In the title compound, the hydrogen phosphate anions are linked by O—H⋯O hydrogen bonds into chains parallel to [100]. The inorganic anionic chains and the organic cations are linked by N—H⋯O and N—H⋯N hydrogen bonds, forming a two-dimensional supramolecular network extending parallel to (001).
Keywords: crystal structure, 2-aminoanilinium, hydrogen phosphate, supramolecular network, hydrogen bonds
Abstract
The asymmetric unit of the title compound, 2C6H9N2 +·HPO4 2−, comprises two 2-aminoanilinium cations and one hydrogen phosphate dianion. In the crystal, the HPO4 2− dianions are linked by O—H⋯O hydrogen bonds into chains along [100]. The inorganic anionic chains and organic cations are linked by N—H⋯O and N—H⋯N hydrogen bonds, forming a two-dimensional supramolecular network extending parallel to (001).
Chemical context
Inorganic–organic hybrid compounds are of current interest due to their fascinating architectures and potential applications in crystal engineering and supramolecular chemistry (Singh et al., 2011 ▸; Direm et al., 2015 ▸). Among the explored hybrid compounds, organic phosphates formed as a result of the reaction with inorganic oxy acids such as orthophosphoric acid (H3PO4) and organic amines and amides are particularly interesting. Organic monohydrogen (HPO4
2−) and dihydrogen phosphate (H2PO4
−) compounds provide a class of materials with numerous practical and potential uses in various fields such as biomolecular sciences, catalysis, liquid-crystal-material development, ferroelectrics, non-linear optical and supramolecular studies (Khan et al., 2009 ▸; Evans et al., 2008 ▸; Balamurugan et al., 2010 ▸). Non-covalent interactions, such as hydrogen bonding and other weak interactions, represent the basic set of tools for the construction of elaborate supramolecular architectures of organic or inorganic–organic compounds. In this respect, the potential of monohydrogen and dihydrogen phosphate anions as useful building blocks has been investigated structurally (Shylaja et al., 2008 ▸; Oueslati et al., 2007 ▸; Jagan et al., 2015 ▸; Trojette et al., 1998 ▸; Soumhi & Jouini, 1995 ▸). Here we report the structure and the self-assembled supramolecular architecture exhibited through the formation of O—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds in bis(2-aminoanilinium) hydrogen phosphate.
Structural commentary
The asymmetric unit of the title compound comprises two 2-aminoanilinium cations and one hydrogen phosphate dianion (Fig. 1 ▸). The existence of the hydrogen phosphate anion is confirmed by the P—O bond distances, and the presence of a relevant density peak at a distance from the oxygen atom O1 confirms the hydroxyl group of the anion. The bond distance P1—O1 = 1.561 (2) Å indicates single-bond character, while the bond distances P1—O2 = 1.504 (2), P1—O3 = 1.504 (2) and P1—O4 = 1.497 (2) Å reveal the resonating P—O bonds of the hydrogen phosphate anion. As expected (Rao et al., 2010 ▸; Peng & Zhao, 2010 ▸), in both cations the C—N bond [C1—N1 = 1.450 (3), C7—N3 = 1.450 (4) Å] involving the ammonium group is longer than that in the amine group [C6—N2 = 1.384 (4), C12—N4 = 1.383 (4) Å]. The phenyl rings of the o-phenylenediammonium cations are almost perpendicular to one another [dihedral angle 86.53 (2)°].
Figure 1.
The asymmetric unit of the title compound with displacement ellipsoid drawn at the 40% probability level. The dashed lines represent hydrogen bonds.
Supramolecular features
In the title structure, the hydrogen phosphate anion and 2-aminoanilinium cations possess a number of donor and acceptor sites, which leads to the formation of a variety of hydrogen bonds viz. O—H⋯O, N—H⋯O and N—H⋯N (Table 1 ▸). The O1—H1D⋯O2i hydrogen bond [symmetry code: (i) x + 1, y, z] connects adjacent hydrogen phosphate anions, forming anionic chains extending along [100]. The oxygen atom O3 acts as a trifurcated hydrogen-bond acceptor for the donor nitrogen atom N1 at (x, y, z), (−1 + x, y, z) and (1 − x, 1 − y, 2 − z), forming a one-dimensional supramolecular ladder extending along [100] as shown in Fig. 2 ▸. In the ladder, centrosymmetrically related anions and cations are interlinked through N3—H3C⋯O3, N3—H3A⋯O3i and N3—H3B⋯O3iv [symmetry code: (iv) −x + 1, −y + 1, −z + 2] hydrogen bonds, forming two types of fused rings of
(8) graph-set motif. The association of O—H⋯O hydrogen bonds in the anionic chains with the N—H⋯O hydrogen bonds in the ladder forms heteromeric
(10) hydrogen-bonded motifs. Adjacent ladders are further bridged by N1—H1B⋯O2, N1—H1A⋯O4ii and N1—H1C⋯O4iii [symmetry codes: (ii) −x + 1, −y + 2, −z + 2; (iii) −x, −y + 2, −z + 2] hydrogen bonds, resulting in the formation of a two-dimensional organic–inorganic supramolecular layered network parallel to (001) (Fig. 3 ▸). In the (001) network, the bridging cations make rings of
(10) and
(12) motifs through the three charge-assisted N—H⋯O and the O1—H1D⋯O2i hydrogen bonds. In addition, the N2—H2A⋯O4iii, N1—H1C⋯O4iii and N4—H4B⋯N2v [symmetry codes: (iii) −x, −y + 2, −z + 2; (v) x, −1 + y, z] hydrogen bonds stabilize the (001) network. In the crystal structure (Fig. 4 ▸), adjacent organic–inorganic layers are separated by a distance equal to the length of the c axis.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1—H1D⋯O2i | 0.85 (1) | 1.65 (1) | 2.470 (3) | 164 (4) |
| N3—H3A⋯O3i | 0.90 (2) | 2.06 (2) | 2.928 (3) | 160 (3) |
| N1—H1A⋯O4ii | 0.92 (2) | 1.81 (2) | 2.720 (3) | 171 (3) |
| N1—H1C⋯O4iii | 0.93 (2) | 2.02 (2) | 2.953 (3) | 179 (3) |
| N2—H2A⋯O4iii | 0.92 (2) | 1.99 (2) | 2.904 (4) | 170 (3) |
| N4—H4A⋯O4iv | 0.88 (2) | 2.45 (3) | 3.188 (4) | 142 (3) |
| N3—H3B⋯O3iv | 0.91 (2) | 1.87 (2) | 2.740 (3) | 159 (3) |
| N3—H3C⋯O3 | 0.91 (2) | 1.87 (2) | 2.778 (3) | 176 (3) |
| N1—H1B⋯O2 | 0.92 (2) | 1.83 (2) | 2.734 (3) | 169 (3) |
| N4—H4B⋯N2v | 0.89 (2) | 2.33 (2) | 3.210 (4) | 172 (3) |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
.
Figure 2.
Partial packing diagram of the title compound showing the formation of an organic–inorganic supramolecular ladder through N—H⋯O and O—H⋯O hydrogen bonds extending along [100]. The formation of rings with
(8) and
(10) graph-set motifs is also shown. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.
Figure 3.
Crystal packing of the title compound showing (a) the formation through hydrogen bonds (dashed lines) of an organic–inorganic supramolecular sheet extending parallel to (001) and (b) the (001) network in which red represents the [100] ladder, bridged by the cations (represented in green) through N—H⋯O hydrogen bonds.
Figure 4.
Packing of the title compound, viewed down the a axis, showing the arrangement of the (001) two-dimensional supramolecular networks stacked along the c axis. Dashed lines indicate hydrogen bonds.
Database Survey
A CSD database search (ConQuest 1.17; Groom & Allen, 2014 ▸) showed 48 entries for hydrogen phosphate salts formed with various amino cations. It is interesting to observe that most of the reported structures of hydrogen phosphate salts are hydrated (33 structures) compared to the reported structures of dihydrogen phosphate and phosphate salts. Most of the hydrogen phosphate structures reported contain alkyl cations (Ilioudis et al., 2002 ▸; Mrad et al., 2012 ▸; Li et al., 2010 ▸), in which the alkyl cations encapsulated between chains of hydrogen phosphate are flexible with respect to the nature of the cations, which may induce a change in physical properties (Baouab & Jouini, 1998 ▸). As observed in the title compound, in the crystal structure of 2-aminoanilinium dihydrogen phosphate (CSD refcode: SAYWAQ; Trojette et al., 1998 ▸), the dihydrogen phosphate anions form chains, which are bridged by 2-aminoanilinium cations through N—H⋯O hydrogen bonds, generating a two-dimensional inorganic–organic network. Conversely, in the crystal structure of 1,2-phenylenediammonium bis(dihydrogen phosphate) (ZAYPAQ; Soumhi & Jouini, 1995 ▸), the anions form inorganic sheets interlinked by 1,2-phenylenediammonium cations, thus generating a three-dimensional inorganic–organic framework. This can be attributed to the double protonation of the cations in ZAYPAQ compared to the title compound and SAYWAQ. In the crystal structure of 2-aminoanilinium perchlorate monohydrate (KAJGUY; Raghavaiah et al., 2005 ▸), the 2-aminoanilinium cation, the perchlorate anion and the lattice water molecule assemble into a unique hydrogen-bonded supramolecular framework, forming alternate hydrophobic and hydrophilic zones.
Synthesis and crystallization
The title compound was prepared by dissolving in water o-phenylenediamine and orthophosphoric acid in a 2:1 molar ratio. The resulting mixture was stirred continuously for 3 h with constant heating maintained at 333 K. The solution was then cooled, filtered and kept for crystallization without any disturbance. Good diffraction-quality crystals were obtained after one week.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. The hydrogen atoms associated with the N and O atoms were localized in a difference electron-density map and refined with the N—H and O—H distances constrained to values of 0.90 (2) and 0.85 (1) Å, respectively. All other hydrogen atoms were placed in calculated positions and allowed to ride on their parent atoms, with C—H = 0.93 Å and U iso(H) = 1.2U eq(C).
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | 2C6H9N2 +·HPO4 2− |
| M r | 314.28 |
| Crystal system, space group | Triclinic, P
|
| Temperature (K) | 296 |
| a, b, c (Å) | 4.7613 (7), 10.8925 (17), 15.054 (2) |
| α, β, γ (°) | 107.263 (3), 94.060 (3), 94.549 (3) |
| V (Å3) | 739.6 (2) |
| Z | 2 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.21 |
| Crystal size (mm) | 0.30 × 0.20 × 0.20 |
| Data collection | |
| Diffractometer | Bruker Kappa APEXII CCD Diffractometer |
| Absorption correction | Multi-scan (SADABS; Bruker, 2012 ▸) |
| T min, T max | 0.865, 0.902 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 16948, 2841, 2271 |
| R int | 0.039 |
| (sin θ/λ)max (Å−1) | 0.617 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.052, 0.119, 1.16 |
| No. of reflections | 2841 |
| No. of parameters | 242 |
| No. of restraints | 11 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.49, −0.34 |
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016004709/rz5186sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016004709/rz5186Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989016004709/rz5186Isup3.cml
CCDC reference: 1469440
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors thank Dr Babu Varghese and SAIF, IIT Madras, India, for the data collection.
supplementary crystallographic information
Crystal data
| 2C6H9N2+·HPO42− | Z = 2 |
| Mr = 314.28 | F(000) = 332 |
| Triclinic, P1 | Dx = 1.411 Mg m−3 |
| a = 4.7613 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 10.8925 (17) Å | Cell parameters from 7191 reflections |
| c = 15.054 (2) Å | θ = 2.8–26.1° |
| α = 107.263 (3)° | µ = 0.21 mm−1 |
| β = 94.060 (3)° | T = 296 K |
| γ = 94.549 (3)° | Block, brown |
| V = 739.6 (2) Å3 | 0.30 × 0.20 × 0.20 mm |
Data collection
| Bruker Kappa APEXII CCD Diffractometer | 2271 reflections with I > 2σ(I) |
| ω and φ scan | Rint = 0.039 |
| Absorption correction: multi-scan (SADABS; Bruker, 2012) | θmax = 26.0°, θmin = 2.0° |
| Tmin = 0.865, Tmax = 0.902 | h = −5→5 |
| 16948 measured reflections | k = −13→13 |
| 2841 independent reflections | l = −18→18 |
Refinement
| Refinement on F2 | 11 restraints |
| Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
| R[F2 > 2σ(F2)] = 0.052 | w = 1/[σ2(Fo2) + (0.0318P)2 + 0.8089P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.119 | (Δ/σ)max < 0.001 |
| S = 1.16 | Δρmax = 0.49 e Å−3 |
| 2841 reflections | Δρmin = −0.34 e Å−3 |
| 242 parameters |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.0716 (5) | 0.9348 (3) | 0.75677 (17) | 0.0294 (6) | |
| C2 | 0.2315 (7) | 0.8319 (3) | 0.7246 (2) | 0.0430 (7) | |
| H2 | 0.3277 | 0.7991 | 0.7669 | 0.042 (9)* | |
| C3 | 0.2477 (8) | 0.7789 (4) | 0.6308 (2) | 0.0589 (10) | |
| H3 | 0.3532 | 0.7097 | 0.6090 | 0.068 (11)* | |
| C4 | 0.1069 (8) | 0.8290 (4) | 0.5698 (2) | 0.0618 (10) | |
| H4 | 0.1203 | 0.7942 | 0.5061 | 0.082 (13)* | |
| C5 | −0.0531 (7) | 0.9289 (4) | 0.6000 (2) | 0.0546 (9) | |
| H5 | −0.1503 | 0.9597 | 0.5566 | 0.059 (10)* | |
| C6 | −0.0730 (6) | 0.9859 (3) | 0.6957 (2) | 0.0375 (7) | |
| N1 | 0.0743 (5) | 0.9908 (2) | 0.85708 (15) | 0.0290 (5) | |
| H1A | 0.238 (5) | 1.046 (3) | 0.881 (2) | 0.060 (10)* | |
| H1B | 0.079 (6) | 0.928 (2) | 0.8862 (19) | 0.039 (8)* | |
| H1C | −0.080 (5) | 1.037 (3) | 0.8734 (19) | 0.040 (8)* | |
| N2 | −0.2164 (6) | 1.0939 (3) | 0.7268 (2) | 0.0492 (7) | |
| H2A | −0.300 (7) | 1.106 (3) | 0.7814 (17) | 0.064 (11)* | |
| H2B | −0.337 (7) | 1.100 (4) | 0.680 (2) | 0.071 (12)* | |
| C7 | 0.6532 (6) | 0.4711 (3) | 0.79919 (19) | 0.0321 (6) | |
| C8 | 0.7961 (7) | 0.5283 (3) | 0.7439 (2) | 0.0493 (8) | |
| H8 | 0.9487 | 0.5905 | 0.7699 | 0.049 (9)* | |
| C9 | 0.7133 (9) | 0.4933 (4) | 0.6491 (3) | 0.0683 (11) | |
| H9 | 0.8085 | 0.5322 | 0.6110 | 0.076 (12)* | |
| C10 | 0.4896 (9) | 0.4008 (4) | 0.6120 (3) | 0.0694 (12) | |
| H10 | 0.4328 | 0.3768 | 0.5483 | 0.071 (11)* | |
| C11 | 0.3490 (8) | 0.3432 (3) | 0.6677 (2) | 0.0551 (9) | |
| H11 | 0.1989 | 0.2799 | 0.6410 | 0.061 (11)* | |
| C12 | 0.4257 (6) | 0.3773 (3) | 0.7630 (2) | 0.0371 (7) | |
| N3 | 0.7285 (5) | 0.5133 (2) | 0.89942 (16) | 0.0321 (5) | |
| H3A | 0.895 (5) | 0.564 (3) | 0.917 (2) | 0.052 (10)* | |
| H3B | 0.745 (6) | 0.449 (2) | 0.9267 (19) | 0.043 (9)* | |
| H3C | 0.588 (5) | 0.558 (3) | 0.926 (2) | 0.046 (9)* | |
| N4 | 0.2718 (6) | 0.3266 (3) | 0.8209 (2) | 0.0508 (7) | |
| H4A | 0.372 (7) | 0.311 (4) | 0.867 (2) | 0.076 (13)* | |
| H4B | 0.135 (6) | 0.266 (3) | 0.790 (2) | 0.065 (11)* | |
| O1 | 0.5217 (4) | 0.8037 (2) | 0.92225 (14) | 0.0429 (5) | |
| H1D | 0.692 (3) | 0.799 (3) | 0.940 (2) | 0.064 (11)* | |
| O2 | 0.0401 (4) | 0.8199 (2) | 0.95819 (16) | 0.0524 (6) | |
| O3 | 0.2896 (5) | 0.63962 (19) | 0.98533 (15) | 0.0475 (6) | |
| O4 | 0.4165 (4) | 0.86357 (19) | 1.08978 (13) | 0.0407 (5) | |
| P1 | 0.31296 (13) | 0.78084 (6) | 0.99259 (5) | 0.02434 (19) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0285 (14) | 0.0316 (15) | 0.0257 (13) | −0.0056 (11) | 0.0010 (11) | 0.0076 (11) |
| C2 | 0.0474 (18) | 0.0450 (18) | 0.0349 (16) | 0.0065 (15) | 0.0069 (14) | 0.0084 (14) |
| C3 | 0.067 (2) | 0.059 (2) | 0.045 (2) | 0.0181 (19) | 0.0133 (17) | 0.0015 (17) |
| C4 | 0.065 (2) | 0.080 (3) | 0.0335 (19) | 0.011 (2) | 0.0065 (16) | 0.0061 (18) |
| C5 | 0.051 (2) | 0.081 (3) | 0.0347 (17) | 0.0056 (19) | −0.0001 (15) | 0.0248 (18) |
| C6 | 0.0325 (16) | 0.0440 (17) | 0.0370 (16) | −0.0026 (13) | 0.0014 (12) | 0.0161 (13) |
| N1 | 0.0293 (13) | 0.0301 (13) | 0.0267 (12) | 0.0017 (10) | 0.0011 (10) | 0.0080 (10) |
| N2 | 0.0471 (17) | 0.0611 (18) | 0.0478 (17) | 0.0145 (14) | 0.0051 (14) | 0.0270 (15) |
| C7 | 0.0321 (15) | 0.0303 (15) | 0.0350 (15) | 0.0118 (12) | 0.0032 (12) | 0.0093 (12) |
| C8 | 0.0430 (19) | 0.059 (2) | 0.051 (2) | 0.0094 (17) | 0.0126 (15) | 0.0215 (17) |
| C9 | 0.069 (3) | 0.100 (3) | 0.053 (2) | 0.029 (2) | 0.025 (2) | 0.039 (2) |
| C10 | 0.075 (3) | 0.098 (3) | 0.035 (2) | 0.034 (3) | 0.0019 (19) | 0.015 (2) |
| C11 | 0.060 (2) | 0.053 (2) | 0.0439 (19) | 0.0135 (18) | −0.0113 (17) | 0.0038 (16) |
| C12 | 0.0409 (17) | 0.0309 (15) | 0.0377 (16) | 0.0121 (13) | −0.0036 (13) | 0.0075 (12) |
| N3 | 0.0308 (14) | 0.0290 (13) | 0.0353 (13) | 0.0021 (11) | 0.0013 (10) | 0.0083 (11) |
| N4 | 0.0484 (17) | 0.0438 (17) | 0.0583 (19) | −0.0114 (14) | −0.0164 (15) | 0.0215 (15) |
| O1 | 0.0187 (10) | 0.0748 (16) | 0.0457 (12) | 0.0028 (10) | 0.0043 (9) | 0.0346 (11) |
| O2 | 0.0195 (10) | 0.0860 (18) | 0.0641 (15) | 0.0096 (10) | 0.0061 (9) | 0.0404 (13) |
| O3 | 0.0651 (15) | 0.0264 (11) | 0.0524 (13) | 0.0050 (10) | 0.0176 (11) | 0.0115 (9) |
| O4 | 0.0401 (11) | 0.0419 (12) | 0.0329 (11) | −0.0036 (9) | 0.0010 (9) | 0.0031 (9) |
| P1 | 0.0160 (3) | 0.0270 (4) | 0.0319 (4) | 0.0021 (2) | 0.0026 (2) | 0.0116 (3) |
Geometric parameters (Å, º)
| C1—C6 | 1.380 (4) | C8—C9 | 1.382 (5) |
| C1—C2 | 1.391 (4) | C8—H8 | 0.9300 |
| C1—N1 | 1.450 (3) | C9—C10 | 1.369 (6) |
| C2—C3 | 1.368 (4) | C9—H9 | 0.9300 |
| C2—H2 | 0.9300 | C10—C11 | 1.367 (5) |
| C3—C4 | 1.363 (5) | C10—H10 | 0.9300 |
| C3—H3 | 0.9300 | C11—C12 | 1.385 (4) |
| C4—C5 | 1.363 (5) | C11—H11 | 0.9300 |
| C4—H4 | 0.9300 | C12—N4 | 1.383 (4) |
| C5—C6 | 1.403 (4) | N3—H3A | 0.902 (18) |
| C5—H5 | 0.9300 | N3—H3B | 0.913 (18) |
| C6—N2 | 1.384 (4) | N3—H3C | 0.906 (18) |
| N1—H1A | 0.923 (19) | N4—H4A | 0.880 (19) |
| N1—H1B | 0.915 (17) | N4—H4B | 0.885 (19) |
| N1—H1C | 0.931 (17) | O1—P1 | 1.561 (2) |
| N2—H2A | 0.919 (18) | O1—H1D | 0.846 (10) |
| N2—H2B | 0.901 (19) | O2—P1 | 1.504 (2) |
| C7—C8 | 1.366 (4) | O3—P1 | 1.504 (2) |
| C7—C12 | 1.387 (4) | O4—P1 | 1.497 (2) |
| C7—N3 | 1.450 (4) | ||
| C6—C1—C2 | 121.3 (3) | C7—C8—H8 | 120.1 |
| C6—C1—N1 | 121.2 (2) | C9—C8—H8 | 120.1 |
| C2—C1—N1 | 117.5 (2) | C10—C9—C8 | 119.3 (4) |
| C3—C2—C1 | 120.2 (3) | C10—C9—H9 | 120.4 |
| C3—C2—H2 | 119.9 | C8—C9—H9 | 120.4 |
| C1—C2—H2 | 119.9 | C11—C10—C9 | 120.6 (3) |
| C4—C3—C2 | 119.0 (3) | C11—C10—H10 | 119.7 |
| C4—C3—H3 | 120.5 | C9—C10—H10 | 119.7 |
| C2—C3—H3 | 120.5 | C10—C11—C12 | 121.3 (4) |
| C5—C4—C3 | 121.6 (3) | C10—C11—H11 | 119.3 |
| C5—C4—H4 | 119.2 | C12—C11—H11 | 119.3 |
| C3—C4—H4 | 119.2 | N4—C12—C11 | 121.7 (3) |
| C4—C5—C6 | 120.8 (3) | N4—C12—C7 | 121.0 (3) |
| C4—C5—H5 | 119.6 | C11—C12—C7 | 117.1 (3) |
| C6—C5—H5 | 119.6 | C7—N3—H3A | 113 (2) |
| C1—C6—N2 | 121.9 (3) | C7—N3—H3B | 116.0 (19) |
| C1—C6—C5 | 117.1 (3) | H3A—N3—H3B | 105 (3) |
| N2—C6—C5 | 120.8 (3) | C7—N3—H3C | 107 (2) |
| C1—N1—H1A | 110 (2) | H3A—N3—H3C | 110 (3) |
| C1—N1—H1B | 110.7 (19) | H3B—N3—H3C | 105 (3) |
| H1A—N1—H1B | 105 (3) | C12—N4—H4A | 116 (3) |
| C1—N1—H1C | 112.3 (18) | C12—N4—H4B | 113 (2) |
| H1A—N1—H1C | 109 (3) | H4A—N4—H4B | 116 (4) |
| H1B—N1—H1C | 110 (3) | P1—O1—H1D | 113 (2) |
| C6—N2—H2A | 118 (2) | O4—P1—O2 | 111.69 (13) |
| C6—N2—H2B | 110 (2) | O4—P1—O3 | 111.37 (12) |
| H2A—N2—H2B | 112 (3) | O2—P1—O3 | 111.93 (14) |
| C8—C7—C12 | 121.9 (3) | O4—P1—O1 | 110.20 (12) |
| C8—C7—N3 | 119.8 (3) | O2—P1—O1 | 103.14 (11) |
| C12—C7—N3 | 118.2 (3) | O3—P1—O1 | 108.14 (12) |
| C7—C8—C9 | 119.8 (4) | ||
| C6—C1—C2—C3 | −0.1 (5) | C12—C7—C8—C9 | 0.4 (5) |
| N1—C1—C2—C3 | −177.0 (3) | N3—C7—C8—C9 | −176.2 (3) |
| C1—C2—C3—C4 | 0.5 (5) | C7—C8—C9—C10 | −0.5 (5) |
| C2—C3—C4—C5 | −1.1 (6) | C8—C9—C10—C11 | 0.0 (6) |
| C3—C4—C5—C6 | 1.5 (6) | C9—C10—C11—C12 | 0.7 (6) |
| C2—C1—C6—N2 | −175.3 (3) | C10—C11—C12—N4 | 175.2 (3) |
| N1—C1—C6—N2 | 1.4 (4) | C10—C11—C12—C7 | −0.8 (5) |
| C2—C1—C6—C5 | 0.4 (4) | C8—C7—C12—N4 | −175.7 (3) |
| N1—C1—C6—C5 | 177.2 (3) | N3—C7—C12—N4 | 0.9 (4) |
| C4—C5—C6—C1 | −1.1 (5) | C8—C7—C12—C11 | 0.3 (4) |
| C4—C5—C6—N2 | 174.7 (3) | N3—C7—C12—C11 | 176.9 (2) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1D···O2i | 0.85 (1) | 1.65 (1) | 2.470 (3) | 164 (4) |
| N3—H3A···O3i | 0.90 (2) | 2.06 (2) | 2.928 (3) | 160 (3) |
| N1—H1A···O4ii | 0.92 (2) | 1.81 (2) | 2.720 (3) | 171 (3) |
| N1—H1C···O4iii | 0.93 (2) | 2.02 (2) | 2.953 (3) | 179 (3) |
| N2—H2A···O4iii | 0.92 (2) | 1.99 (2) | 2.904 (4) | 170 (3) |
| N4—H4A···O4iv | 0.88 (2) | 2.45 (3) | 3.188 (4) | 142 (3) |
| N3—H3B···O3iv | 0.91 (2) | 1.87 (2) | 2.740 (3) | 159 (3) |
| N3—H3C···O3 | 0.91 (2) | 1.87 (2) | 2.778 (3) | 176 (3) |
| N1—H1B···O2 | 0.92 (2) | 1.83 (2) | 2.734 (3) | 169 (3) |
| N4—H4B···N2v | 0.89 (2) | 2.33 (2) | 3.210 (4) | 172 (3) |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+2, −z+2; (iii) −x, −y+2, −z+2; (iv) −x+1, −y+1, −z+2; (v) x, y−1, z.
References
- Balamurugan, P., Jagan, R. & Sivakumar, K. (2010). Acta Cryst. C66, o109–o113. [DOI] [PMC free article] [PubMed]
- Baouab, L. & Jouini, A. (1998). J. Solid State Chem. 141, 343–351.
- Bruker (2012). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Direm, A., Altomare, A., Moliterni, A. & Benali-Cherif, N. (2015). Acta Cryst. B71, 427–436. [DOI] [PubMed]
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
- Ilioudis, C. A., Georganopoulou, D. G. & Steed, J. W. (2002). CrystEngComm, 4, 26–36.
- Jagan, R., Sathya, D. & Sivakumar, K. (2015). Acta Cryst. C71, 374–380. [DOI] [PubMed]
- Khan, M. I., Nome, R. C., Deb, S., McNeely, J. H., Cage, B. & Doedens, R. J. (2009). Cryst. Growth Des. 9, 2848–2852.
- Li, X.-M., Feng, S.-S., Wang, F., Ma, Q. & Zhu, M.-L. (2010). Acta Cryst. E66, o239–o240. [DOI] [PMC free article] [PubMed]
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mrad, M. L., Zeller, M., Hernandez, K. J., Rzaigui, M. & Ben Nasr, C. (2012). Acta Cryst. E68, o3257–o3258. [DOI] [PMC free article] [PubMed]
- Oueslati, A., Kefi, R., Ben Nasr, C. & Lefebvre, F. (2007). J. Mol. Struct. 871, 49–58.
- Peng, R. & Zhao, Y. (2010). Acta Cryst. E66, o3235. [DOI] [PMC free article] [PubMed]
- Evans, I. R., Howard, J. A. K. & Evans, J. S. O. (2008). Cryst. Growth Des. 8, 1635–1639.
- Raghavaiah, P., Supriya, S. & Das, S. K. (2005). CrystEngComm, 7, 167–170.
- Rao, A. S., Tripuramallu, B. K., Ravada, K. & Das, S. K. (2010). Acta Cryst. E66, o1945. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Shylaja, S., Mahendra, K. N., Varma, K. B. R., Narasimhamurthy, T. & Rathore, R. S. (2008). Acta Cryst. C64, o361–o363. [DOI] [PubMed]
- Singh, U. P., Kashyap, S., Singh, H. J. & Butcher, R. J. (2011). CrystEngComm, 13, 4110–4120.
- Soumhi, E. H. & Jouini, T. (1995). Acta Cryst. C51, 1883–1885.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Trojette, B., Hajem, A. A., Driss, A. & Jouini, T. (1998). Acta Cryst. C54, 1867–1869. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016004709/rz5186sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016004709/rz5186Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989016004709/rz5186Isup3.cml
CCDC reference: 1469440
Additional supporting information: crystallographic information; 3D view; checkCIF report





