Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Mar 31;72(Pt 4):552–555. doi: 10.1107/S205698901600476X

Hydrogen-bonding patterns in 5-fluoro­cytosine–melamine co-crystal (4/1)

Marimuthu Mohana a, Packianathan Thomas Muthiah a,*, Liurukara D Sanjeewa b, Colin D McMillen b
PMCID: PMC4910324  PMID: 27375887

The asymmetric unit of the title compound comprises two independent 5-fluoro­cytosine mol­ecules and one half-mol­ecule of melamine. The 5-fluoro­cytosine mol­ecules are linked through two different homosynthons; one is formed via a pair of N—H⋯O hydrogen bonds and the second via a pair of N—H⋯N hydrogen bonds. The 5-fluoro­cytosine and melamine mol­ecules inter­act via N—H⋯O, N—H⋯N and N—H⋯O, N—H⋯N, C—H⋯F hydrogen bonds.

Keywords: crystal structure, 5-fluoro­cytosine, melamine, homosynthons, hydrogen bonding

Abstract

The asymmetric unit of the title compound, 4C4H4FN3O·C3H6N6, comprises of two independent 5-fluoro­cytosine (5FC) mol­ecules (A and B) and one half-mol­ecule of melamine (M). The other half of the melamine mol­ecule is generated by a twofold axis. 5FC mol­ecules A and B are linked through two different homosynthons [R 2 2(8) ring motif]; one is formed via a pair of N—H⋯O hydrogen bonds and the second via a pair of N—H⋯N hydrogen bonds. In addition to this pairing, the O atoms of 5FC mol­ecules A and B inter­act with the N2 amino group on both sides of the melamine mol­ecule, forming a DDAA array of quadruple hydrogen bonds and generating a supra­molecular pattern. The 5FC (mol­ecules A and B) and two melamine mol­ecules inter­act via N—H⋯O, N—H⋯N and N—H⋯O, N—H⋯N, C—H⋯F hydrogen bonds forming R 6 6(24) and R 4 4(15) ring motifs. The crystal structure is further strengthened by C—H⋯F, C—F⋯π and π–π stacking inter­actions.

Chemical context  

Pyrimidine derivatives are used in the treatment of anti­viral, anti­fungal, anti­tumor and cardiovascular diseases. 5-Fluoro­cytosine (5FC), a synthetic anti­mycotic compound, first synthesized in 1957 and widely used as an anti­tumor agent as a cytosine derivative (Tassel & Madoff, 1968; Benson & Nahata, 1988; Bennet, 1977; Polak & Scholer, 1980). It is active against fungal infection and was released in the year 1968 (Vermes et al., 2000). It becomes active by deamination of 5FC into 5-fluoro­uracil by the enzyme cytosine deaminase (CD) and inhibits RNA and DNA synthesis (Larsen et al., 2003; Mullen et al., 1994; Morschhäuser, 2003). Melamine is a triazine derivative. It shows anti­tumor activity as well as biological activities such as anti­angiogenesis and anti­microbial effects. Triazine derivatives are useful synthons in supra­molecular chemistry. In particular, amino­triazines have been used for the formation of supra­molecular architectures using hydrogen bonds (Russell et al., 1998; MacDonald & Whitesides, 1994; Whitesides et al., 1991). The organic and inorganic salts develop well-defined non-covalent mol­ecular recognition via multiple hydrogen bonds by self assembly of components which contain a complementary array of hydrogen-bonding sites (Desiraju, 1989). The present work is focused on the supra­molecular hydrogen-bonding patterns exhibited by the co-crystal of 5-fluoro­cytosine with melamine.graphic file with name e-72-00552-scheme1.jpg

Structural commentary  

The asymmetric unit comprises two independent 5-fluoro­cytosine (5FC) mol­ecules (A and B) and half a mol­ecule of melamine (M). The twofold axis of melamine coincides with the crystallographic twofold axis. An ORTEP view of the crystal structure is shown in Fig. 1. The values for the C—F bond distance in the two molecules [1.3491 (18) in 5FC A and 1.3492 (18) Å in 5FC B and the corresponding internal angles at the carbon-carrying fluorine atom [C2A—N3A—C4A = 119.96 (13) in 5FC A and C2B—N3B—C4B = 119.92 (13)° in 5FC B] agree with those reported in the literature (Louis et al., 1982).

Figure 1.

Figure 1

The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds. Atoms with the suffix a are generated by the symmetry operation 1 − x, y, {\script{1\over 2}} − z.

Supra­molecular features  

Two different homosynthons are assembled via a pair of N—H⋯O and N—H⋯N hydrogen bonds (Table 1) to render a robust Inline graphic(8) ring motif. The first type of homosynthon is formed by the inter­action of the protonated N1 and O atoms of 5FC mol­ecules A and B through N—H⋯O hydrogen bonds. Another type of homosynthon is formed via the N4-amino and N3-pyrimidine ring nitro­gen atoms of the 5FC A and B mol­ecules through a pair of N—H⋯N hydrogen bonds (da Silva et al., 2013; Tutughamiarso et al., 2012). The melamine mol­ecule and 5FC (mol­ecules A and B) are involved in the generation of a quadruple hydrogen-bonded DDAA array having a fused-ring sequence of Inline graphic(10), Inline graphic(8) and Inline graphic(10). The Inline graphic(10) motif is formed on both sides via N—H⋯O and N—H⋯N hydrogen bonds. These quadruple arrays are further linked by three large ring motifs: Inline graphic(24), Inline graphic(16) and Inline graphic(14). The Inline graphic(24) ring motifs are formed by the inter­action of two 5FC A mol­ecules, two 5FC B mol­ecules and two melamine mol­ecules through several N—H⋯O and N—H⋯N hydrogen bonds, generating a hexa­meric supermolecule. The Inline graphic(16) ring motif links the one 5FC A mol­ecule, two 5FC B mol­ecules and one melamine mol­ecule through N—H⋯O, N—H⋯N and C—H⋯F hydrogen bonds, generating a tetra­meric supermolecule. Similarly, the Inline graphic(14) ring motifs are formed by the inter­action of two 5FC A mol­ecules, one 5FC B mol­ecule and one melamine mol­ecule through N—H⋯O, N—H⋯N and C—H⋯F hydrogen bonds, generating another tetra­meric supermolecule. The association of these Inline graphic(8), DDAA array and Inline graphic(24), Inline graphic(16) and Inline graphic(14) motifs leads to the formation of supra­molecular patterns (Fig. 2). The crystal structure is also stabilized by weak C—H⋯F hydrogen bonds and π–π stacking inter­actions between 5FC A and B mol­ecules with an inter­planar distance of 3.475 (6) Å, centroid-to-centroid distance of 3.6875 (11) Å, and slip angle of 19.52°. The crystal structure is further strengthened by a C—F⋯π inter­action [3.4541 (14) Å] between 5-fluoro­cytosinium mol­ecule A and the melamine mol­ecule (Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4A—H4A1⋯F5A 0.86 (2) 2.47 (2) 2.7560 (18) 100.0 (18)
N4A—H4A1⋯N1 0.86 (2) 2.23 (2) 3.0664 (18) 164 (2)
N1A—H1A⋯O2B ii 0.88 1.90 2.773 (2) 173
N1B—H1B⋯O2A iii 0.88 1.88 2.7545 (19) 175
N4A—H4A2⋯N3B 0.91 (2) 2.10 (2) 2.992 (2) 169 (2)
N2—H2A⋯O2B 0.89 (2) 2.10 (2) 2.9689 (19) 167.6 (18)
N2—H2B⋯O2A iv 0.84 (2) 2.15 (2) 2.8949 (19) 149 (2)
N4B—H4B1⋯N3A 0.88 (2) 2.20 (2) 3.060 (2) 169 (2)
N4B—H4B2⋯F5B 0.86 (2) 2.42 (2) 2.7459 (19) 103 (2)
N4B—H4B2⋯N3iv 0.86 (2) 2.53 (2) 3.360 (2) 162 (2)
N4—H4A⋯O2B v 0.89 (2) 2.09 (2) 2.9600 (15) 165 (2)
C6B—H6B⋯F5A vi 0.95 2.43 3.2444 (19) 143

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Figure 2.

Figure 2

A view of the supra­molecular pattern involving two synthons formed by N—H⋯O hydrogen bonds. 5FC A mol­ecules are shown in green, 5FC B mol­ecules in blue and melamine in red. Blue dashed lines indicate hydrogen bonds. Symmetry codes are given in Table 1.

Figure 3.

Figure 3

A view of C—F⋯π and aromatic π–π stacking inter­actions (dashed lines) between 5FC mol­ecules A and B and melamine.

In this co-crystal, 5FC mol­ecules A and B form two types of homosynthons (two types of base pairing) while the melamine mol­ecule inter­acts with them via N—H⋯O and N—H⋯N hydrogen bonds, generating the supra­molecular architecture.

Database survey  

The crystal structure of 5-fluoro­cytosine monohydrate (Louis et al., 1982; Portalone & Colapietro, 2006; Portalone, 2011), polymorphs (Hulme & Tocher, 2006; Tutughamiarso et al., 2009), salts (Perumalla et al., 2013a ,b ) and co-crystals (Tutughamiarso et al., 2012; Da Silva et al., 2013) have been reported in the literature. From our laboratory, 5-fluoro­cytosinium salicylate (Prabakaran et al., 2001) and 5-fluoro­cytosinium 3-hy­droxy­picolinate (Karthikeyan et al., 2014) have been reported. Various salts, co-crystals and metal complexes of melamine have also been reported (Janczak & Perpétuo, 2001a ,b , 2002, 2004; Perpétuo et al., 2005; Zerkowski & Whitesides, 1994; Wang et al., 2007).

Synthesis and crystallization  

Hot aqueous solutions of 5-fluoro­cytosine (32 mg) and melamine (31 mg) were mixed in a 1:1 molar ratio. The resulting solution was warmed to 353 K using a water bath for half an hour and kept at room temperature for crystallization. After one week, colourless crystals were obtained.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms of amino (N2, N4, N4A, N4B) groups were located in a difference Fourier map and refined freely. The other hydrogen atoms were positioned geometrically (C—H = 0.95, N—H = 0.88 Å) and were refined using a riding model with U iso(H) = 1.2U eq(parent atom).

Table 2. Experimental details.

Crystal data
Chemical formula 4C4H4FN3O·C3H6N6
M r 642.55
Crystal system, space group Monoclinic, C2/c
Temperature (K) 200
a, b, c (Å) 18.343 (4), 7.9591 (16), 19.680 (4)
β (°) 114.65 (3)
V3) 2611.3 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.14
Crystal size (mm) 0.20 × 0.20 × 0.20
 
Data collection
Diffractometer Rigaku AFC–8S
Absorption correction Multi-scan (CrystalClear; Rigaku/MSC, 2008)
T min, T max 0.972, 0.972
No. of measured, independent and observed [I > 2σ(I)] reflections 10071, 2564, 2362
R int 0.019
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.123, 1.07
No. of reflections 2564
No. of parameters 233
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.34

Computer programs: CrystalClear (Rigaku/MSC, 2008), SHELXS97 and SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2008), POV-RAY (Cason, 2004) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S205698901600476X/hg5470sup1.cif

e-72-00552-sup1.cif (28KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901600476X/hg5470Isup2.hkl

e-72-00552-Isup2.hkl (123.5KB, hkl)

Supporting information file. DOI: 10.1107/S205698901600476X/hg5470Isup3.cml

CCDC reference: 1469709

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

MM thanks the UGC–BSR, India, for the award of an RFSMS. PTM thanks the UGC–BSR faculty fellowship for a one-time grant.

supplementary crystallographic information

Crystal data

4(C4H4FN3O)·C3H6N6 F(000) = 1320
Mr = 642.55 Dx = 1.634 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2564 reflections
a = 18.343 (4) Å θ = 2.4–26.0°
b = 7.9591 (16) Å µ = 0.14 mm1
c = 19.680 (4) Å T = 200 K
β = 114.65 (3)° Prism, colorless
V = 2611.3 (11) Å3 0.20 × 0.20 × 0.20 mm
Z = 4

Data collection

Rigaku AFC–8S diffractometer 2564 independent reflections
Radiation source: fine focus sealed tube 2362 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.019
Detector resolution: 14.6199 pixels mm-1 θmax = 26.0°, θmin = 2.4°
ω scans h = −22→18
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2008) k = −9→9
Tmin = 0.972, Tmax = 0.972 l = −24→24
10071 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0741P)2 + 1.8751P] where P = (Fo2 + 2Fc2)/3
2564 reflections (Δ/σ)max < 0.001
233 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.50000 0.1866 (2) 0.25000 0.0244 (5)
N2 0.48606 (8) 0.18336 (19) 0.12847 (8) 0.0326 (4)
N3 0.48592 (8) −0.07579 (17) 0.18444 (7) 0.0342 (4)
N4 0.50000 −0.3280 (3) 0.25000 0.0501 (8)
C2 0.49100 (8) 0.09524 (18) 0.18883 (7) 0.0248 (4)
C4 0.50000 −0.1589 (3) 0.25000 0.0300 (6)
F5A 0.32327 (5) 0.12206 (14) 0.26116 (5) 0.0420 (3)
O2A 0.06416 (6) 0.34719 (15) 0.03132 (6) 0.0326 (3)
N1A 0.11896 (8) 0.17904 (17) 0.13300 (7) 0.0315 (4)
N3A 0.19980 (7) 0.34775 (15) 0.09362 (7) 0.0252 (3)
N4A 0.33640 (8) 0.35220 (17) 0.16222 (8) 0.0299 (4)
C2A 0.12590 (8) 0.29396 (19) 0.08380 (8) 0.0253 (4)
C4A 0.26467 (8) 0.29295 (18) 0.15183 (8) 0.0243 (4)
C5A 0.25656 (9) 0.17587 (19) 0.20310 (8) 0.0286 (4)
C6A 0.18349 (9) 0.1215 (2) 0.19258 (9) 0.0332 (5)
F5B 0.21480 (6) 0.72438 (14) −0.15032 (5) 0.0419 (3)
O2B 0.46711 (6) 0.54980 (13) 0.09792 (6) 0.0280 (3)
N1B 0.41539 (7) 0.70320 (16) −0.00875 (7) 0.0278 (3)
N3B 0.33298 (7) 0.53026 (15) 0.02705 (7) 0.0261 (3)
N4B 0.19773 (8) 0.51382 (18) −0.04738 (8) 0.0328 (4)
C2B 0.40666 (8) 0.59203 (17) 0.04058 (8) 0.0240 (4)
C4B 0.26965 (9) 0.57389 (18) −0.03540 (8) 0.0259 (4)
C5B 0.27992 (9) 0.68402 (19) −0.08772 (8) 0.0285 (4)
C6B 0.35239 (9) 0.74902 (19) −0.07308 (8) 0.0298 (4)
H2A 0.4807 (12) 0.294 (3) 0.1263 (11) 0.037 (5)*
H2B 0.4701 (12) 0.135 (3) 0.0868 (12) 0.042 (5)*
H4A 0.5134 (13) −0.381 (3) 0.2935 (11) 0.048 (6)*
H4A1 0.3799 (13) 0.308 (3) 0.1947 (11) 0.040 (5)*
H1A 0.07100 0.14180 0.12550 0.0380*
H4A2 0.3380 (13) 0.418 (3) 0.1253 (13) 0.049 (6)*
H6A 0.17710 0.04390 0.22640 0.0400*
H1B 0.46300 0.74610 0.00150 0.0330*
H4B1 0.1965 (13) 0.453 (3) −0.0107 (12) 0.047 (6)*
H4B2 0.1569 (13) 0.543 (3) −0.0874 (13) 0.045 (6)*
H6B 0.35960 0.82540 −0.10690 0.0360*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0248 (8) 0.0253 (8) 0.0219 (8) 0.0000 0.0085 (7) 0.0000
N2 0.0389 (8) 0.0345 (8) 0.0244 (7) −0.0006 (6) 0.0133 (6) 0.0007 (5)
N3 0.0418 (8) 0.0307 (7) 0.0290 (7) −0.0010 (5) 0.0138 (6) −0.0013 (5)
N4 0.098 (2) 0.0262 (10) 0.0346 (11) 0.0000 0.0362 (13) 0.0000
C2 0.0196 (6) 0.0293 (7) 0.0231 (7) 0.0011 (5) 0.0064 (5) −0.0001 (5)
C4 0.0387 (11) 0.0260 (10) 0.0245 (10) 0.0000 0.0124 (9) 0.0000
F5A 0.0276 (5) 0.0583 (7) 0.0320 (5) 0.0010 (4) 0.0043 (4) 0.0153 (4)
O2A 0.0229 (5) 0.0448 (7) 0.0268 (5) −0.0027 (4) 0.0070 (4) 0.0085 (5)
N1A 0.0245 (6) 0.0405 (7) 0.0289 (7) −0.0059 (5) 0.0106 (5) 0.0071 (5)
N3A 0.0222 (6) 0.0289 (6) 0.0244 (6) −0.0020 (5) 0.0096 (5) 0.0018 (5)
N4A 0.0216 (6) 0.0349 (7) 0.0318 (7) −0.0005 (5) 0.0099 (6) 0.0054 (5)
C2A 0.0245 (7) 0.0299 (7) 0.0219 (7) −0.0018 (5) 0.0101 (6) −0.0004 (5)
C4A 0.0250 (7) 0.0249 (7) 0.0239 (7) −0.0008 (5) 0.0112 (6) −0.0031 (5)
C5A 0.0261 (7) 0.0334 (8) 0.0226 (7) 0.0005 (6) 0.0065 (6) 0.0033 (6)
C6A 0.0312 (8) 0.0387 (8) 0.0283 (8) −0.0037 (6) 0.0111 (6) 0.0090 (6)
F5B 0.0300 (5) 0.0569 (6) 0.0302 (5) −0.0019 (4) 0.0041 (4) 0.0115 (4)
O2B 0.0250 (5) 0.0298 (5) 0.0269 (5) −0.0040 (4) 0.0085 (4) 0.0023 (4)
N1B 0.0246 (6) 0.0310 (6) 0.0282 (6) −0.0051 (5) 0.0114 (5) 0.0032 (5)
N3B 0.0245 (6) 0.0270 (6) 0.0279 (6) −0.0055 (5) 0.0119 (5) −0.0003 (5)
N4B 0.0258 (7) 0.0408 (8) 0.0294 (7) −0.0066 (5) 0.0092 (6) 0.0010 (6)
C2B 0.0267 (7) 0.0226 (6) 0.0241 (7) −0.0030 (5) 0.0119 (6) −0.0030 (5)
C4B 0.0274 (7) 0.0254 (7) 0.0259 (7) −0.0032 (5) 0.0122 (6) −0.0045 (5)
C5B 0.0267 (7) 0.0341 (8) 0.0217 (7) 0.0007 (6) 0.0072 (6) 0.0014 (6)
C6B 0.0320 (8) 0.0328 (8) 0.0257 (7) −0.0021 (6) 0.0130 (6) 0.0040 (6)

Geometric parameters (Å, º)

F5A—C5A 1.3491 (18) N4A—C4A 1.331 (2)
F5B—C5B 1.3492 (18) N1A—H1A 0.8800
O2A—C2A 1.2462 (19) N4A—H4A2 0.91 (2)
O2B—C2B 1.2539 (19) N4A—H4A1 0.86 (2)
N1—C2 1.3563 (16) N1B—C2B 1.3714 (19)
N1—C2i 1.3563 (16) N1B—C6B 1.361 (2)
N2—C2 1.350 (2) N3B—C4B 1.338 (2)
N3—C2 1.365 (2) N3B—C2B 1.356 (2)
N3—C4 1.3751 (18) N4B—C4B 1.329 (2)
N4—C4 1.346 (3) N1B—H1B 0.8800
N2—H2A 0.89 (2) N4B—H4B1 0.88 (2)
N2—H2B 0.84 (2) N4B—H4B2 0.86 (2)
N4—H4A 0.89 (2) C4A—C5A 1.426 (2)
N4—H4Ai 0.89 (2) C5A—C6A 1.340 (3)
N1A—C2A 1.376 (2) C6A—H6A 0.9500
N1A—C6A 1.352 (2) C4B—C5B 1.423 (2)
N3A—C4A 1.335 (2) C5B—C6B 1.341 (2)
N3A—C2A 1.356 (2) C6B—H6B 0.9500
F5A···C2i 3.134 (2) C4B···C4Bix 3.340 (2)
F5A···C6Bii 3.2444 (19) C5A···C5Bv 3.541 (2)
F5A···N4A 2.7560 (18) C5B···C6Av 3.432 (2)
F5B···N4B 2.7459 (19) C5B···C5Av 3.541 (2)
F5B···C6Aiii 3.148 (2) C5B···C4Bix 3.500 (2)
F5A···H4A1 2.47 (2) C6A···F5Bii 3.148 (2)
F5A···H6Bii 2.4300 C6A···C5Bv 3.432 (2)
F5B···H4B2 2.42 (2) C6B···N3Aix 3.325 (2)
O2A···N1Biv 2.7545 (19) C6B···F5Aiii 3.2444 (19)
O2A···N2v 2.8949 (19) C6B···N4Bix 3.442 (2)
O2B···N4vi 2.9600 (15) C2···H4A1 2.69 (2)
O2B···N2 2.9689 (19) C2···H4A1i 3.03 (2)
O2B···N4vii 2.9600 (15) C2···H4B2v 2.84 (2)
O2B···N1Aviii 2.773 (2) C2A···H4B1 2.96 (2)
O2A···H1Biv 1.8800 C2A···H6Bix 3.0600
O2A···H2Bv 2.15 (2) C2A···H1Biv 2.7700
O2B···H4Avii 2.09 (2) C2B···H1Aviii 2.8000
O2B···H4A2 2.84 (3) C2B···H4Avii 2.98 (2)
O2B···H1Aviii 1.9000 C2B···H4A2 2.84 (2)
O2B···H2A 2.10 (2) C2B···H2A 2.90 (2)
N1···N4A 3.0664 (18) C4A···H6Axii 2.9600
N1···N4Ai 3.0664 (18) H4A1···C2 2.69 (2)
N1A···O2Biv 2.773 (2) H4A1···N1 2.23 (2)
N1B···O2Aviii 2.7545 (19) H4A1···N2 2.93 (2)
N2···O2B 2.9689 (19) H4A1···N1 2.23 (2)
N2···O2Av 2.8949 (19) H4A1···F5A 2.47 (2)
N3A···N4B 3.060 (2) H4A1···C2i 3.03 (2)
N3A···C6Bix 3.325 (2) H1A···C2Biv 2.8000
N3B···N4A 2.992 (2) H1A···H1Biv 2.5600
N4···O2Bx 2.9600 (15) H1A···O2Biv 1.9000
N4···O2Bxi 2.9600 (15) H1B···C2Aviii 2.7700
N4A···N1 3.0664 (18) H1B···O2Aviii 1.8800
N4A···N1 3.0664 (18) H1B···H1Aviii 2.5600
N4A···C2 3.356 (2) H4A2···O2B 2.84 (3)
N4A···N3B 2.992 (2) H4A2···N3B 2.10 (2)
N4A···F5A 2.7560 (18) H4A2···C2B 2.84 (2)
N4B···C4Av 3.442 (2) H2A···C2B 2.90 (2)
N4B···N3A 3.060 (2) H2A···O2B 2.10 (2)
N4B···F5B 2.7459 (19) H2B···O2Av 2.15 (2)
N4B···C6Bix 3.442 (2) H4B1···N3A 2.20 (2)
N1···H4A1 2.23 (2) H4B1···C2A 2.96 (2)
N1···H4A1i 2.23 (2) H4B2···F5B 2.42 (2)
N2···H4A1 2.93 (2) H4B2···N3v 2.53 (2)
N3···H4B2v 2.53 (2) H4B2···C2v 2.84 (2)
N3A···H6Bix 2.8700 H4A···O2Bx 2.09 (2)
N3A···H4B1 2.20 (2) H4A···C2Bx 2.98 (2)
N3B···H4A2 2.10 (2) H6A···N4Axiii 2.7700
N4A···H6Axii 2.7700 H6A···C4Axiii 2.9600
C2···N4A 3.356 (2) H6B···F5Aiii 2.4300
C2···F5Ai 3.134 (2) H6B···N3Aix 2.8700
C4A···N4Bv 3.442 (2) H6B···C2Aix 3.0600
C4B···C5Bix 3.500 (2)
C2—N1—C2i 115.16 (14) N3—C4—N3i 122.49 (19)
C2—N3—C4 116.06 (14) N3—C4—N4 118.75 (11)
C2—N2—H2B 119.3 (16) O2A—C2A—N1A 119.37 (15)
H2A—N2—H2B 115 (2) N1A—C2A—N3A 119.33 (14)
C2—N2—H2A 121.7 (13) O2A—C2A—N3A 121.30 (14)
C4—N4—H4A 118.2 (15) N3A—C4A—N4A 119.11 (14)
H4A—N4—H4Ai 124 (2) N3A—C4A—C5A 120.14 (15)
C4—N4—H4Ai 118.2 (15) N4A—C4A—C5A 120.73 (14)
C2A—N1A—C6A 122.07 (15) F5A—C5A—C6A 121.59 (14)
C2A—N3A—C4A 119.96 (13) F5A—C5A—C4A 118.77 (15)
C6A—N1A—H1A 119.00 C4A—C5A—C6A 119.64 (15)
C2A—N1A—H1A 119.00 N1A—C6A—C5A 118.83 (15)
C4A—N4A—H4A1 121.3 (16) N1A—C6A—H6A 121.00
C4A—N4A—H4A2 116.3 (16) C5A—C6A—H6A 121.00
H4A1—N4A—H4A2 120 (2) O2B—C2B—N3B 120.96 (14)
C2B—N1B—C6B 121.81 (14) N1B—C2B—N3B 119.73 (14)
C2B—N3B—C4B 119.92 (13) O2B—C2B—N1B 119.31 (14)
C2B—N1B—H1B 119.00 N3B—C4B—C5B 119.89 (16)
C6B—N1B—H1B 119.00 N4B—C4B—C5B 120.96 (15)
C4B—N4B—H4B2 119.0 (17) N3B—C4B—N4B 119.15 (14)
H4B1—N4B—H4B2 126 (2) C4B—C5B—C6B 120.04 (14)
C4B—N4B—H4B1 114.6 (16) F5B—C5B—C4B 118.25 (15)
N2—C2—N3 119.01 (13) F5B—C5B—C6B 121.68 (14)
N1—C2—N2 116.19 (14) N1B—C6B—C5B 118.54 (14)
N1—C2—N3 124.81 (13) N1B—C6B—H6B 121.00
N3i—C4—N4 118.75 (11) C5B—C6B—H6B 121.00
C2i—N1—C2—N2 −176.73 (13) C4B—N3B—C2B—O2B −178.38 (14)
C2i—N1—C2—N3 3.98 (19) C2B—N3B—C4B—N4B −179.21 (14)
C4—N3—C2—N1 −7.5 (2) C2B—N3B—C4B—C5B 0.5 (2)
C4—N3—C2—N2 173.24 (13) C4B—N3B—C2B—N1B 2.1 (2)
C2—N3—C4—N4 −176.55 (11) N3A—C4A—C5A—F5A 179.63 (13)
C2—N3—C4—N3i 3.45 (18) N3A—C4A—C5A—C6A −0.1 (2)
C6A—N1A—C2A—O2A −177.48 (15) N4A—C4A—C5A—F5A −2.1 (2)
C6A—N1A—C2A—N3A 2.2 (2) N4A—C4A—C5A—C6A 178.19 (15)
C2A—N1A—C6A—C5A −1.3 (2) F5A—C5A—C6A—N1A −179.48 (14)
C4A—N3A—C2A—O2A 177.67 (14) C4A—C5A—C6A—N1A 0.3 (2)
C4A—N3A—C2A—N1A −2.0 (2) N3B—C4B—C5B—F5B 179.56 (14)
C2A—N3A—C4A—N4A −177.35 (14) N3B—C4B—C5B—C6B −2.6 (2)
C2A—N3A—C4A—C5A 1.0 (2) N4B—C4B—C5B—F5B −0.8 (2)
C6B—N1B—C2B—N3B −2.7 (2) N4B—C4B—C5B—C6B 177.13 (15)
C2B—N1B—C6B—C5B 0.6 (2) F5B—C5B—C6B—N1B 179.78 (14)
C6B—N1B—C2B—O2B 177.75 (14) C4B—C5B—C6B—N1B 2.0 (2)

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) x, −y+1, z+1/2; (iii) x, −y+1, z−1/2; (iv) x−1/2, y−1/2, z; (v) −x+1/2, −y+1/2, −z; (vi) x, y+1, z; (vii) −x+1, y+1, −z+1/2; (viii) x+1/2, y+1/2, z; (ix) −x+1/2, −y+3/2, −z; (x) −x+1, y−1, −z+1/2; (xi) x, y−1, z; (xii) −x+1/2, y+1/2, −z+1/2; (xiii) −x+1/2, y−1/2, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4A—H4A1···F5A 0.86 (2) 2.47 (2) 2.7560 (18) 100.0 (18)
N4A—H4A1···N1 0.86 (2) 2.23 (2) 3.0664 (18) 164 (2)
N1A—H1A···O2Biv 0.88 1.90 2.773 (2) 173
N1B—H1B···O2Aviii 0.88 1.88 2.7545 (19) 175
N4A—H4A2···N3B 0.91 (2) 2.10 (2) 2.992 (2) 169 (2)
N2—H2A···O2B 0.89 (2) 2.10 (2) 2.9689 (19) 167.6 (18)
N2—H2B···O2Av 0.84 (2) 2.15 (2) 2.8949 (19) 149 (2)
N4B—H4B1···N3A 0.88 (2) 2.20 (2) 3.060 (2) 169 (2)
N4B—H4B2···F5B 0.86 (2) 2.42 (2) 2.7459 (19) 103 (2)
N4B—H4B2···N3v 0.86 (2) 2.53 (2) 3.360 (2) 162 (2)
N4—H4A···O2Bx 0.89 (2) 2.09 (2) 2.9600 (15) 165 (2)
C6B—H6B···F5Aiii 0.95 2.43 3.2444 (19) 143

Symmetry codes: (iii) x, −y+1, z−1/2; (iv) x−1/2, y−1/2, z; (v) −x+1/2, −y+1/2, −z; (viii) x+1/2, y+1/2, z; (x) −x+1, y−1, −z+1/2.

References

  1. Bennet, J. E. (1977). Ann. Intern. Med. 86, 319–21. [DOI] [PubMed]
  2. Benson, J. M. & Nahata, M. C. (1988). Clin. Pharm. 7, 424–438. [PubMed]
  3. Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pvt Ltd, Victoria, Australia. URL: http://www.povray.org.
  4. Desiraju, G. R. (1989). Crystal Engineering. The Design of Organic Solids. Amsterdam: Elsevier.
  5. Hulme, A. T. & Tocher, D. A. (2006). Cryst. Growth Des. 6, 481–487.
  6. Janczak, J. & Perpétuo, G. J. (2001a). Acta Cryst. C57, 1431–1433. [DOI] [PubMed]
  7. Janczak, J. & Perpétuo, G. J. (2001b). Acta Cryst. C57, 1120–1122. [DOI] [PubMed]
  8. Janczak, J. & Perpétuo, G. J. (2002). Acta Cryst. C58, o339–o341. [DOI] [PubMed]
  9. Janczak, J. & Perpétuo, G. J. (2004). Acta Cryst. C60, o211–o214. [DOI] [PubMed]
  10. Karthikeyan, A., Thomas Muthiah, P. & Perdih, F. (2014). Acta Cryst. E70, 328–330. [DOI] [PMC free article] [PubMed]
  11. Larsen, R. A., Kauffman, C. A., Pappas, P. G., Sobel, J. D. & Dismukes, W. E. (2003). In Essentials of Clinical Mycology, 2nd ed., pp. 57–60. Oxford University Press. UK.
  12. Louis, T., Low, J. N. & Tollin, P. (1982). Cryst. Struct. Commun. 11, 1059–1064.
  13. MacDonald, J. C. & Whitesides, G. M. (1994). Chem. Rev. 94, 2383–2420.
  14. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  15. Morschhäuser, J. (2003). Pharm. Unserer Zeit, 32, 124–128. [DOI] [PubMed]
  16. Mullen, C. A., Coale, M. M., Lowe, R. & Blaese, R. M. (1994). Cancer Res. 54, 1503–1506. [PubMed]
  17. Perpétuo, G. J., Ribeiro, M. A. & Janczak, J. (2005). Acta Cryst. E61, o1818–o1820.
  18. Perumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013a). Cryst. Growth Des. 13, 429–432.
  19. Perumalla, S. R., Pedireddi, V. R. & Sun, C. C. (2013b). Mol. Pharm. 10, 2462–2466. [DOI] [PubMed]
  20. Polak, A. & Scholer, H. J. (1980). Rev. Inst. Pasteur Lyon. 13, 233–244.
  21. Portalone, G. (2011). Chem. Cent. J. 5, 51. [DOI] [PMC free article] [PubMed]
  22. Portalone, G. & Colapietro, M. (2006). Acta Cryst. E62, o1049–o1051.
  23. Prabakaran, P., Murugesan, S., Muthiah, P. T., Bocelli, G. & Righi, L. (2001). Acta Cryst. E57, o933–o936. [DOI] [PubMed]
  24. Rigaku/MSC (2008). CrystalClear. Rigaku Americas Corporation, The Woodlands, Texas, USA.
  25. Russell, K. C., Lehn, J. M., Kyritsakas, N., DeCian, A. & Fischer, J. (1998). New J. Chem. 22, 123–128.
  26. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  27. Silva, C. C. P. da, de Oliveira, R., Tenorio, J. C., Honorato, S., Ayala, A. P. & Ellena, J. (2013). Cryst. Growth Des. 13, 4315–4322.
  28. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  29. Tassel, D. & Madoff, A. (1968). J. Am. Med. Assoc. 206, 830–832.
  30. Tutughamiarso, M., Bolte, M. & Egert, E. (2009). Acta Cryst. C65, o574–o578. [DOI] [PubMed]
  31. Tutughamiarso, M., Wagner, G. & Egert, E. (2012). Acta Cryst. B68, 431–443. [DOI] [PubMed]
  32. Vermes, A., Guchelaar, H. J. & Dankert, J. (2000). J. Antimicrob. Chemother. 46, 171–179. [DOI] [PubMed]
  33. Wang, G., Wu, W. & Zhuang, L. (2007). Acta Cryst. E63, m2552–m2553.
  34. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  35. Whitesides, G. M., Mathias, J. P. & Seto, C. T. (1991). Science, 254, 1312–1319. [DOI] [PubMed]
  36. Zerkowski, J. A. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4298–4304.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S205698901600476X/hg5470sup1.cif

e-72-00552-sup1.cif (28KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901600476X/hg5470Isup2.hkl

e-72-00552-Isup2.hkl (123.5KB, hkl)

Supporting information file. DOI: 10.1107/S205698901600476X/hg5470Isup3.cml

CCDC reference: 1469709

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES