The title molecule consists of an Re(CO)3 + fragment, an aqua ligand and one N,O-chelating valinate anion to complete a slightly distorted coordination sphere.
Keywords: crystal structure, rhenium carbonyl complex, valine
Abstract
In the molecule of the title compound, [Re(C5H10NO2)(CO)3(H2O)], the ReI atom adopts a distorted octahedral coordination sphere defined by one aqua and three carbonyl ligands as well as one amino N and one carboxylate O atom of the chelating valinate anion. The carbonyl ligands are arranged in a fac-configuration around the ReI ion. In the crystal, an intricate hydrogen-bonding system under participation of two O—H, two N—H and one C—H donor groups and the carboxylate and carbonyl O atoms as acceptor groups contribute to the formation of a three-dimensional supramolecular network.
Chemical context
The syntheses of metal–organic compounds, which are capable of visualization of biomolecules, is receiving growing interest in biocoordination chemistry (Coogan & Fernández-Moreira, 2014 ▸). For the labeling of biomolecules, octahedral fac-tricarbonyl complexes of Tc and Re are the most promising compounds (Alberto, 2007 ▸; Coogan et al., 2014 ▸). The compact M(CO)3-core (M = Tc, Re) allows labeling of low molecular weight substrates under retention of activity and specificity. In this context, Re(CO)3
+ compounds are of interest as the closest non-radioactive analogs of 99mTc-based systems, which could be particularly important for visualization and immunotherapy. Studies of the cytotoxicity of rhenium carbonyl complexes also suggest their specific anticancer activity (Leonidova & Gasser, 2014 ▸).
Most of the known Re(CO)3 + complexes with biologically essential substrates comprise tridentate co-ligands, e.g. histidinato-O,N,N′ (Alberto et al., 1999 ▸), methioninato-N,O,S (He et al., 2005 ▸), 2,3-diaminopropionato-N,N′,O (Liu et al., 2006 ▸), completing the coordination octahedra of the central ions. At the same time, coordinatively unsaturated complexes of bidentate aminocarboxylates could be suited for interactions with additional ligands, such as guanine bases (Zobi et al. 2005a ▸), thus allowing an attractive scenario for the assembly of mixed-ligand systems.
In this communication, we report the synthesis and crystal structure of a novel Re(CO)3 + complex with valine and water as co-ligands. Following the findings of Zobi et al. (2005b ▸), sufficient reactivity of this compound towards DNA may be anticipated.
Structural commentary
In the molecule of the title compound (Fig. 1 ▸), the Re1 ion resides in a slightly distorted octahedral coordination environment, with a facial arrangement of three nearly equidistant carbonyl ligands [Re1—C bond lengths are in the range 1.881 (7)–1.909 (7) Å]. The compound crystallizes in the chiral space group P212121, with the S-enantiomer of the valinate anion present in the selected crystal. The anion coordinates in a bidentate-chelating fashion through the amino N and one carboxylate O atoms, with Re1—N1 and Re1—O4 bond lengths of 2.195 (5) and 2.122 (4) Å, respectively. The five-membered chelate ring [bite angle N1—Re1—O4 = 74.62 (18)°] has the expected envelope conformation, with the atoms of the Re1—O4—C4—C5 fragment being coplanar within 0.035 (3) Å and the N1 flap atom deviating from the given mean plane by 0.547 (6) Å. The Re1—O6 bond involving the aqua ligand [2.175 (5) Å] is slightly longer than the one with the carboxyl O atom. The CO ligands coordinate in an almost linear fashion, with O—C—Re bond angles spanning a range from 175.5 (7) to 179.9 (8)°, while the corresponding C—Re1—C angles are within 87.1 (3)–89.8 (2)°. All other bond length and angles are comparable to those found for related ReI complexes (Rajendran et al., 2000 ▸).
Figure 1.
The molecular structure of the title complex, with displacement ellipsoids drawn at the 40% probability level.
Supramolecular features
In the crystal, the packing of the molecules is governed by an intricate system of hydrogen bonds, including classical O—H⋯O and N—H⋯O bonds and weaker C—H⋯O interactions (Table 1 ▸). Two rather strong and nearly linear O—H⋯O bonds are observed between the aqua ligand and the non-coordinating carboxylate O atoms of two symmetry-related neighbouring molecules. The amino group forms two weaker N—H⋯O bonds to carbonyl O atom acceptor groups of two neighbouring molecules. Each non-coordinating carboxylate O atom accepts two such bonds, yielding hydrogen-bonded chains parallel to the a-axis direction (Fig. 2 ▸), whereas the N—H⋯O bonds expand the hydrogen-bonding system into a three-dimensional network. Additional C—H⋯O interactions consolidate this arrangement (Fig. 3 ▸). The combination of O—H⋯O and C—H⋯O (involving the chiral C5 atom) bonds may be important for the observed enantioselective packing of the chiral moieties (Petkova et al., 2001 ▸).
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O6—H1W⋯O5i | 0.85 | 1.85 | 2.693 (5) | 175 |
| O6—H2W⋯O5ii | 0.85 | 1.88 | 2.723 (5) | 175 |
| N1—H1N⋯O3iii | 0.90 | 2.15 | 2.979 (7) | 153 |
| N1—H2N⋯O1iv | 0.90 | 2.41 | 3.103 (6) | 133 |
| C5—H5⋯O2v | 0.99 | 2.59 | 3.527 (7) | 158 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
.
Figure 2.
Primary supramolecular interactions involving rather strong O—H⋯O bonds that produce chains parallel to the a axis. [Symmetry codes: (i) x − 1, y, z; (ii) x − 0.5, −y + 0.5, −z + 1.]
Figure 3.
The crystal structure of the title complex showing all hydrogen-bonding interactions (O—H⋯O, N—H⋯O and C—H⋯O) as dashed lines. The isopropyl CH-hydrogen atoms were omitted for clarity. [Symmetry codes: (i) x − 1, y, z; (iv) x, y + 1, z; (v) x + 1, y, z.]
Synthesis and crystallization
To a solution of dl-valine (0.116 g, 0.984 mmol) in 5 ml of water, a solution of triaquatricarbonylrhenium(I) bromide (0.100 g, 0.246 mmol) in 10 ml of methanol was added. The reaction mixture was heated and stirred at 343 K under a steady stream of argon for 4 h. After cooling to room temperature, the solution was left to evaporate in air for a period of a few days. After removal of the methanol co-solvent, a colourless crystalline product formed. The precipitate was collected by suction filtration, washed with water and then with a 50 ml portion of petroleum ether and dried (yield: 0.068 g, 68%). Suitable single crystals were obtained by slow diffusion of hexane vapor into a methanol solution of the complex. IR (KBr, cm−1): νas(CO) 2028 (s), νs(CO) 1905 (s).
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. C-bound hydrogen atoms were placed geometrically and refined using a riding model, with C—H = 0.97 Å and U iso(H) = 1.5U eq(C) for methyl and with C—H = 0.99 Å and U iso(H) = 1.2U eq(C) for methine groups. N- and O-bound hydrogen atoms were found from difference maps and refined with N—H = 0.90 Å, O—H = 0.85 Å and U iso(H) = 1.2U eq(N,O).
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | [Re(C5H10NO2)(CO)3(H2O)] |
| M r | 404.39 |
| Crystal system, space group | Orthorhombic, P212121 |
| Temperature (K) | 213 |
| a, b, c (Å) | 7.1229 (5), 7.2913 (7), 22.6098 (18) |
| V (Å3) | 1174.24 (17) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 10.36 |
| Crystal size (mm) | 0.16 × 0.12 × 0.12 |
| Data collection | |
| Diffractometer | Stoe Imaging plate diffraction system |
| Absorption correction | Numerical (X-SHAPE and X-RED; Stoe, 2001 ▸) |
| T min, T max | 0.288, 0.370 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 10442, 2809, 2546 |
| R int | 0.040 |
| (sin θ/λ)max (Å−1) | 0.660 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.022, 0.047, 0.99 |
| No. of reflections | 2809 |
| No. of parameters | 147 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 1.68, −0.91 |
| Absolute structure | Flack x determined using 990 quotients [(I +)−(I −)]/[(I +)+(I −)] (Parsons et al., 2013 ▸). |
| Absolute structure parameter | −0.018 (10) |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016005235/wm5283sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016005235/wm5283Isup2.hkl
CCDC reference: 1469075
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
This work was supported by the fund Grant for Science Research (No. 0111U000111) from the Ministry of Education and Science of Ukraine. We also thank EU COST Action CM 1105 for supporting this study.
supplementary crystallographic information
Crystal data
| [Re(C5H10NO2)(CO)3(H2O)] | Dx = 2.287 Mg m−3 |
| Mr = 404.39 | Mo Kα radiation, λ = 0.71073 Å |
| Orthorhombic, P212121 | Cell parameters from 8000 reflections |
| a = 7.1229 (5) Å | θ = 2.9–28.0° |
| b = 7.2913 (7) Å | µ = 10.36 mm−1 |
| c = 22.6098 (18) Å | T = 213 K |
| V = 1174.24 (17) Å3 | Prism, colorless |
| Z = 4 | 0.16 × 0.12 × 0.12 mm |
| F(000) = 760 |
Data collection
| Stoe Imaging plate diffraction system diffractometer | 2546 reflections with I > 2σ(I) |
| Radiation source: fine-focus sealed tube | Rint = 0.040 |
| φ oscillation scans | θmax = 28.0°, θmin = 2.9° |
| Absorption correction: numerical (X-SHAPE and X-RED; Stoe, 2001) | h = −9→9 |
| Tmin = 0.288, Tmax = 0.370 | k = −9→9 |
| 10442 measured reflections | l = −29→29 |
| 2809 independent reflections |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: mixed |
| R[F2 > 2σ(F2)] = 0.022 | H-atom parameters constrained |
| wR(F2) = 0.047 | w = 1/[σ2(Fo2) + (0.0254P)2] where P = (Fo2 + 2Fc2)/3 |
| S = 0.99 | (Δ/σ)max = 0.002 |
| 2809 reflections | Δρmax = 1.68 e Å−3 |
| 147 parameters | Δρmin = −0.91 e Å−3 |
| 0 restraints | Absolute structure: Flack x determined using 990 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). |
| Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.018 (10) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Re1 | 0.27215 (3) | 0.24317 (4) | 0.36414 (2) | 0.01911 (8) | |
| O1 | 0.1402 (9) | −0.1539 (7) | 0.3751 (3) | 0.0475 (16) | |
| O2 | −0.0548 (9) | 0.3311 (10) | 0.2820 (3) | 0.059 (2) | |
| O3 | 0.4865 (10) | 0.1103 (10) | 0.2566 (3) | 0.0510 (17) | |
| O4 | 0.4953 (6) | 0.2146 (6) | 0.42564 (19) | 0.0201 (10) | |
| O5 | 0.7729 (7) | 0.3107 (6) | 0.4559 (2) | 0.0296 (11) | |
| O6 | 0.1463 (7) | 0.3556 (6) | 0.4439 (2) | 0.0216 (10) | |
| H1W | 0.0276 | 0.3449 | 0.4455 | 0.032* | |
| H2W | 0.1929 | 0.3046 | 0.4744 | 0.032* | |
| N1 | 0.4095 (7) | 0.5125 (7) | 0.3670 (3) | 0.0202 (10) | |
| H1N | 0.4012 | 0.5560 | 0.3298 | 0.030* | |
| H2N | 0.3545 | 0.5944 | 0.3913 | 0.030* | |
| C1 | 0.1826 (10) | −0.0024 (10) | 0.3716 (4) | 0.0300 (15) | |
| C2 | 0.0674 (10) | 0.2983 (10) | 0.3127 (3) | 0.0309 (18) | |
| C3 | 0.4063 (11) | 0.1628 (11) | 0.2973 (3) | 0.0283 (16) | |
| C4 | 0.6284 (10) | 0.3294 (9) | 0.4248 (3) | 0.0215 (14) | |
| C5 | 0.6095 (10) | 0.4941 (9) | 0.3839 (3) | 0.0216 (14) | |
| H5 | 0.6814 | 0.4668 | 0.3475 | 0.026* | |
| C6 | 0.6917 (11) | 0.6706 (9) | 0.4109 (4) | 0.0319 (16) | |
| H6 | 0.8235 | 0.6446 | 0.4220 | 0.038* | |
| C7 | 0.5880 (13) | 0.7280 (13) | 0.4668 (4) | 0.048 (2) | |
| H7A | 0.4638 | 0.7721 | 0.4565 | 0.072* | |
| H7B | 0.6574 | 0.8250 | 0.4864 | 0.072* | |
| H7C | 0.5768 | 0.6236 | 0.4931 | 0.072* | |
| C8 | 0.6942 (12) | 0.8254 (9) | 0.3654 (5) | 0.0424 (19) | |
| H8A | 0.5664 | 0.8610 | 0.3561 | 0.064* | |
| H8B | 0.7566 | 0.7837 | 0.3298 | 0.064* | |
| H8C | 0.7613 | 0.9298 | 0.3816 | 0.064* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Re1 | 0.01711 (11) | 0.02296 (11) | 0.01726 (10) | 0.00198 (16) | −0.00083 (9) | −0.00125 (15) |
| O1 | 0.035 (3) | 0.027 (3) | 0.081 (5) | −0.005 (2) | −0.001 (3) | 0.002 (3) |
| O2 | 0.038 (4) | 0.091 (5) | 0.048 (4) | 0.017 (3) | −0.016 (3) | −0.006 (3) |
| O3 | 0.060 (5) | 0.061 (4) | 0.032 (3) | 0.016 (3) | 0.012 (3) | −0.006 (3) |
| O4 | 0.018 (2) | 0.020 (3) | 0.023 (2) | −0.0010 (17) | −0.0010 (17) | 0.0027 (17) |
| O5 | 0.015 (2) | 0.043 (2) | 0.030 (2) | 0.0011 (19) | −0.005 (2) | 0.0118 (19) |
| O6 | 0.019 (2) | 0.024 (2) | 0.022 (2) | 0.0027 (18) | 0.0015 (19) | 0.0026 (18) |
| N1 | 0.020 (3) | 0.020 (2) | 0.020 (3) | 0.0023 (19) | −0.002 (3) | 0.003 (2) |
| C1 | 0.020 (4) | 0.037 (4) | 0.032 (4) | −0.002 (3) | −0.004 (3) | 0.000 (3) |
| C2 | 0.023 (4) | 0.043 (5) | 0.026 (4) | 0.011 (3) | −0.010 (3) | −0.010 (3) |
| C3 | 0.027 (4) | 0.041 (4) | 0.016 (3) | 0.006 (3) | 0.005 (3) | −0.001 (3) |
| C4 | 0.017 (4) | 0.028 (3) | 0.019 (3) | 0.005 (3) | 0.003 (3) | 0.002 (2) |
| C5 | 0.017 (3) | 0.025 (3) | 0.023 (3) | 0.002 (2) | 0.000 (2) | 0.000 (2) |
| C6 | 0.024 (4) | 0.031 (3) | 0.041 (4) | 0.000 (3) | −0.005 (3) | −0.001 (3) |
| C7 | 0.055 (5) | 0.039 (5) | 0.050 (5) | 0.005 (5) | −0.006 (4) | −0.022 (4) |
| C8 | 0.033 (5) | 0.027 (3) | 0.066 (6) | −0.007 (3) | −0.002 (5) | 0.004 (4) |
Geometric parameters (Å, º)
| Re1—C3 | 1.881 (7) | N1—H1N | 0.9004 |
| Re1—C2 | 1.908 (7) | N1—H2N | 0.9004 |
| Re1—C1 | 1.909 (7) | C4—C5 | 1.520 (9) |
| Re1—O4 | 2.122 (4) | C5—C6 | 1.539 (9) |
| Re1—O6 | 2.175 (5) | C5—H5 | 0.9900 |
| Re1—N1 | 2.195 (5) | C6—C7 | 1.523 (11) |
| O1—C1 | 1.148 (9) | C6—C8 | 1.526 (11) |
| O2—C2 | 1.139 (9) | C6—H6 | 0.9900 |
| O3—C3 | 1.148 (9) | C7—H7A | 0.9700 |
| O4—C4 | 1.265 (8) | C7—H7B | 0.9700 |
| O5—C4 | 1.255 (8) | C7—H7C | 0.9700 |
| O6—H1W | 0.8498 | C8—H8A | 0.9700 |
| O6—H2W | 0.8503 | C8—H8B | 0.9700 |
| N1—C5 | 1.482 (8) | C8—H8C | 0.9700 |
| C3—Re1—C2 | 88.0 (3) | O5—C4—O4 | 122.3 (6) |
| C3—Re1—C1 | 87.1 (3) | O5—C4—C5 | 119.9 (6) |
| C2—Re1—C1 | 89.8 (3) | O4—C4—C5 | 117.8 (6) |
| C3—Re1—O4 | 96.6 (3) | N1—C5—C4 | 108.3 (5) |
| C2—Re1—O4 | 173.0 (2) | N1—C5—C6 | 113.1 (5) |
| C1—Re1—O4 | 95.8 (3) | C4—C5—C6 | 112.8 (6) |
| C3—Re1—O6 | 173.2 (3) | N1—C5—H5 | 107.5 |
| C2—Re1—O6 | 96.4 (3) | C4—C5—H5 | 107.5 |
| C1—Re1—O6 | 98.2 (3) | C6—C5—H5 | 107.5 |
| O4—Re1—O6 | 78.61 (18) | C7—C6—C8 | 111.2 (7) |
| C3—Re1—N1 | 94.4 (3) | C7—C6—C5 | 111.9 (6) |
| C2—Re1—N1 | 99.8 (3) | C8—C6—C5 | 110.9 (7) |
| C1—Re1—N1 | 170.4 (3) | C7—C6—H6 | 107.5 |
| O4—Re1—N1 | 74.62 (18) | C8—C6—H6 | 107.5 |
| O6—Re1—N1 | 79.7 (2) | C5—C6—H6 | 107.5 |
| C4—O4—Re1 | 119.1 (4) | C6—C7—H7A | 109.5 |
| Re1—O6—H1W | 114.3 | C6—C7—H7B | 109.5 |
| Re1—O6—H2W | 110.2 | H7A—C7—H7B | 109.5 |
| H1W—O6—H2W | 108.2 | C6—C7—H7C | 109.5 |
| C5—N1—Re1 | 110.8 (4) | H7A—C7—H7C | 109.5 |
| C5—N1—H1N | 109.6 | H7B—C7—H7C | 109.5 |
| Re1—N1—H1N | 105.0 | C6—C8—H8A | 109.5 |
| C5—N1—H2N | 108.7 | C6—C8—H8B | 109.5 |
| Re1—N1—H2N | 114.7 | H8A—C8—H8B | 109.5 |
| H1N—N1—H2N | 107.9 | C6—C8—H8C | 109.5 |
| O1—C1—Re1 | 175.5 (7) | H8A—C8—H8C | 109.5 |
| O2—C2—Re1 | 179.9 (8) | H8B—C8—H8C | 109.5 |
| O3—C3—Re1 | 178.6 (7) | ||
| Re1—O4—C4—O5 | −173.0 (5) | O5—C4—C5—C6 | −37.3 (9) |
| Re1—O4—C4—C5 | 6.6 (7) | O4—C4—C5—C6 | 143.1 (6) |
| Re1—N1—C5—C4 | −31.1 (6) | N1—C5—C6—C7 | 60.3 (8) |
| Re1—N1—C5—C6 | −156.7 (5) | C4—C5—C6—C7 | −63.0 (8) |
| O5—C4—C5—N1 | −163.1 (6) | N1—C5—C6—C8 | −64.5 (8) |
| O4—C4—C5—N1 | 17.2 (8) | C4—C5—C6—C8 | 172.2 (6) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O6—H1W···O5i | 0.85 | 1.85 | 2.693 (5) | 175 |
| O6—H2W···O5ii | 0.85 | 1.88 | 2.723 (5) | 175 |
| N1—H1N···O3iii | 0.90 | 2.15 | 2.979 (7) | 153 |
| N1—H2N···O1iv | 0.90 | 2.41 | 3.103 (6) | 133 |
| C5—H5···O2v | 0.99 | 2.59 | 3.527 (7) | 158 |
Symmetry codes: (i) x−1, y, z; (ii) x−1/2, −y+1/2, −z+1; (iii) −x+1, y+1/2, −z+1/2; (iv) x, y+1, z; (v) x+1, y, z.
References
- Alberto, R. (2007). J. Organomet. Chem. 692, 1179–1186.
- Alberto, R., Schibli, R., Waibel, R., Abram, U. & Schubiger, A. P. (1999). Coord. Chem. Rev. 190–192, 901–919.
- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Coogan, M. P., Doyle, R. P., Valliant, J. F., Babich, J. W. & Zubieta, J. (2014). J. Label Compd. Radiopharm. 57, 255–261. [DOI] [PubMed]
- Coogan, M. P. & Fernández-Moreira, V. (2014). Chem. Commun. 50, 384–399. [DOI] [PubMed]
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- He, H., Lipowska, M., Xu, X., Taylor, A. T., Carlone, M. & Marzilli, L. G. (2005). Inorg. Chem. 44, 5437–5446. [DOI] [PubMed]
- Leonidova, A. & Gasser, G. (2014). Chem. Biol. 9, 2180–2193. [DOI] [PubMed]
- Liu, Y., Pak, J. K., Schmutz, P., Bauwens, M., Mertens, J., Knight, H. & Alberto, R. (2006). J. Am. Chem. Soc. 128, 15996–15997. [DOI] [PubMed]
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
- Petkova, E. G., Lampeka, R. D., Gorichko, M. V. & Domasevitch, K. V. (2001). Polyhedron, 20, 747–753.
- Rajendran, T., Manimaran, B., Lee, F.-Y., Lee, G.-H., Peng, S.-M., Wang, C.-C. & Lu, K.-L. (2000). Inorg. Chem. 39, 2016–2017. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Stoe (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.
- Stoe (2001). X-SHAPE and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.
- Zobi, F., Spingler, B. & Alberto, R. (2005a). Dalton Trans. pp. 2859–2865. [DOI] [PubMed]
- Zobi, F., Spingler, B. & Alberto, R. (2005b). ChemBioChem, 6, 1397–1405. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016005235/wm5283sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016005235/wm5283Isup2.hkl
CCDC reference: 1469075
Additional supporting information: crystallographic information; 3D view; checkCIF report



