Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Mar 31;72(Pt 4):548–551. doi: 10.1107/S205698901600428X

Orientational disorder in the one-dimensional coordination polymer catena-poly[[bis­(acetyl­acetonato-κ2 O,O′)cobalt(II)]-μ-1,4-di­aza­bicyclo­[2.2.2]octane-κ2 N 1:N 4]

Florina Dumitru a, Ulli Englert b, Beatrice Braun c,*
PMCID: PMC4910332  PMID: 27375886

The one-dimensional coordination polymer, self-assembled from bis­(acetyl­acetonato)cobalt(II) units as metal–complex connectors and 1,4-di­aza­bicyclo­[2.2.2]octane (DABCO) as linkers, can serve for a comparative investigation of the magnetic behaviour of analogous compounds. Space filling more symmetric than atom positions leads to pronounced orientational disorder for the DABCO ligand.

Keywords: crystal structure, one-dimensional coordination polymer, orientational disorder, acetyl­acetonate complexes, cobalt(II), DABCO, magnetic behaviour

Abstract

The title compound, [Co(C5H7O2)2(C6H12N2)]n, was obtained as a one-dimensional coordination polymer from bis­(acetyl­acetonato)di­aqua­cobalt(II), [Co(acac)2(OH2)2], and 1,4-di­aza­bicyclo­[2.2.2]octane (DABCO), a di­amine with good bridging ability and rod-like spacer function. In the chain complex that extends along the c axis, the CoII atom is six-coordinated, the O-donor atoms of the chelating acac ligands occupying the equatorial positions and the bridging DABCO ligands being in trans-axial positions. In the crystal structure, the DABCO ligand is conformationally disordered in a 50:50 manner as a result of its location across a crystallographic mirror plane. The metal–metal distance is very close to that in a related compound exhibiting weak anti­ferromagnetic exchange between the CoII ions, and the title compound can thus be useful for obtaining more information about the contribution of different bridges to the magnetic coupling between paramagnetic ions.

Chemical context  

Self-assembly of coordination polymers from simple building blocks is of considerable inter­est due to their diverse architectures and potential applications in catalysis and advanced materials, such as magnetic, optic and electronic materials.graphic file with name e-72-00548-scheme1.jpg

In this paper, two simple building blocks, namely 1,4-di­aza­bicyclo­[2.2.2]octane (DABCO), a di­amine with good bridging ability and rod-like spacer function, and the unsatur­ated square-planar metal complex bis­(acetyl­aceto­nato-κ2 O,O′)cobalt(II), [Co(acac)2], have been chosen to design a one-dimensional coordination polymer in which the paramagnetic CoII ions are separated by a distance of 7.2328 (7) Å. This metal–metal distance is very close to the distance of 7.267 (3) Å reported by Ma et al. (2001) for the structurally related [Co(acac)2(pyrazine)]n compound which exhibits weak anti­ferromagnetic exchange between the CoII ions.

Within this context, the title compound catena-poly[[bis(acetyl­acetonato-κ2 O,O′)cobalt(II)]-μ-1,4-di­aza­bicyclo­[2.2.2]octane-κ2 N 1:N 4], [Co(acac)2(DABCO)]n, (I), can serve for a comparative investigation of the magnetic behaviour of analogous compounds and, thus, allow more information about the contribution of different bridges to the magnetic coupling between paramagnetic ions to be obtained.

Structural commentary  

In the crystalline state, the title compound, (I), represents a one-dimensional coordination polymer self-assembled from bis­(acetyl­acetonato)cobalt(II) units as metal–complex connectors and 1,4-di­aza­bicyclo­[2.2.2]octane (DABCO) as linkers.

The acetyl­acetonate (acac) ligand, which is the deproton­ated form of acetyl­acetone (pentane-2,4-dione, acacH), is a well-known mononegative O,O′-chelating donor agent and its metal coordination chemistry is well documented [for reviews on the coordination chemistry of acac ligands, see: Aromí et al. (2008); Bray et al. (2007); Vigato et al. (2009)]. For DABCO, the bridging coordination behaviour is most exploited for the generation of coordination polymers and metal–organic frameworks (MOFs), with Zn2+ being the most common metal ion used in these structures [for representative examples, see: Furukawa et al. (2009); Uemura et al. (2007)].

The complex crystallizes in the ortho­rhom­bic Pnnm space group with the metal atom on a special position with site symmetry ..2/m. The CoII atom shows an octa­hedral environment defined by four equatorial acac O atoms on a mirror plane, with bond lengths ranging from 2.0299 (10) to 2.0411 (10) Å, and with two N atoms of bridging DABCO groups on a twofold rotation axis in the axial positions at distances of 2.3071 (12) Å (Fig. 1).

Figure 1.

Figure 1

A section of the coordination polymer of (I). Only one of the 50:50 DABCO disorder forms and one orientation of the disordered acac methyl groups are shown. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles. [Symmetry codes: (a) −x, −y, −z; (c) x, y, −z + 1; (d) −x, −y, −z + 1.]

Supra­molecular features  

The centrosymmetric DABCO ligand is bonded to two [Co(acac)2] units, which gives rise to the formation of chains extending along the c axis (Fig. 2). The individual chains run parallel in the crystal and do not inter­act with each other. This polymer is essentially a one-dimensional coordination polymer, the only structural motif that is present being based on the CoII coordination requirements.

Figure 2.

Figure 2

The mol­ecular packing of the coordination polymer chains.

Database survey  

Although some polymeric complexes of the form [Co(acac)2(μ-di­amine)]n [di­amine = NH2R–NH2, with R = CyH2y+1 (y = 6, 11, 12; Fine, 1973), piperazine (Pellacani et al., 1973), 2,5-di­methyl­pyrazine (Blake & Hatfield, 1978), and 1,2-bis­(4-pyrid­yl)ethane and trans-1,2-bis­(4-pyrid­yl)ethyl­ene (Atienza et al., 2008)] have been synthesized over the years, their structures were elucidated only on the basis of spectroscopic and magnetic analyses. [Co(acac)2(μ-di­amine)]n complexes similar in structure to the title compound, with square-planar [Co(acac)2] units connected by bridging di­amine ligands into infinite linear chains, were retrieved from the Cambridge Structural Database (CSD, Version 5.36 of November 2014; Groom & Allen, 2014), viz. [Co(acac)2{μ-1,3-bis­(pyridin-4-yl)propane}]n (Lennartson & Håkansson, 2009), [Co(acac)2(pyrazine)]n and [Co(acac)2(4,4′-bi­pyridine)]n (Ma et al., 2001).

Synthesis and crystallization  

[Co(acac)2(H2O)2] was prepared by precipitation of CoCl2·6H2O with aqueous ammonia, followed by solubilization and complexation with acetyl­acetone. Elemental analysis calculated for [Co(C5H7O2)2(H2O)2] (%): C 40.96, H 6.14; found: C 40.94, H 6.19.

[Co(acac)2(H2O)2] (293 mg, 1 mmol) and 1,4-di­aza­bicyclo­[2.2.2]octane (DABCO) (112 mg, 1 mmol) were stirred in CH3OH (15 ml) at 333 K for 1 h. The pink precipitate which formed was collected by filtration and redissolved in dimethyl sulfoxide (DMSO, 5 ml). Elemental analysis calculated for [Co(acac)2(DABCO)] (%): C 52.04, H 7.05, N 7.59; found: C 51.63, H 7.39, N 7.41. Layering the solution of the complex in DMSO with CH3OH at 293 K gave pale-pink crystals suitable for X-ray single-crystal analysis.

Elemental analyses were carried out on a Heraeus CHNO Rapid apparatus (Institute of Inorganic Chemistry, RWTH Aachen University).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. Space filling more symmetric than atom positions leads to pronounced orientational disorder (Herberich et al., 1993) for the DABCO ligand over two positions due to mirror symmetry. As a result, the site occupancies of the C atoms are constrained to 0.5. In principle, the same should be true for the associated H atoms, their alternative positions for the different C positions overlap very closely, thus forming the hexa­gon of local residual electron-density maxima about the C-atom scaffold shown in Fig. 3. These maxima can be freely refined as H atoms with reasonable C—H geometry and displacement parameters.

Table 1. Experimental details.

Crystal data
Chemical formula [Co(C5H7O2)2(C6H12N2)]
M r 369.32
Crystal system, space group Orthorhombic, P n n m
Temperature (K) 100
a, b, c (Å) 7.7468 (3), 15.1573 (4), 7.2328 (7)
V3) 849.28 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.03
Crystal size (mm) 0.48 × 0.10 × 0.04
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Multi-scan (MULABS in PLATON; Spek, 2003)
T min, T max 0.637, 0.960
No. of measured, independent and observed [I > 2σ(I)] reflections 11457, 1045, 944
R int 0.045
(sin θ/λ)max−1) 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.020, 0.055, 1.09
No. of reflections 1045
No. of parameters 81
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.39

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS2013 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 1999), Mercury (Macrae et al., 2006), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figure 3.

Figure 3

Difference-density Fourier synthesis in the ab plane through three DABCO C atoms before assignment of the DABCO H-atom positions; contour lines are drawn at 0.2 e A−3 inter­vals.

H atoms attached to C atoms were calculated, introduced in their idealized positions and treated as riding, with C—H = 0.95 Å and U iso(H) = 1.5U eq(C) for methyl H atoms and U iso(H) = 1.2U eq(C) otherwise. For consistency, we opted to calculate the positions of the DABCO H atoms and fix them in their idealized positions. Due to the fact that the acac ligand lies on a mirror plane, the acac methyl groups are therefore equally disordered over two orientations.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698901600428X/wm5278sup1.cif

e-72-00548-sup1.cif (422.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901600428X/wm5278Isup2.hkl

e-72-00548-Isup2.hkl (85.5KB, hkl)

CCDC reference: 1454848

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Co(C5H7O2)2(C6H12N2)] Dx = 1.444 Mg m3
Mr = 369.32 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pnnm Cell parameters from 16455 reflections
a = 7.7468 (3) Å θ = 3.8–29.5°
b = 15.1573 (4) Å µ = 1.03 mm1
c = 7.2328 (7) Å T = 100 K
V = 849.28 (9) Å3 Elongated plate, pale pink
Z = 2 0.48 × 0.10 × 0.04 mm
F(000) = 390

Data collection

Stoe IPDS 2T diffractometer 1045 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 944 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.045
Detector resolution: 6.67 pixels mm-1 θmax = 27.5°, θmin = 3.8°
rotation method scans h = −10→10
Absorption correction: multi-scan (MULABS in PLATON; Spek, 2003) k = −19→19
Tmin = 0.637, Tmax = 0.960 l = −8→9
11457 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020 H-atom parameters constrained
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0389P)2] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
1045 reflections Δρmax = 0.25 e Å3
81 parameters Δρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Co1 0.0000 0.0000 0.0000 0.00790 (10)
O1 0.24789 (12) 0.04561 (6) 0.0000 0.0122 (2)
O2 −0.08057 (13) 0.12744 (7) 0.0000 0.0173 (2)
N1 0.0000 0.0000 0.31898 (17) 0.0106 (3)
C1 0.29942 (18) 0.12455 (10) 0.0000 0.0134 (3)
C2 0.19083 (19) 0.19922 (9) 0.0000 0.0148 (3)
H2 0.2442 0.2557 0.0000 0.018*
C3 0.01048 (18) 0.19635 (10) 0.0000 0.0127 (3)
C4 −0.0887 (2) 0.28217 (9) 0.0000 0.0196 (3)
H4A −0.1733 0.2817 0.1008 0.029* 0.5
H4B −0.1488 0.2891 −0.1184 0.029* 0.5
H4C −0.0085 0.3314 0.0176 0.029* 0.5
C5 0.49196 (18) 0.13858 (12) 0.0000 0.0228 (3)
H5A 0.5190 0.1944 −0.0619 0.034* 0.5
H5B 0.5481 0.0899 −0.0659 0.034* 0.5
H5C 0.5340 0.1405 0.1277 0.034* 0.5
C6 0.1745 (3) −0.02067 (16) 0.3932 (3) 0.0167 (4) 0.5
H6A 0.2582 0.0237 0.3477 0.020* 0.5
H6B 0.2115 −0.0793 0.3477 0.020* 0.5
C7 −0.1237 (3) −0.06034 (13) 0.3934 (3) 0.0155 (4) 0.5
H7A −0.0975 −0.1206 0.3484 0.019* 0.5
H7B −0.2402 −0.0442 0.3484 0.019* 0.5
C8 −0.0438 (3) 0.09127 (13) 0.3934 (3) 0.0142 (4) 0.5
H8A −0.1589 0.1093 0.3477 0.017* 0.5
H8B 0.0420 0.1345 0.3477 0.017* 0.5

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.01008 (15) 0.00601 (15) 0.00760 (15) −0.00078 (8) 0.000 0.000
O1 0.0133 (5) 0.0109 (5) 0.0122 (5) −0.0013 (4) 0.000 0.000
O2 0.0147 (5) 0.0089 (5) 0.0282 (6) −0.0001 (4) 0.000 0.000
N1 0.0122 (6) 0.0114 (6) 0.0081 (5) 0.0000 (4) 0.000 0.000
C1 0.0158 (7) 0.0143 (7) 0.0102 (6) −0.0041 (5) 0.000 0.000
C2 0.0195 (7) 0.0093 (6) 0.0156 (6) −0.0036 (5) 0.000 0.000
C3 0.0202 (7) 0.0089 (7) 0.0089 (6) 0.0004 (5) 0.000 0.000
C4 0.0238 (8) 0.0106 (6) 0.0243 (8) 0.0022 (5) 0.000 0.000
C5 0.0151 (7) 0.0177 (8) 0.0355 (9) −0.0031 (5) 0.000 0.000
C6 0.0143 (9) 0.0269 (10) 0.0090 (9) 0.0046 (8) 0.0003 (8) 0.0007 (8)
C7 0.0219 (10) 0.0169 (9) 0.0079 (9) −0.0109 (8) 0.0005 (8) −0.0015 (7)
C8 0.0252 (10) 0.0099 (9) 0.0075 (9) 0.0030 (7) −0.0007 (8) 0.0006 (7)

Geometric parameters (Å, º)

Co1—O2i 2.0299 (10) C2—H2 0.9500
Co1—O2 2.0299 (10) C3—C4 1.511 (2)
Co1—O1 2.0410 (10) C4—H4A 0.9800
Co1—O1i 2.0411 (10) C4—H4B 0.9800
Co1—N1 2.3071 (12) C4—H4C 0.9800
Co1—N1i 2.3071 (12) C5—H5A 0.9800
O1—C1 1.2612 (18) C5—H5B 0.9800
O2—C3 1.2603 (18) C5—H5C 0.9800
N1—C7ii 1.4299 (19) C6—C6iii 1.545 (4)
N1—C7 1.4299 (19) C6—H6A 0.9900
N1—C6 1.488 (2) C6—H6B 0.9900
N1—C6ii 1.488 (2) C7—C7iii 1.542 (4)
N1—C8 1.523 (2) C7—H7A 0.9900
N1—C8ii 1.523 (2) C7—H7B 0.9900
C1—C2 1.410 (2) C8—C8iii 1.541 (4)
C1—C5 1.5067 (19) C8—H8A 0.9900
C2—C3 1.398 (2) C8—H8B 0.9900
O2i—Co1—O2 180.0 O1—C1—C5 116.56 (13)
O2i—Co1—O1 91.89 (4) C2—C1—C5 118.50 (14)
O2—Co1—O1 88.11 (4) C3—C2—C1 124.83 (14)
O2i—Co1—O1i 88.11 (4) C3—C2—H2 117.6
O2—Co1—O1i 91.89 (4) C1—C2—H2 117.6
O1—Co1—O1i 180.0 O2—C3—C2 125.82 (14)
O2i—Co1—N1 90.0 O2—C3—C4 115.39 (13)
O2—Co1—N1 90.0 C2—C3—C4 118.79 (14)
O1—Co1—N1 90.0 C3—C4—H4A 109.5
O1i—Co1—N1 90.0 C3—C4—H4B 109.5
O2i—Co1—N1i 90.0 H4A—C4—H4B 109.5
O2—Co1—N1i 90.0 C3—C4—H4C 109.5
O1—Co1—N1i 90.0 H4A—C4—H4C 109.5
O1i—Co1—N1i 90.0 H4B—C4—H4C 109.5
N1—Co1—N1i 180.0 C1—C5—H5A 109.5
C1—O1—Co1 128.25 (9) C1—C5—H5B 109.5
C3—O2—Co1 128.06 (9) H5A—C5—H5B 109.5
C7ii—N1—C7 135.78 (17) C1—C5—H5C 109.5
C7ii—N1—C6 52.41 (12) H5A—C5—H5C 109.5
C7—N1—C6 109.78 (13) H5B—C5—H5C 109.5
C7ii—N1—C6ii 109.78 (13) N1—C6—C6iii 111.15 (9)
C7—N1—C6ii 52.41 (12) N1—C6—H6A 109.4
C6—N1—C6ii 137.70 (17) C6iii—C6—H6A 109.4
C7ii—N1—C8 55.60 (12) N1—C6—H6B 109.4
C7—N1—C8 107.38 (12) C6iii—C6—H6B 109.4
C6—N1—C8 105.43 (13) H6A—C6—H6B 108.0
C6ii—N1—C8 58.58 (12) N1—C7—C7iii 112.11 (9)
C7ii—N1—C8ii 107.38 (12) N1—C7—H7A 109.2
C7—N1—C8ii 55.60 (12) C7iii—C7—H7A 109.2
C6—N1—C8ii 58.58 (12) N1—C7—H7B 109.2
C6ii—N1—C8ii 105.43 (13) C7iii—C7—H7B 109.2
C8—N1—C8ii 138.58 (17) H7A—C7—H7B 107.9
C7ii—N1—Co1 112.11 (9) N1—C8—C8iii 110.71 (8)
C7—N1—Co1 112.11 (9) N1—C8—H8A 109.5
C6—N1—Co1 111.15 (9) C8iii—C8—H8A 109.5
C6ii—N1—Co1 111.15 (9) N1—C8—H8B 109.5
C8—N1—Co1 110.71 (8) C8iii—C8—H8B 109.5
C8ii—N1—Co1 110.71 (8) H8A—C8—H8B 108.1
O1—C1—C2 124.93 (13)
Co1—O1—C1—C2 0.0 Co1—N1—C6—C6iii 179.998 (1)
Co1—O1—C1—C5 180.0 C7ii—N1—C7—C7iii −0.002 (1)
O1—C1—C2—C3 0.0 C6—N1—C7—C7iii 55.94 (12)
C5—C1—C2—C3 180.0 C6ii—N1—C7—C7iii −79.70 (11)
Co1—O2—C3—C2 0.0 C8—N1—C7—C7iii −58.19 (11)
Co1—O2—C3—C4 180.0 C8ii—N1—C7—C7iii 79.37 (10)
C1—C2—C3—O2 0.0 Co1—N1—C7—C7iii 179.998 (1)
C1—C2—C3—C4 180.0 C7ii—N1—C8—C8iii −76.77 (11)
C7ii—N1—C6—C6iii 77.79 (11) C7—N1—C8—C8iii 57.32 (11)
C7—N1—C6—C6iii −55.39 (11) C6—N1—C8—C8iii −59.70 (11)
C6ii—N1—C6—C6iii −0.002 (1) C6ii—N1—C8—C8iii 77.23 (10)
C8—N1—C6—C6iii 59.99 (10) C8ii—N1—C8—C8iii 0.000 (1)
C8ii—N1—C6—C6iii −77.99 (10) Co1—N1—C8—C8iii 180.000 (1)

Symmetry codes: (i) −x, −y, −z; (ii) −x, −y, z; (iii) x, y, −z+1.

References

  1. Aromí, G., Gamez, P. & Reedijk, J. (2008). Coord. Chem. Rev. 252, 964–989.
  2. Atienza, J., Gutiérrez, A., Felisa Perpiñán, M. & Sánchez, A. E. (2008). Eur. J. Inorg. Chem. pp. 5524–5531.
  3. Blake, A. B. & Hatfield, W. E. (1978). J. Chem. Soc. Dalton Trans. pp. 868–871.
  4. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  5. Bray, D. J., Clegg, J. K., Lindoy, L. F. & Schilter, D. (2007). Adv. Inorg. Chem. 59, 1–37.
  6. Fine, D. A. (1973). J. Inorg. Nucl. Chem. 35, 4023–4028.
  7. Furukawa, S., Hirai, K., Nakagawa, K., Takashima, Y., Matsuda, R., Tsuruoka, T., Kondo, M., Haruki, R., Tanaka, D., Sakamoto, H., Shimomura, S., Sakata, O. & Kitagawa, S. (2009). Angew. Chem. Int. Ed. 48, 1766–1770. [DOI] [PubMed]
  8. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  9. Herberich, G. E., Wesemann, L. & Englert, U. (1993). Struct. Chem. 4, 199–202.
  10. Lennartson, A. & Håkansson, M. (2009). Acta Cryst. C65, m325–m327. [DOI] [PubMed]
  11. Ma, B.-Q., Gao, S., Yi, T. & Xu, G.-X. (2001). Polyhedron, 20, 1255–1261.
  12. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  13. Pellacani, G. C., Battistuzzi, R. & Marcotrigiano, G. (1973). J. Inorg. Nucl. Chem. 35, 2243–2247.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.
  19. Uemura, K., Yamasaki, Y., Komagawa, Y., Tanaka, K. & Kita, H. (2007). Angew. Chem. Int. Ed. 46, 6662–6665. [DOI] [PubMed]
  20. Vigato, P. A., Peruzzo, V. & Tamburini, S. (2009). Coord. Chem. Rev. 253, 1099–1201.
  21. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698901600428X/wm5278sup1.cif

e-72-00548-sup1.cif (422.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901600428X/wm5278Isup2.hkl

e-72-00548-Isup2.hkl (85.5KB, hkl)

CCDC reference: 1454848

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES