Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Mar 22;72(Pt 4):522–525. doi: 10.1107/S2056989016004473

Crystal structure of 3-(4-hy­droxy­phen­yl)-2-[(E)-2-phenyl­ethen­yl]quinazolin-4(3H)-one

Inese Mierina a, Dmitrijs Stepanovs b,a,*, Jolita Kuginyte c,a, Artur Janichev b,a, Mara Jure a,*
PMCID: PMC4910336  PMID: 27375880

The title compound consists of a substituted 2-[(E)-2-aryl­ethen­yl]-3-aryl­quinazolin-4(3H)-one skeleton. The substituents at the ethyl­ene fragment are located in trans positions. In the crystal, mol­ecules are connected via O—H⋯O hydrogen bonds forming a 21 helix propagating along the a-axis direction.

Keywords: crystal structure; 2,3-disubstituted quinazolin-4(3H)-one; styrylquinazolinone conjugation system; hydrogen bonding

Abstract

The title compound, C22H16N2O2 {systematic name: 3-(4-hy­droxy­phen­yl)-2-[(E)-2-phenyl­ethen­yl]quinazolin-4(3H)-one}, consists of a substituted 2-[(E)-2-aryl­ethen­yl]-3-aryl­quinazolin-4(3H)-one skeleton. The substituents at the ethyl­ene fragment are located in trans positions. The phenyl ring is inclined to the quinazolone ring by 26.44 (19)°, while the 4-hy­droxy­phenyl ring is inclined to the quinazolone ring by 81.25 (8)°. The phenyl ring and the 4-hy­droxy­phenyl ring are inclined to one another by 78.28 (2)°. In the crystal, mol­ecules are connected via O—H⋯O hydrogen bonds, forming a helix along the a-axis direction. The helices are linked by C—H⋯π inter­actions, forming slabs parallel to (001).

Chemical context  

Compounds containing the 2-[(E)-2-aryl­ethen­yl]-3-aryl­quinazolin-4(3H)-one core are well known for their broad biological activities. These compounds demonstrate anti­biotic effect in vivo against methicillin-resistant Staphylococcus aureus (Bouley et al., 2015; Chang et al., 2014) and anti­leishmanial activity (Birhan et al., 2014). 2-Styryl functional­ized quinazolinones are applicable as anti­cancer agents against human cell lines (Kamal et al., 2013; 2012; 2010a,b ) and anti­convulsants (Das et al., 2014). Analogues of the title compound are Hsp90 inhibitors with in vitro anti-tumor activity (Park et al., 2007), as well as suppressants of the ubiquitin ligase activity of a human polypeptide (Erez & Nakache, 2011), GluN2D-containing NMDA receptors (Hansen & Traynelis, 2011) and c-KIT expression (Wang et al., 2013). Compounds with such a structure are good modulators of both γ-secretase (Fischer et al., 2011) and Rho C activity (Sun et al., 2003), as well as AMPA receptor antagonists (Chenard et al., 2001; 1999; Welch & DeVries, 1998). Piriqualone (the 2-hetaryl­vinyl analogue of the above mentioned compounds) has been used as a sedative–hypnotic drug (Kumar et al., 2015).graphic file with name e-72-00522-scheme1.jpg

Structural commentary  

The title compound 1, Fig. 1, consists of a substituted 2-[(E)-2-aryl­ethen­yl]-3-aryl­quinazolin-4(3H)-one skeleton. The substituents at the ethyl­ene fragment are located in trans-positions. Unlike the structure reported by Nosova et al. (2012), where the conjugation system of styrylquinazolinone is practically planar, in compound 1 the 2-phenyl­eth-(E)-enyl substituent is twisted with respect to the plane of the quinazolone ring. The phenyl (C21–C26) and the 4-hy­droxy­phenyl (C12–C17) rings are inclined to one another by 78.2 (2)°, and to the quinazolone ring (N1/N2/C2/C4–C10) by 26.44 (19) and 81.25 (8)°, respectively. A similar styryl­quinazolinone conjugation system geometry has been found in structures reported previously (Trashakhova et al., 2011; Ovchinnikova et al., 2014).

Figure 1.

Figure 1

The mol­ecular structure of compound 1, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal of 1, mol­ecules are connected via O—H⋯O hydrogen bonds forming a 21 helix, with graph set C(3), propagating along the a-axis direction (Table 1 and Fig. 2). This is similar to the crystal packing reported for the structure of diltiazem acetyl­salicilate hydrate (Stepanovs et al., 2016). In 1, the helices are linked via C—H⋯π inter­actions, forming slabs lying parallel to the ab plane (Table 1 and Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 and Cg4 are the centroids of the C12–C17 and C21–C26 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O18—H18⋯O11i 0.82 1.84 2.654 (5) 172
C4—H4⋯Cg4ii 0.94 2.96 3.829 (5) 157
C16—H16⋯Cg3i 0.94 2.95 3.646 (5) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

A fragment of the crystal structure of compound 1, showing the helix-like hydrogen-bonded chain propagating along the a-axis direction.

Figure 3.

Figure 3

A view along the a axis of the crystal packing of compound 1. The hydrogen bonds are shown as dashed lines and the C—H⋯π inter­actions (see Table 1) are represented as thin black lines.

Database survey  

A search of the Cambridge Structural Database (Version 5.37; Groom & Allen, 2014) for substructure S1 (Fig. 4) gave 137 hits, while a search for substructure S2 (2-aryl­vinyl 3-aryl quinazolin-4(3H)-one skeleton, Fig. 4) gave only three hits: Nosova et al. (2012); Trashakhova et al. (2011); Ovchinnikova et al. (2014). However, none of the characterized single crystals contains a hydrogen-bond donor/acceptor in the aryl substituent at position 3 of the quinazolinone unit and information on inter­molecular inter­actions of such structures is still missing. The only example containing a carb­oxy­lic functionality at the 3-aryl substituent of quinazolin-4(3H)-one was analysed as a complex with Staphylococcus aureus at the PBP2a binding site (Bouley et al., 2015).

Figure 4.

Figure 4

Substructures used for the Database survey.

Synthesis and crystallization  

The title compound 1 was synthesized applying two pathways starting from 2-methyl (2) or 2-styryl (3) benzoxazin-4-one (methods A and B, respectively, Fig. 5).

Figure 5.

Figure 5

Synthesis of the title compound, 1.

Method A

2-Methyl benzoxazin-4-one (2) (0.263 g, 1.6 mmol) and 4-amino­phenol (4) (0.175 g, 1.6 mmol) in glacial acetic acid (2 ml) were refluxed for 7 h, then poured into crushed ice (50 ml) and filtered. Compound 5 was obtained as a greyish solid. Its spectroscopic data corresponded to those in the literature (Marinho & Proença, 2015). The crude product 5, without further purification, was subjected to condensation with benzaldehyde analogously to a known method (Krastina et al., 2014): 3-(4-hy­droxy­phen­yl)-2-methyl­quinazolin-4(3H)-one (5) (0.276 g, 1.1 mmol), benzaldehyde (0.27 g, 2.53 mol) and acetanhydride (0.5 ml) in acetic acid (4 ml) were refluxed for 8 h, poured into crushed ice (50 ml), filtered and air-dried. The mixture containing compounds 1 and 6 (0.25 g) was refluxed for 7 h in NaOH/methanol (5%, 5 ml), poured into crushed ice (50 ml), acidified with conc. hydro­chloric acid and filtered. The target compound 1 was obtained as a white solid with 53% (0.197 g) yield over two steps.

Method B

The title compound 1 was obtained as a by-product during the synthesis of 2-cinnamamido-N-(4-hy­droxy­phen­yl)benz­amide: benzoxazin-4-one 3 (1.00 g, 4 mmol) and 4-amino­phenol (4) (0.44 g, 4 mmol) were refluxed in toluene (5 ml) for 3 h, then the mixture was filtered. The title compound was isolated by crystallization from ethanol.

Single crystals suitable for X-ray analysis were obtained by slow evaporation from ethanol at room temperature (m.p. > 523 K).

Spectroscopic data: IR (KBr), ν, cm−1: 3300 (OH), 1655 (CON), 1150, 1515, 1470, 1450, 1340, 1225, 970, 775, 965. 1H NMR (300 MHz, DMSO-d 6), δ (p.p.m.): 9.91 (1H, s, OH), 8.12 (1H, d, J = 7.8 Hz, H-5), 7.91–7.83 (2H, m, H-b, H-6/7), 7.76 (1H, d, J = 7.8 Hz, H-8), 7.52 (1H, t, J = 7.8 Hz, H-6/7), 7.41–7.33 (5H, m, Ph), 7.23 (2H, d, J = 8.6 Hz, H-1′), 6.94 (2H, d, J = 8.6 Hz, H-2′), 6.42 (1H, d, J = 15.4 Hz, H-a). 13C NMR (75 MHz, DMSO-d 6), δ (p.p.m.): 161.5, 157.8, 152.0, 147.4, 138.6, 134.9, 134.7, 129.9, 129.8, 129.1, 127.9, 127.4, 127.1, 126.52, 126.47, 120.6, 120.2, 116.1. HRMS. Calculated [M+H]+, m/z: 341.1285. C22H16N2O2. Found, m/z: 341.1282.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were positioned geometrically and refined as riding on their parent atoms: C—H = 0.93 − 0.98 Å with U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(C) for other H atoms. The H atom of the hydroxyl group was included in the position identified from a difference Fourier map and was then refined as riding: O—H = 0.82 Å with U iso(H) = 1.5U eq(O).

Table 2. Experimental details.

Crystal data
Chemical formula C22H16N2O2
M r 340.37
Crystal system, space group Orthorhombic, P21 n b
Temperature (K) 173
a, b, c (Å) 5.3469 (2), 16.5139 (6), 19.8885 (10)
V3) 1756.12 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.22 × 0.18 × 0.09
 
Data collection
Diffractometer Nonius KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 3862, 3862, 2236
(sin θ/λ)max−1) 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.068, 0.139, 1.03
No. of reflections 3862
No. of parameters 236
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.19

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2011 (Burla et al., 2012), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008), SHELXL2015 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016004473/su5288sup1.cif

e-72-00522-sup1.cif (156.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016004473/su5288Isup2.hkl

e-72-00522-Isup2.hkl (308KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016004473/su5288Isup3.cml

CCDC reference: 1468806

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Latvian–Lithuanian–Taiwanese co-project W1935//LV-LT-TW/2015/2 for financial support. JK is grateful for an ERASMUS+ mobility grant for the opportunity of a traineeship at RTU.

supplementary crystallographic information

Crystal data

C22H16N2O2 Dx = 1.287 Mg m3
Mr = 340.37 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21nb Cell parameters from 6856 reflections
a = 5.3469 (2) Å θ = 1.0–27.5°
b = 16.5139 (6) Å µ = 0.08 mm1
c = 19.8885 (10) Å T = 173 K
V = 1756.12 (13) Å3 Plate, colorless
Z = 4 0.22 × 0.18 × 0.09 mm
F(000) = 712

Data collection

Nonius KappaCCD diffractometer 2236 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube θmax = 27.5°, θmin = 3.2°
φ and ω scan h = −6→6
3862 measured reflections k = −21→21
3862 independent reflections l = −25→25

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068 H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.3939P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
3862 reflections Δρmax = 0.17 e Å3
236 parameters Δρmin = −0.19 e Å3
1 restraint

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.6956 (7) 0.7742 (2) 0.45545 (18) 0.0333 (9)
C2 0.8449 (8) 0.7044 (3) 0.4584 (2) 0.0317 (10)
N3 0.8479 (7) 0.6500 (2) 0.41192 (18) 0.0372 (9)
C4 0.6912 (9) 0.6013 (3) 0.3061 (2) 0.0436 (12)
H4 0.7956 0.5564 0.3096 0.052*
C5 0.5358 (9) 0.6089 (3) 0.2518 (2) 0.0476 (13)
H5 0.5349 0.5690 0.2188 0.057*
C6 0.3791 (11) 0.6756 (3) 0.2457 (3) 0.0564 (15)
H6 0.2738 0.6801 0.2086 0.068*
C7 0.3795 (12) 0.7346 (3) 0.2939 (3) 0.0588 (15)
H7 0.2750 0.7793 0.2895 0.071*
C8 0.5362 (10) 0.7885 (3) 0.4018 (3) 0.0435 (12)
C9 0.6946 (8) 0.6604 (3) 0.3564 (2) 0.0337 (11)
C10 0.5376 (9) 0.7278 (3) 0.3501 (2) 0.0372 (11)
O11 0.4054 (7) 0.8506 (2) 0.40120 (19) 0.0653 (12)
C12 0.7042 (8) 0.8360 (3) 0.5076 (2) 0.0315 (10)
C13 0.5181 (8) 0.8382 (3) 0.5557 (2) 0.0354 (11)
H13 0.3953 0.7983 0.5563 0.042*
C14 0.5143 (9) 0.8993 (3) 0.6027 (2) 0.0372 (11)
H14 0.3905 0.9002 0.6356 0.045*
C15 0.6941 (8) 0.9595 (3) 0.6013 (2) 0.0309 (10)
C16 0.8821 (8) 0.9566 (3) 0.5533 (2) 0.0344 (11)
H16 1.0059 0.9962 0.5528 0.041*
C17 0.8859 (8) 0.8951 (3) 0.5064 (2) 0.0339 (11)
H17 1.0110 0.8936 0.4739 0.041*
O18 0.6763 (7) 1.01968 (18) 0.64797 (15) 0.0426 (8)
H18 0.7583 1.0589 0.6356 0.064*
C19 0.9961 (7) 0.6928 (3) 0.5188 (2) 0.0338 (11)
H19 0.9602 0.7230 0.5570 0.041*
C20 1.1845 (8) 0.6398 (3) 0.5204 (2) 0.0341 (10)
H20 1.2220 0.6133 0.4804 0.041*
C21 1.3390 (9) 0.6191 (3) 0.5794 (2) 0.0361 (11)
C22 1.2883 (9) 0.6474 (3) 0.6437 (2) 0.0435 (12)
H22 1.1527 0.6816 0.6508 0.052*
C23 1.4371 (8) 0.6252 (3) 0.6973 (3) 0.0498 (15)
H23 1.4006 0.6441 0.7402 0.060*
C24 1.6404 (9) 0.5748 (3) 0.6875 (3) 0.0512 (14)
H24 1.7421 0.5605 0.7235 0.061*
C25 1.6909 (10) 0.5460 (3) 0.6243 (3) 0.0496 (13)
H25 1.8265 0.5117 0.6176 0.060*
C26 1.5421 (9) 0.5676 (3) 0.5706 (2) 0.0399 (12)
H26 1.5779 0.5475 0.5280 0.048*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0351 (19) 0.030 (2) 0.035 (2) 0.0014 (17) −0.0054 (19) −0.0034 (17)
C2 0.031 (2) 0.027 (2) 0.037 (3) 0.003 (2) −0.004 (2) −0.002 (2)
N3 0.041 (2) 0.033 (2) 0.037 (2) 0.0064 (18) −0.0066 (19) −0.0067 (19)
C4 0.050 (3) 0.038 (3) 0.042 (3) 0.003 (2) −0.001 (3) −0.007 (2)
C5 0.052 (3) 0.051 (4) 0.040 (3) −0.011 (3) −0.001 (3) −0.013 (3)
C6 0.066 (3) 0.065 (4) 0.038 (3) −0.002 (3) −0.017 (3) −0.007 (3)
C7 0.067 (3) 0.059 (4) 0.050 (3) 0.012 (3) −0.021 (3) −0.003 (3)
C8 0.045 (3) 0.041 (3) 0.043 (3) 0.004 (3) −0.012 (3) −0.001 (2)
C9 0.036 (2) 0.034 (3) 0.031 (3) −0.001 (2) −0.004 (2) −0.002 (2)
C10 0.044 (2) 0.038 (3) 0.030 (3) 0.004 (2) −0.006 (2) −0.001 (2)
O11 0.081 (3) 0.055 (3) 0.060 (3) 0.029 (2) −0.030 (2) −0.010 (2)
C12 0.031 (2) 0.031 (3) 0.032 (3) 0.003 (2) −0.003 (2) −0.003 (2)
C13 0.036 (2) 0.029 (3) 0.041 (3) −0.009 (2) −0.001 (2) 0.004 (2)
C14 0.039 (2) 0.037 (3) 0.036 (3) −0.002 (2) 0.006 (2) 0.003 (2)
C15 0.040 (2) 0.027 (3) 0.026 (2) −0.003 (2) −0.003 (2) 0.001 (2)
C16 0.034 (2) 0.033 (3) 0.036 (3) −0.007 (2) 0.001 (2) 0.000 (2)
C17 0.032 (2) 0.036 (3) 0.034 (3) −0.001 (2) 0.004 (2) 0.001 (2)
O18 0.062 (2) 0.0355 (19) 0.0304 (17) −0.0100 (17) 0.0041 (16) −0.0058 (16)
C19 0.038 (2) 0.029 (3) 0.034 (3) −0.002 (2) −0.006 (2) −0.002 (2)
C20 0.040 (2) 0.027 (2) 0.035 (3) −0.002 (2) −0.005 (2) 0.000 (2)
C21 0.037 (2) 0.030 (3) 0.041 (3) −0.007 (2) −0.012 (2) 0.001 (2)
C22 0.041 (3) 0.045 (3) 0.044 (3) −0.003 (2) −0.008 (2) −0.004 (3)
C23 0.054 (3) 0.060 (4) 0.036 (3) −0.010 (3) −0.009 (2) 0.002 (3)
C24 0.047 (3) 0.060 (4) 0.047 (4) −0.009 (3) −0.018 (2) 0.011 (3)
C25 0.038 (3) 0.051 (3) 0.059 (4) 0.001 (2) −0.007 (3) 0.016 (3)
C26 0.039 (2) 0.040 (3) 0.041 (3) −0.001 (2) −0.003 (2) 0.003 (2)

Geometric parameters (Å, º)

N1—C8 1.385 (6) C14—H14 0.9300
N1—C2 1.404 (5) C15—O18 1.364 (5)
N1—C12 1.455 (5) C15—C16 1.387 (6)
C2—N3 1.289 (5) C16—C17 1.379 (6)
C2—C19 1.459 (6) C16—H16 0.9300
N3—C9 1.385 (5) C17—H17 0.9300
C4—C5 1.368 (7) O18—H18 0.8200
C4—C9 1.398 (6) C19—C20 1.335 (6)
C4—H4 0.9300 C19—H19 0.9300
C5—C6 1.390 (7) C20—C21 1.475 (6)
C5—H5 0.9300 C20—H20 0.9300
C6—C7 1.367 (7) C21—C22 1.389 (6)
C6—H6 0.9300 C21—C26 1.390 (6)
C7—C10 1.406 (7) C22—C23 1.379 (6)
C7—H7 0.9300 C22—H22 0.9300
C8—O11 1.241 (6) C23—C24 1.382 (7)
C8—C10 1.436 (6) C23—H23 0.9300
C9—C10 1.400 (6) C24—C25 1.370 (7)
C12—C17 1.378 (6) C24—H24 0.9300
C12—C13 1.381 (6) C25—C26 1.378 (7)
C13—C14 1.377 (6) C25—H25 0.9300
C13—H13 0.9300 C26—H26 0.9300
C14—C15 1.383 (6)
C8—N1—C2 121.5 (4) C15—C14—H14 119.9
C8—N1—C12 116.7 (4) O18—C15—C14 117.4 (4)
C2—N1—C12 121.8 (3) O18—C15—C16 123.0 (4)
N3—C2—N1 123.3 (4) C14—C15—C16 119.6 (4)
N3—C2—C19 119.4 (4) C17—C16—C15 120.1 (4)
N1—C2—C19 117.3 (4) C17—C16—H16 119.9
C2—N3—C9 118.6 (4) C15—C16—H16 119.9
C5—C4—C9 120.6 (5) C12—C17—C16 120.0 (4)
C5—C4—H4 119.7 C12—C17—H17 120.0
C9—C4—H4 119.7 C16—C17—H17 120.0
C4—C5—C6 120.6 (5) C15—O18—H18 109.5
C4—C5—H5 119.7 C20—C19—C2 121.6 (4)
C6—C5—H5 119.7 C20—C19—H19 119.2
C7—C6—C5 120.2 (5) C2—C19—H19 119.2
C7—C6—H6 119.9 C19—C20—C21 126.5 (4)
C5—C6—H6 119.9 C19—C20—H20 116.8
C6—C7—C10 120.1 (5) C21—C20—H20 116.8
C6—C7—H7 119.9 C22—C21—C26 118.3 (4)
C10—C7—H7 119.9 C22—C21—C20 123.1 (4)
O11—C8—N1 119.7 (5) C26—C21—C20 118.7 (4)
O11—C8—C10 124.9 (5) C23—C22—C21 120.6 (5)
N1—C8—C10 115.5 (4) C23—C22—H22 119.7
N3—C9—C4 119.4 (4) C21—C22—H22 119.7
N3—C9—C10 121.7 (4) C22—C23—C24 120.3 (5)
C4—C9—C10 118.9 (4) C22—C23—H23 119.9
C9—C10—C7 119.7 (4) C24—C23—H23 119.9
C9—C10—C8 119.5 (4) C25—C24—C23 119.6 (5)
C7—C10—C8 120.7 (5) C25—C24—H24 120.2
C17—C12—C13 120.1 (4) C23—C24—H24 120.2
C17—C12—N1 120.4 (4) C24—C25—C26 120.4 (5)
C13—C12—N1 119.3 (4) C24—C25—H25 119.8
C14—C13—C12 120.1 (4) C26—C25—H25 119.8
C14—C13—H13 120.0 C25—C26—C21 120.8 (5)
C12—C13—H13 120.0 C25—C26—H26 119.6
C13—C14—C15 120.1 (4) C21—C26—H26 119.6
C13—C14—H14 119.9
C8—N1—C2—N3 1.2 (7) C8—N1—C12—C17 −95.4 (5)
C12—N1—C2—N3 −177.5 (4) C2—N1—C12—C17 83.3 (5)
C8—N1—C2—C19 −176.7 (4) C8—N1—C12—C13 80.1 (5)
C12—N1—C2—C19 4.7 (6) C2—N1—C12—C13 −101.2 (5)
N1—C2—N3—C9 −0.6 (6) C17—C12—C13—C14 −0.3 (6)
C19—C2—N3—C9 177.1 (4) N1—C12—C13—C14 −175.8 (4)
C9—C4—C5—C6 0.2 (8) C12—C13—C14—C15 1.1 (7)
C4—C5—C6—C7 0.2 (9) C13—C14—C15—O18 178.2 (4)
C5—C6—C7—C10 −0.3 (9) C13—C14—C15—C16 −1.8 (7)
C2—N1—C8—O11 179.4 (5) O18—C15—C16—C17 −178.4 (4)
C12—N1—C8—O11 −1.9 (7) C14—C15—C16—C17 1.6 (7)
C2—N1—C8—C10 −0.7 (6) C13—C12—C17—C16 0.1 (6)
C12—N1—C8—C10 178.0 (4) N1—C12—C17—C16 175.5 (4)
C2—N3—C9—C4 −178.7 (4) C15—C16—C17—C12 −0.7 (7)
C2—N3—C9—C10 −0.3 (6) N3—C2—C19—C20 17.8 (7)
C5—C4—C9—N3 178.0 (4) N1—C2—C19—C20 −164.3 (4)
C5—C4—C9—C10 −0.5 (7) C2—C19—C20—C21 −175.8 (4)
N3—C9—C10—C7 −178.0 (5) C19—C20—C21—C22 6.9 (7)
C4—C9—C10—C7 0.4 (7) C19—C20—C21—C26 −174.5 (4)
N3—C9—C10—C8 0.7 (7) C26—C21—C22—C23 0.4 (7)
C4—C9—C10—C8 179.1 (4) C20—C21—C22—C23 179.0 (4)
C6—C7—C10—C9 0.0 (8) C21—C22—C23—C24 0.5 (7)
C6—C7—C10—C8 −178.7 (5) C22—C23—C24—C25 −1.0 (7)
O11—C8—C10—C9 179.8 (5) C23—C24—C25—C26 0.6 (8)
N1—C8—C10—C9 −0.2 (6) C24—C25—C26—C21 0.3 (7)
O11—C8—C10—C7 −1.6 (8) C22—C21—C26—C25 −0.8 (7)
N1—C8—C10—C7 178.5 (5) C20—C21—C26—C25 −179.5 (4)

Hydrogen-bond geometry (Å, º)

Cg3 and Cg4 are the centroids of the C12–C17 and C21–C26 rings, respectively.

D—H···A D—H H···A D···A D—H···A
O18—H18···O11i 0.82 1.84 2.654 (5) 172
C4—H4···Cg4ii 0.94 2.96 3.829 (5) 157
C16—H16···Cg3i 0.94 2.95 3.646 (5) 133

Symmetry codes: (i) x+1/2, −y+2, −z+1; (ii) x−1/2, −y+1, −z+1.

References

  1. Birhan, Y. S., Bekhit, A. A. & Hymete, A. (2014). Org. Med. Chem. 4 10.1186/s13588-014-0010-1. [DOI] [PMC free article] [PubMed]
  2. Bouley, R., Kumarasiri, M., Peng, Z., Otero, L. H., Song, W., Suckow, M. A., Schroeder, V. A., Wolter, W. R., Lastochkin, E., Antunes, N. T., Pi, H., Vakulenko, S., Hermoso, J. A., Chang, M. & Mobashery, S. (2015). J. Am. Chem. Soc. 137, 1738–1741. [DOI] [PMC free article] [PubMed]
  3. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.
  4. Chang, M., Mobashery, S. & Bouley, R. (2014). Int. Patent Appl. 2014/138302.
  5. Chenard, B., Menniti, F. S. & Welch, W. K. (1999). Eur. Patent Appl. 0900568.
  6. Chenard, B. L., Welch, W. M., Blake, J. F., Butler, T. W., Reinhold, A., Ewing, F. E., Menniti, F. S. & Pagnozzi, M. (2001). J. Med. Chem. 44, 1710–1717. [DOI] [PubMed]
  7. Das, N., Garabadu, D., Banerjee, A. G., Krishnamurthy, S. & Shrivastava, S. K. (2014). Med. Chem. Res. 23, 4167–4176.
  8. Erez, O. & Nakache, P. (2011). Int. Patent Appl. 2011/064657.
  9. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  10. Fischer, C., Shah, S., Hughes, B. L., Nikov, G. N., Crispino, J. L., Middleton, R. E., Szewczak, A. A., Munoz, B. & Shearman, M. S. (2011). Bioorg. Med. Chem. Lett. 21, 773–776. [DOI] [PubMed]
  11. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  12. Hansen, K. B. & Traynelis, S. F. (2011). J. Neurosci. 31, 3650–3661. [DOI] [PMC free article] [PubMed]
  13. Kamal, A., Bharathi, E. V., Dastagiri, D., Reddy, J. S. & Viswanath, A. (2010a). Int. Patent Appl. 2010/058416.
  14. Kamal, A., Sultana, F., Bharathi, E. V., Srikanth, Y. V. V., Viswanath, A. & Swapna, P. (2012). Int. Patent Appl. 2012/111017.
  15. Kamal, A., Sultana, F., Ramaiah, M. J., Srikanth, Y. V. V., Viswanath, A., Bharathi, E. V., Nayak, R., Pushpavalli, S. N. C. V. L., Srinivas, C. & Pal-Bhadra, M. (2013). Med. Chem. Commun. 4, 575–581.
  16. Kamal, A., Bharathi, E. V., Ramaiah, M. J., Dastagiri, D., Reddy, J. S., Viswanath, A., Sultana, F., Pushpavalli, S. N. C. V. L., Pal-Bhadra, M., Srivastava, H. K., Sastry, G. N., Juvekar, A., Sen, S. & Zingde, S. (2010b). Bioorg. Med. Chem. 18, 526–542. [DOI] [PubMed]
  17. Krastina, G., Ravina, I., Mierina, I., Zicane, D., Turks, M., Tetere, Z. & Leonciks, A. (2014). J. Chem. Pharm. Res. 6, 6–14.
  18. Kumar, D., Jadhavar, P. S., Nautiyal, M., Sharma, H., Meena, P. K., Adane, L., Pancholia, S. & Chakraborti, A. K. (2015). RSC Adv. 5, 30819–30825.
  19. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  20. Marinho, E. & Proença, M. F. (2015). Synthesis, 47, 1623–1632.
  21. Nonius (1997). KappaCCD Server Software for Windows. Nonius BV, Delft, The Netherlands.
  22. Nosova, E. V., Stupina, T. V., Lipunova, G. N., Valova, M. S., Slepukhin, P. A. & Charushin, V. N. (2012). Int. J. Org. Chem, 2, 56–63.
  23. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  24. Ovchinnikova, I. G., Kim, G. A., Matochkina, E. G., Kodess, M. I., Barykin, N. V., El’tsov, O. S., Nosova, E. V., Rusinov, G. L. & Charushin, V. N. (2014). Russ. Chem. Bull. 63, 2467–2477.
  25. Park, H., Kim, Y.-J. & Hahn, J.-S. (2007). Bioorg. Med. Chem. Lett. 17, 6345–6349. [DOI] [PubMed]
  26. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  27. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  28. Stepanovs, D., Jure, M., Gosteva, M., Popelis, J., Kiselovs, G. & Mishnev, A. (2016). CrystEngComm, 18, 1235–1241.
  29. Sun, D., Perkins, E. L. & Tugendreich, S. (2003). Int. Patent Appl. 03/043961.
  30. Trashakhova, T. V., Nosova, E. V., Valova, M. S., Slepukhin, P. A., Lipunova, G. N. & Charushin, V. N. (2011). Russ. J. Org. Chem. 47, 753–761.
  31. Wang, X., Zhou, C.-X., Yan, J.-W., Hou, J.-Q., Chen, S.-B., Ou, T.-M., Gu, L.-Q., Huang, Z.-S. & Tan, J. H. (2013). ACS Med. Chem. Lett. 4, 909–914. [DOI] [PMC free article] [PubMed]
  32. Welch, W. M. & DeVries, K. M. (1998). Int. Patent Appl. 98/38173.
  33. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016004473/su5288sup1.cif

e-72-00522-sup1.cif (156.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016004473/su5288Isup2.hkl

e-72-00522-Isup2.hkl (308KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016004473/su5288Isup3.cml

CCDC reference: 1468806

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES