386 (3)
C3—H3 0.9300 C13—H13 0.9300
C9—C10 1.378 (3) C12—H12 0.9300
O2—S1—O1 118.36 (9) C3—C2—C1 119.0 (2)
O2—S1—N1 111.12 (9) C3—C2—H2 120.5
O1—S1—N1 103.67 (9) C1—C2—H2 120.5
O2—S1—C1 109.75 (10) C1—C6—C5 118.3 (2)
O1—S1—C1 109.12 (10) C1—C6—H6 120.9
N1—S1—C1 103.73 (9) C5—C6—H6 120.9
C7—N1—S1 122.13 (16) F1—C10—C11 118.4 (2)
C7—N1—H1 125 (2) F1—C10—C9 117.97 (19)
S1—N1—H1 112 (2) C11—C10—C9 123.7 (2)
C13—C8—C9 119.6 (2) C2—C1—C6 121.9 (2)
C13—C8—C7 116.5 (2) C2—C1—S1 119.10 (17)
C9—C8—C7 123.80 (19) C6—C1—S1 119.01 (16)
O3—C7—N1 121.08 (19) C3—C4—C5 120.6 (2)
O3—C7—C8 122.62 (19) C3—C4—H4 119.7
N1—C7—C8 116.29 (18) C5—C4—H4 119.7
C2—C3—C4 120.1 (2) C10—C11—C12 118.1 (2)
C2—C3—H3 120.0 C10—C11—H11 120.9
C4—C3—H3 120.0 C12—C11—H11 120.9
C10—C9—C8 117.7 (2) C8—C13—C12 120.8 (2)
C10—C9—H9 121.2 C8—C13—H13 119.6
C8—C9—H9 121.2 C12—C13—H13 119.6
C4—C5—C6 120.2 (2) C11—C12—C13 120.0 (2)
C4—C5—H5 119.9 C11—C12—H12 120.0
C6—C5—H5 119.9 C13—C12—H12 120.0
O2—S1—N1—C7 51.25 (19) C5—C6—C1—C2 −1.5 (3)
O1—S1—N1—C7 179.42 (17) C5—C6—C1—S1 179.79 (15)
C1—S1—N1—C7 −66.61 (19) O2—S1—C1—C2 7.79 (19)
S1—N1—C7—O3 1.5 (3) O1—S1—C1—C2 −123.41 (16)
S1—N1—C7—C8 −179.26 (14) N1—S1—C1—C2 126.59 (16)
C13—C8—C7—O3 −16.3 (3) O2—S1—C1—C6 −173.49 (15)
C9—C8—C7—O3 162.1 (2) O1—S1—C1—C6 55.31 (18)
C13—C8—C7—N1 164.44 (19) N1—S1—C1—C6 −54.69 (18)
C9—C8—C7—N1 −17.2 (3) C2—C3—C4—C5 −0.9 (3)
C13—C8—C9—C10 −0.5 (3) C6—C5—C4—C3 −0.3 (3)
C7—C8—C9—C10 −178.80 (19) F1—C10—C11—C12 177.9 (2)
C4—C3—C2—C1 0.9 (3) C9—C10—C11—C12 −1.6 (4)
C4—C5—C6—C1 1.5 (3) C9—C8—C13—C12 −0.6 (3)
C8—C9—C10—F1 −177.86 (19) C7—C8—C13—C12 177.9 (2)
C8—C9—C10—C11 1.6 (3) C10—C11—C12—C13 0.5 (4)
C3—C2—C1—C6 0.3 (3) C8—C13—C12—C11 0.6 (4)
C3—C2—C1—S1 179.00 (16)

(I) N-(3-Fluorobenzoyl)benzenesulfonamide . Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the sulfonyl and benzoyl rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.81 (3) 2.08 (3) 2.883 (2) 171 (3)
C9—H9···O1i 0.93 2.42 3.244 (3) 148
C6—H6···O3ii 0.93 2.50 3.294 (3) 143
C2—H2···Cg1iii 0.93 2.82 3.474 (2) 129
C4—H4···Cg2iv 0.93 2.84 3.582 (2) 137
C11—H11···Cg1v 0.93 2.97 3.756 (3) 143

Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) x, y+1, z; (iii) x, −y−1, z−1/2; (iv) x, −y, z+1/2; (v) −x, −y, −z.

(II) N-(3-Fluorobenzoyl)-4-methylbenzenesulfonamide . Crystal data

C14H12FNO3S Prism
Mr = 293.31 Dx = 1.497 Mg m3
Monoclinic, P21/c Melting point: 423 K
Hall symbol: -P 2ybc Cu Kα radiation, λ = 1.54178 Å
a = 9.0376 (4) Å Cell parameters from 142 reflections
b = 12.2912 (5) Å θ = 5.1–64.1°
c = 12.1377 (5) Å µ = 2.40 mm1
β = 105.107 (2)° T = 173 K
V = 1301.70 (9) Å3 Prism, colourless
Z = 4 0.28 × 0.22 × 0.18 mm
F(000) = 608

(II) N-(3-Fluorobenzoyl)-4-methylbenzenesulfonamide . Data collection

Bruker APEXII diffractometer 1796 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.056
Graphite monochromator θmax = 64.1°, θmin = 5.1°
phi and φ scans h = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −14→14
Tmin = 0.557, Tmax = 0.649 l = −10→13
8422 measured reflections 1 standard reflections every 1 reflections
2115 independent reflections intensity decay: 0.1%

(II) N-(3-Fluorobenzoyl)-4-methylbenzenesulfonamide . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.1104P)2] where P = (Fo2 + 2Fc2)/3
2115 reflections (Δ/σ)max = 0.023
186 parameters Δρmax = 0.45 e Å3
0 restraints Δρmin = −0.47 e Å3

(II) N-(3-Fluorobenzoyl)-4-methylbenzenesulfonamide . Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(II) N-(3-Fluorobenzoyl)-4-methylbenzenesulfonamide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.86791 (7) 0.55562 (5) 0.81354 (5) 0.0171 (3)
F1 0.17463 (17) 0.30702 (14) 0.94022 (13) 0.0303 (4)
O1 1.0242 (2) 0.55041 (16) 0.88113 (15) 0.0231 (5)
O2 0.7956 (2) 0.65901 (15) 0.79047 (14) 0.0240 (5)
O3 0.5443 (2) 0.48889 (17) 0.75791 (15) 0.0260 (5)
N1 0.7768 (2) 0.47863 (18) 0.88728 (19) 0.0183 (5)
C8 0.5545 (3) 0.3863 (2) 0.9263 (2) 0.0169 (5)
C2 0.9568 (3) 0.4058 (2) 0.6775 (2) 0.0205 (6)
H2 1.0292 0.3827 0.7426 0.025*
C9 0.3950 (3) 0.3781 (2) 0.8985 (2) 0.0199 (6)
H9 0.3346 0.4151 0.8360 0.024*
C13 0.6429 (3) 0.3294 (2) 1.0197 (2) 0.0192 (6)
H13 0.7492 0.3351 1.0387 0.023*
C12 0.5722 (3) 0.2640 (2) 1.0844 (2) 0.0206 (6)
H12 0.6318 0.2251 1.1457 0.025*
C5 0.7362 (3) 0.4729 (2) 0.4840 (2) 0.0214 (6)
H5 0.6619 0.4947 0.4193 0.026*
C3 0.9501 (3) 0.3593 (2) 0.5727 (2) 0.0204 (6)
H3 1.0200 0.3053 0.5672 0.024*
C10 0.3296 (3) 0.3141 (2) 0.9655 (2) 0.0207 (6)
C4 0.8399 (3) 0.3922 (2) 0.4747 (2) 0.0210 (6)
C11 0.4148 (3) 0.2562 (2) 1.0587 (2) 0.0212 (6)
H11 0.3671 0.2134 1.1026 0.025*
C6 0.7415 (3) 0.5214 (2) 0.5878 (2) 0.0189 (6)
H6 0.6718 0.5754 0.5931 0.023*
C7 0.6213 (3) 0.4561 (2) 0.8499 (2) 0.0191 (6)
C1 0.8532 (3) 0.4879 (2) 0.6840 (2) 0.0169 (6)
C14 0.8314 (4) 0.3399 (2) 0.3606 (2) 0.0299 (7)
H14A 0.7802 0.2710 0.3563 0.045*
H14B 0.9331 0.3291 0.3524 0.045*
H14C 0.7754 0.3864 0.3006 0.045*
H1 0.833 (4) 0.469 (3) 0.957 (3) 0.033 (9)*

(II) N-(3-Fluorobenzoyl)-4-methylbenzenesulfonamide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0170 (4) 0.0203 (4) 0.0131 (4) −0.0036 (2) 0.0024 (3) −0.0003 (2)
F1 0.0154 (8) 0.0438 (11) 0.0311 (9) −0.0039 (7) 0.0050 (6) 0.0043 (7)
O1 0.0181 (10) 0.0340 (12) 0.0153 (9) −0.0082 (8) 0.0011 (7) −0.0010 (7)
O2 0.0298 (10) 0.0223 (10) 0.0204 (10) −0.0003 (8) 0.0075 (8) −0.0008 (7)
O3 0.0173 (10) 0.0386 (12) 0.0184 (10) −0.0005 (8) −0.0019 (8) 0.0092 (8)
N1 0.0152 (11) 0.0245 (12) 0.0127 (11) −0.0033 (9) −0.0006 (9) 0.0027 (9)
C8 0.0159 (12) 0.0170 (13) 0.0172 (12) −0.0003 (10) 0.0032 (9) −0.0031 (10)
C2 0.0161 (12) 0.0251 (15) 0.0181 (13) −0.0024 (11) 0.0004 (10) 0.0029 (10)
C9 0.0175 (12) 0.0233 (14) 0.0169 (13) 0.0008 (11) 0.0012 (10) 0.0015 (10)
C13 0.0164 (12) 0.0210 (14) 0.0192 (13) 0.0010 (10) 0.0030 (10) −0.0021 (10)
C12 0.0250 (13) 0.0183 (14) 0.0167 (12) 0.0011 (11) 0.0020 (10) 0.0015 (10)
C5 0.0216 (13) 0.0255 (14) 0.0141 (13) −0.0027 (11) −0.0005 (10) 0.0027 (10)
C3 0.0204 (13) 0.0188 (13) 0.0227 (13) −0.0006 (11) 0.0070 (10) 0.0005 (10)
C10 0.0128 (12) 0.0273 (15) 0.0215 (13) −0.0009 (10) 0.0035 (10) −0.0044 (10)
C4 0.0242 (14) 0.0212 (14) 0.0186 (13) −0.0070 (11) 0.0074 (10) −0.0004 (10)
C11 0.0252 (13) 0.0207 (14) 0.0201 (13) −0.0025 (11) 0.0101 (11) −0.0010 (10)
C6 0.0183 (13) 0.0199 (13) 0.0170 (13) −0.0014 (11) 0.0020 (10) 0.0008 (10)
C7 0.0176 (13) 0.0224 (15) 0.0173 (13) −0.0005 (11) 0.0048 (11) −0.0018 (10)
C1 0.0165 (13) 0.0187 (13) 0.0161 (13) −0.0044 (10) 0.0054 (10) 0.0001 (10)
C14 0.0428 (17) 0.0295 (16) 0.0189 (13) −0.0069 (13) 0.0103 (12) −0.0024 (11)

(II) N-(3-Fluorobenzoyl)-4-methylbenzenesulfonamide . Geometric parameters (Å, º)

S1—O2 1.423 (2) C13—H13 0.9300
S1—O1 1.4383 (19) C12—C11 1.378 (4)
S1—N1 1.661 (2) C12—H12 0.9300
S1—C1 1.753 (2) C5—C6 1.383 (4)
F1—C10 1.356 (3) C5—C4 1.389 (4)
O3—C7 1.220 (3) C5—H5 0.9300
N1—C7 1.387 (3) C3—C4 1.398 (4)
N1—H1 0.87 (4) C3—H3 0.9300
C8—C13 1.393 (4) C10—C11 1.388 (4)
C8—C9 1.396 (4) C4—C14 1.510 (4)
C8—C7 1.500 (4) C11—H11 0.9300
C2—C3 1.382 (4) C6—C1 1.392 (4)
C2—C1 1.393 (4) C6—H6 0.9300
C2—H2 0.9300 C14—H14A 0.9600
C9—C10 1.371 (4) C14—H14B 0.9600
C9—H9 0.9300 C14—H14C 0.9600
C13—C12 1.391 (4)
O2—S1—O1 118.99 (11) C2—C3—C4 120.9 (2)
O2—S1—N1 110.36 (11) C2—C3—H3 119.5
O1—S1—N1 102.63 (11) C4—C3—H3 119.5
O2—S1—C1 108.91 (11) F1—C10—C9 118.8 (2)
O1—S1—C1 108.91 (11) F1—C10—C11 118.2 (2)
N1—S1—C1 106.26 (11) C9—C10—C11 123.0 (2)
C7—N1—S1 122.65 (19) C5—C4—C3 118.9 (2)
C7—N1—H1 125 (2) C5—C4—C14 120.3 (2)
S1—N1—H1 111 (2) C3—C4—C14 120.8 (2)
C13—C8—C9 119.8 (2) C12—C11—C10 118.0 (2)
C13—C8—C7 123.5 (2) C12—C11—H11 121.0
C9—C8—C7 116.7 (2) C10—C11—H11 121.0
C3—C2—C1 118.9 (2) C5—C6—C1 118.9 (2)
C3—C2—H2 120.5 C5—C6—H6 120.6
C1—C2—H2 120.5 C1—C6—H6 120.6
C10—C9—C8 118.5 (2) O3—C7—N1 121.4 (2)
C10—C9—H9 120.8 O3—C7—C8 121.9 (2)
C8—C9—H9 120.8 N1—C7—C8 116.6 (2)
C12—C13—C8 119.9 (2) C6—C1—C2 121.1 (2)
C12—C13—H13 120.0 C6—C1—S1 118.8 (2)
C8—C13—H13 120.0 C2—C1—S1 120.01 (19)
C11—C12—C13 120.8 (2) C4—C14—H14A 109.5
C11—C12—H12 119.6 C4—C14—H14B 109.5
C13—C12—H12 119.6 H14A—C14—H14B 109.5
C6—C5—C4 121.2 (2) C4—C14—H14C 109.5
C6—C5—H5 119.4 H14A—C14—H14C 109.5
C4—C5—H5 119.4 H14B—C14—H14C 109.5
O2—S1—N1—C7 55.4 (2) C4—C5—C6—C1 −0.1 (4)
O1—S1—N1—C7 −176.8 (2) S1—N1—C7—O3 2.7 (4)
C1—S1—N1—C7 −62.5 (2) S1—N1—C7—C8 −179.31 (17)
C13—C8—C9—C10 0.6 (4) C13—C8—C7—O3 166.5 (3)
C7—C8—C9—C10 179.3 (2) C9—C8—C7—O3 −12.1 (4)
C9—C8—C13—C12 0.4 (4) C13—C8—C7—N1 −11.5 (4)
C7—C8—C13—C12 −178.2 (2) C9—C8—C7—N1 169.9 (2)
C8—C13—C12—C11 −1.3 (4) C5—C6—C1—C2 −1.1 (4)
C1—C2—C3—C4 −1.2 (4) C5—C6—C1—S1 175.79 (19)
C8—C9—C10—F1 179.0 (2) C3—C2—C1—C6 1.7 (4)
C8—C9—C10—C11 −0.9 (4) C3—C2—C1—S1 −175.14 (18)
C6—C5—C4—C3 0.6 (4) O2—S1—C1—C6 −19.8 (2)
C6—C5—C4—C14 179.7 (2) O1—S1—C1—C6 −150.97 (19)
C2—C3—C4—C5 0.0 (4) N1—S1—C1—C6 99.1 (2)
C2—C3—C4—C14 −179.0 (2) O2—S1—C1—C2 157.1 (2)
C13—C12—C11—C10 1.0 (4) O1—S1—C1—C2 25.9 (2)
F1—C10—C11—C12 −179.7 (2) N1—S1—C1—C2 −84.0 (2)
C9—C10—C11—C12 0.1 (4)

(II) N-(3-Fluorobenzoyl)-4-methylbenzenesulfonamide . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.87 (4) 2.06 (4) 2.937 (3) 177 (3)
C5—H5···O3ii 0.93 2.46 3.375 (3) 168
C13—H13···O1i 0.93 2.47 3.285 (3) 147

Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+1, −y+1, −z+1.

References

  1. Banwell, M. G., Crasto, C. F., Easton, C. J., Forrest, A. K., Karoli, T., March, D. R., Mensah, L., Nairn, M. R., O’Hanlon, P. J., Oldham, M. D. & Yue, W. (2000). Bioorg. Med. Chem. Lett. 10, 2263–2266. [DOI] [PubMed]
  2. Bruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chang, L. L., Ashton, W. T., Flanagan, K. L., Chen, T. B., O’Malley, S. S., Zingaro, G. J., Siegl, P. K. S., Kivlighn, S. D., Lotti, V. J., Chang, R. S. L. & & Greenlee, W. J. (1994). J. Med. Chem. 37, 4464–4478. [DOI] [PubMed]
  4. Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009a). Acta Cryst. E65, o2516. [DOI] [PMC free article] [PubMed]
  5. Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009b). Acta Cryst. E65, o2750. [DOI] [PMC free article] [PubMed]
  6. Hasegawa, T. & Yamamoto, H. (2000). Bull. Chem. Soc. Jpn, 73, 423–428.
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. Mader, M., Shih, C., Considine, E., Dios, A. D., Grossman, C., Hipskind, P., Lin, H., Lobb, K., Lopez, B., Lopez, J., Cabrejas, L., Richett, M., White, W., Cheung, Y., Huang, Z., Reilly, J. & Dinn, S. (2005). Bioorg. Med. Chem. Lett. 15, 617–620. [DOI] [PubMed]
  9. Musser, J. H., Kreft, A. F., Bender, R. H. W., Kubrak, D. M., Grimes, D., Carlson, R. P., Hand, J. M. & Chang, J. (1990). J. Med. Chem. 33, 240–245. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sreenivasa, S., Mohan, N. R., Manojkumar, K. E. & Suchetan, P. A. (2014). J. Appl. Chem. 3, 551–559.
  12. Suchetan, P. A., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o1327. [DOI] [PMC free article] [PubMed]
  13. Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1039. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, global. DOI: 10.1107/S2056989016003248/hb7565sup1.cif

e-72-00428-sup1.cif (39.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016003248/hb7565Isup2.hkl

e-72-00428-Isup2.hkl (95.8KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989016003248/hb7565IIsup3.hkl

e-72-00428-IIsup3.hkl (101.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016003248/hb7565Isup4.cml

Supporting information file. DOI: 10.1107/S2056989016003248/hb7565IIsup5.cml

CCDC references: 1418689, 1418688

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES