Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Mar 31;72(Pt 4):563–569. doi: 10.1107/S2056989016004722

4-[(1-Benzyl-1H-1,2,3-triazol-4-yl)meth­oxy]benzene-1,2-dicarbo­nitrile: crystal structure, Hirshfeld surface analysis and energy-minimization calculations

Norzianah Shamsudin a, Ai Ling Tan a, David J Young b,, Mukesh M Jotani c, A Otero-de-la-Roza d,e, Edward R T Tiekink f,*
PMCID: PMC4910342  PMID: 27375890

The terminal rings in the title compound have an anti disposition in contrast to a syn conformation calculated in the energy-minimized structure. Supra­molecular layers in the ab plane and sustained by methyl­ene-C—H⋯N(triazol­yl) and carbo­nitrile-N⋯π(benzene) inter­actions feature in the mol­ecular packing.

Keywords: crystal structure, triazol­yl, conformation, DFT, Hirshfeld surface

Abstract

In the solid state, the title compound, C18H13N5O, adopts a conformation whereby the phenyl ring and meth­oxy–benzene-1,2-dicarbo­nitrile residue (r.m.s. deviation of the 12 non-H atoms = 0.041 Å) lie to opposite sides of the central triazolyl ring, forming dihedral angles of 79.30 (13) and 64.59 (10)°, respectively; the dihedral angle between the outer rings is 14.88 (9)°. This conformation is nearly 7 kcal mol−1 higher in energy than the energy-minimized structure which has a syn disposition of the outer rings, enabling intra­molecular π–π inter­actions. In the crystal, methyl­ene-C—H⋯N(triazol­yl) and carbo­nitrile-N⋯π(benzene) inter­actions lead to supra­molecular chains along the a axis. Supra­molecular layers in the ab plane arise as the chains are connected by benzene-C—H⋯N(carbo­nitrile) inter­actions; layers stack with no directional inter­actions between them. The specified inter­molecular contacts along with other, weaker contributions to the supra­molecular stabilization are analysed in a Hirshfeld surface analysis.

Chemical context  

We have previously reported the crystal structure of bis­[(phen­yl­methanamine-κN)-(phthalocyaninato-κ4 N)zinc] phenyl­methanamine tris­olvate (Shamsudin et al., 2015) for use as a light-harvesting dye in dye-sensitized solar cells (DSSCs) (Kitamura et al., 2004, Nazeeruddin et al., 2001). Benzyl­amine was investigated as a solvent to assist coating TiO2 nanoparticles with the highly insoluble zinc phthalocyanine. Another strategy for solubilizing phthalocyanine dyes is to append solubilizing groups to these large, aromatic structures (Mack et al., 2006). Phthalocyanines are somewhat unreactive and so this is most easily done by modifying the precursor phthalo­nitriles. Unsymmetrical phthalocyanines (e.g. tetra- rather than octa-substituted) can yield constitutional isomers, but are more soluble (Eberhart & Hanack, 1997) and have a greater dipole moment which can make attractive mol­ecules for non-linear optical applications (Tian et al., 1997). A particularly versatile and reliable reaction for the synthesis of analogues is the azide-alkyne Huisgen cyclo­addition – the best known and most widely used reaction in the ‘click chemistry’ stable (Kolb et al., 2001). We therefore prepared 3-(prop-2-yn-1-yl­oxy)phthalo­nitrile by the SNAr reaction of propagyl alcohol and 4-nitro­phthalo­nitrile (Jan et al., 2013) and used this as a precursor for the synthesis of the title mol­ecule (I), the structure of which is described herein along with a Hirshfeld surface analysis and the results of energy-minimization calculations.graphic file with name e-72-00563-scheme1.jpg

Structural commentary  

The central five-membered triazolyl ring in (I), Fig. 1, is strictly planar with the r.m.s. deviation for the five atoms being 0.003 Å. The phenyl ring of the N-bound benzyl group is almost perpendicular to this plane, forming a dihedral angle of 79.30 (13)°. The 12 atoms comprising the meth­oxy–benzene-1,2-dicarbo­nitrile residue are almost co-planar with a r.m.s. deviation of 0.041 Å; the maximum and minimum deviations are −0.085 (2) and 0.038 (2) Å for atoms C10 and C12, respectively. Within the triazolyl ring, the N2—N3 and C1—C2 bond lengths of 1.322 (3) and 1.367 (3) Å, respectively, are consistent with considerable double-bond character in each of these bonds, i.e. consistent with the electronic structure shown in the Scheme. The meth­oxy–benzene-1,2-dicarbo­nitrile residue lies to the opposite side of the central ring to the benzyl residue and forms a dihedral angle of 64.59 (10)° with the triazolyl ring. The overall shape of the mol­ecule is thus best described as a step with a dihedral angle between the outer rings of 14.62 (12)°, consistent with these groups being approximately parallel.

Figure 1.

Figure 1

The mol­ecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Supra­molecular features  

The mol­ecular packing in the crystal leads to supra­molecular chains along the a axis, formed through the agency of methyl­ene-C10—H⋯N3(triazol­yl) inter­actions involving both methyl­ene-H atoms, which both link to N3 (Table 1). Encompassed within the chains are carbo­nitrile-N5⋯π(benzene) inter­actions, Table 1. The chains are connected into supra­molecular layers in the ab plane by benzene-C12—H⋯N4(carbo­nitrile) inter­actions across a centre of inversion so that ten-membered {⋯HC3N}2 synthons are formed, Fig. 2 and Table 1. Layers inter-digitate along the c axis but do not form contacts within the standard distance criteria (Spek, 2009), Fig. 3.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯N3i 0.99 2.50 3.468 (3) 167
C10—H10B⋯N3ii 0.99 2.53 3.477 (3) 161
C12—H12⋯N4iii 0.95 2.47 3.353 (3) 155
C18—N5⋯Cg1iv 1.15 (1) 3.81 (1) 3.853 (2) 83 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

A view of the supra­molecular layer in the ab plane in (I). The layer is sustained by C—H⋯N and C—H⋯N inter­actions shown as orange and purple dashed lines, respectively.

Figure 3.

Figure 3

Unit cell contents for (I) shown in projection down the a axis, showing the stacking of layers. The C—H⋯N inter­actions are shown as orange dashed lines.

Hirshfeld surface analysis  

The program Crystal Explorer 3.1 (Wolff et al., 2012) was used to generate Hirshfeld surfaces mapped over d norm, d e, curvedness and electrostatic potential. The electrostatic potential was calculated with TONTO (Spackman et al., 2008; Jayatilaka et al., 2005), integrated in Crystal Explorer, using the experimental geometry as the input. The electrostatic potentials were mapped on the Hirshfeld surface using the STO-3G basis set at the Hartree–Fock level of theory over a range ±0.075 au. The contact distances d i and d e from the Hirshfeld surface to the nearest atom inside and outside, respectively, enables the analysis of the inter­molecular inter­actions through the mapping of d norm. The combination of d e and d i in the form of a two-dimensional fingerprint plot (Rohl et al., 2008) provides a summary of the inter­molecular contacts in the crystal.

The inter­molecular inter­actions of the C—H⋯N type involving triazolyl-N3 and carbo­nitrile-N4 atoms as hydrogen-bond acceptors, and the H10A, H10B and H12 hydrogen atoms as donors dominate the mol­ecular packing. These inter­actions are easily recognized as bright-red spots, and are designated as 1, 2 and 3 in a square box, respectively, on the Hirshfeld surface mapped with d norm in Fig. 4. The surface mapped with electrostatic potential, Fig. 5, highlights these inter­actions as blue and red regions corresponding to positive (donor) and negative (acceptor) electrostatic potentials. The presence of such dominating inter­actions are also evident from the two dimensional fingerprint (FP) plots, Fig. 6; relative contributions to the overall surface are given in Table 2.

Figure 4.

Figure 4

Two views of the Hirshfeld surfaces for (I) mapped over d norm.

Figure 5.

Figure 5

Hirshfeld surface for (I) mapped over the electrostatic potential.

Figure 6.

Figure 6

The two-dimensional fingerprint plots for (I): (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, and (d) N⋯H/H⋯N inter­actions.

Table 2. Percentage contribution of the different inter­molecular inter­actions to the Hirshfeld surface of (I) .

Contact %
H⋯H 24.7
N⋯H/H⋯N 35.7
C⋯H/H⋯C 25.8
C⋯C 3.7
C⋯N 3.5
O⋯H/H⋯O 3.2
C⋯O 2.7
N⋯N 0.7

The prominent pair of sharp spikes of equal lengths (d e + d i ∼ 2.25 Å) in the FP plot delineated into N⋯H/H⋯N contacts, Fig. 6 d, with a significant contribution to the overall Hirshfeld surface, i.e. 35.7% from N⋯H/H⋯N contacts, and the distinct pair of wings corresponding to C⋯H/H⋯C contacts, Fig. 6 c, with a 25.8% contribution, combined, have a greater effect on the mol­ecular packing than the dispersive H⋯H contacts, Fig. 6 b. The diminutive red spots on the surface mapped with d norm, designated as 4 in a square box of Fig. 4, at the phenyl-C9 and methyl­ene-H3B atoms, reflect the presence of short inter­molecular C⋯H contacts [C9⋯H3B i = 2.79 Å for symmetry code: (i) −1 + x, y, z]. The short intra­molecular H⋯H contact between the benzene-H16 and O-methyl­ene-H10A atoms (H10A⋯H16 = 2.09 Å) can be recognized from two neighbouring blue regions on the surface mapped with electrostatic potential in Fig. 5.

The presence of a comparatively weak C—N⋯π inter­action can be viewed from the negative potential around the carbo­nitrile-N5 atom (red region) and the light-blue region around the phenyl ring in Fig. 5; the strength of this inter­action is qu­anti­fied as 3.7 and 3.5% relative contribution from C⋯C and C⋯N contacts to the surface. The small flat segments delineated by a blue outline in the surface mapped with curvedness, Fig. 7, and the small contribution from C⋯C contacts, i.e. 3.5%, to the surface is consistent with the absence of significant π–π stacking inter­actions in the structure.

Figure 7.

Figure 7

Hirshfeld surface for (I) mapped over curvedness.

Database survey  

There are four closely related structures to (I) in the crystallographic literature (Groom & Allen, 2014). The chemical structures of (II)–(V) are shown in Scheme 2, salient dihedral angles are given in Table 3 and a comparison between mol­ecules is shown in Fig. 8. The similarity in the structures is seen in the relationship between the central triazolyl ring and pendent phenyl rings. By contrast to the conformation observed in (I), which was described above as anti with respect to the relative orientation of the N- and C-bound residues to the central ring, a syn disposition is observed in each of (II) (Rostovtsev et al., 2002), (III) (Garcia et al., 2011) and (IV) (López-Ruiz et al., 2013). A similar but somewhat flattened syn relationship is observed in (V) (López-Ruiz et al., 2013) for which an intra­molecular O⋯N contact of 2.745 (3) Å is noted between the ether-O and benzoxazole-N atoms. The difference in structures prompted energy-minimization calculations.graphic file with name e-72-00563-scheme2.jpg

Table 3. Dihedral angle (°) data for (I) and related literature structuresa .

Structure Triazol­yl/benz­yl-phen­yl Triazol­yl/O-benzene Benzyl-phen­yl/O-benzene CSD refcodeb Reference
(I) 79.30 (13) 64.59 (10) 14.88 (9) This work
(II) 77.89 (6) 56.69 (4) 85.82 (5) CAKSAJ Rostovtsev et al. (2002)
(III) 79.63 (5) 59.36 95) 85.56 (6) BEDREJ Garcia et al. (2011)
(IV) 79.16 (10) 59.57 (11) 84.25 (10) CIGRUH López-Ruiz et al. (2013)
(V) 82.03 (9) 26.57 (9) 83.63 (8) CIGRER López-Ruiz et al. (2013)

Notes: (a) See Scheme 2 for chemical structures; (b) Groom & Allen (2014).

Figure 8.

Figure 8

Two views of the different conformations in (I) red image, (II) blue, (III) green, (IV) aqua and (V) pink. The mol­ecules have been overlapped so that the central rings are coincident.

Energy-minimization calculations  

The structure of (I) was subjected to energy-minimization calculations with Density-Functional Theory (DFT) using the LC-wPBE functional (Vydrov & Scuseria, 2006; Vydrov et al., 2006), as implemented in the Gaussian program (Frisch et al., 2009), and the exchange-hole dipole moment (XDM) dispersion correction (Becke & Johnson, 2007; Otero-de-la-Roza & Johnson, 2013) with the 6-31+G* basis set. Fig. 9 shows an energy profile as the 1,2-dicarbo­nitrile residue is rotated (30° steps) about the O—C bond with respect to the rest of the mol­ecule. The energy profile shown in Fig. 9 reveals the observed anti conformation of (I) is in fact a high-energy conformation, being nearly 7 kcal mol−1 higher in energy than the low-energy conformation which, as shown in Fig. 10, has a syn conformation of the aromatic rings. In the energy-minimized structure, the dihedral angles between the five-membered ring and the di­nitrile- and benzyl-benzene rings are 73.6 and 85.2°, respectively, i.e. differing by ca 9 and 6°, respectively, from the comparable angles in the experimental structure. The dihedral angles between the aromatic rings is 23.4°. While the dihedral angles do not differ significantly between the experimental and gas-phase, energy-minimized structures, the relative conformations are quite distinct. The syn orientation of the terminal rings is most likely stabilized by intra­molecular π–π inter­actions, the shortest intra­molecular C⋯C contact between rings being 3.62 Å. The adoption of a different conformation in the experimental structure no doubt relates to the dictates of global crystal packing considerations.

Figure 9.

Figure 9

Energy profile (kcal mol−1) for conformations of (I) differing by a rotation (30° steps) about the O—C bond.

Figure 10.

Figure 10

Overlay diagram of the experimental (red image) and energy-minimized (blue) structures of (I). The mol­ecules have been overlapped so that the five-membered rings are coincident.

Synthesis and crystallization  

3-(Prop-2-yn-1-yl­oxy)phthalo­nitrile (Jan et al., 2013; 0.10 g, 0.55 mmol), CuSO4 (0.032 g), sodium ascorbate (0.13 g) and benzyl azide (0.074 g) were dissolved in 75% aqueous acetone (20 ml) and stirred for 48 h at room temperature. The reaction was poured into ice–water and the resulting off-white solid was collected by vacuum filtration and was recrystallized as light-brown prisms from a solvent mixture of di­chloro­methane and hexane (0.082 g, 47.5%). M.p.: 397–399 K. IR (ν) 3200 m (ArH), 3050 m (ArH), 2226 m (C≡N), 1600 s (C=C, Ar). [M+.] m/z 315.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 4. Carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with U iso(H) set to 1.2U eq(C).

Table 4. Experimental details.

Crystal data
Chemical formula C18H13N5O
M r 315.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 5.2454 (5), 15.3860 (14), 19.042 (3)
β (°) 90.927 (10)
V3) 1536.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.35 × 0.10 × 0.10
 
Data collection
Diffractometer Agilent Technologies SuperNova Dual diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012)
T min, T max 0.588, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15856, 3527, 2099
R int 0.080
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.057, 0.136, 1.07
No. of reflections 3527
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.25

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016004722/hb7573sup1.cif

e-72-00563-sup1.cif (547.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016004722/hb7573Isup2.hkl

e-72-00563-Isup2.hkl (281.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016004722/hb7573Isup3.cml

CCDC reference: 1469592

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the financial support from the Brunei Research Council (BRC) Science and Technology grant (S&T17). AOR thanks the Spanish Malta/Consolider initiative (No. CSD2007-00045) and Alberta Innovates Technology Futures (AITF) for funding. Intensity data were provided by the University of Malaya Crystallographic Laboratory.

supplementary crystallographic information

Crystal data

C18H13N5O F(000) = 656
Mr = 315.33 Dx = 1.363 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 5.2454 (5) Å Cell parameters from 1806 reflections
b = 15.3860 (14) Å θ = 2.5–27.5°
c = 19.042 (3) Å µ = 0.09 mm1
β = 90.927 (10)° T = 100 K
V = 1536.6 (3) Å3 Prism, light-brown
Z = 4 0.35 × 0.10 × 0.10 mm

Data collection

Agilent Technologies SuperNova Dual diffractometer with an Atlas detector 3527 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2099 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.080
Detector resolution: 10.4041 pixels mm-1 θmax = 27.5°, θmin = 2.5°
ω scan h = −6→6
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −19→19
Tmin = 0.588, Tmax = 1.000 l = −24→21
15856 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057 H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0342P)2 + 0.5378P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
3527 reflections Δρmax = 0.26 e Å3
217 parameters Δρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3153 (3) 0.69488 (10) 0.54542 (9) 0.0262 (4)
N1 0.5641 (4) 0.50248 (12) 0.70174 (11) 0.0233 (5)
N2 0.7432 (4) 0.49329 (13) 0.65250 (12) 0.0294 (5)
N3 0.6509 (4) 0.52816 (13) 0.59396 (11) 0.0279 (5)
N4 0.7655 (4) 1.01212 (13) 0.44279 (12) 0.0312 (5)
N5 1.2066 (4) 0.86108 (14) 0.33358 (13) 0.0342 (6)
C1 0.3561 (4) 0.54262 (15) 0.67500 (14) 0.0251 (6)
H1 0.2032 0.5564 0.6987 0.030*
C2 0.4125 (4) 0.55919 (14) 0.60643 (13) 0.0216 (5)
C3 0.6072 (5) 0.46954 (16) 0.77327 (14) 0.0282 (6)
H3A 0.5691 0.5162 0.8073 0.034*
H3B 0.7892 0.4537 0.7794 0.034*
C4 0.4444 (4) 0.39128 (15) 0.78895 (13) 0.0234 (5)
C5 0.4866 (4) 0.31288 (15) 0.75402 (14) 0.0294 (6)
H5 0.6186 0.3087 0.7206 0.035*
C6 0.3363 (5) 0.24131 (16) 0.76800 (15) 0.0330 (7)
H6 0.3662 0.1880 0.7444 0.040*
C7 0.1427 (5) 0.24702 (17) 0.81622 (15) 0.0329 (7)
H7 0.0388 0.1979 0.8254 0.040*
C8 0.1008 (5) 0.32439 (16) 0.85111 (14) 0.0312 (6)
H8 −0.0313 0.3282 0.8845 0.037*
C9 0.2511 (4) 0.39631 (16) 0.83744 (14) 0.0273 (6)
H9 0.2213 0.4494 0.8615 0.033*
C10 0.2539 (4) 0.60336 (14) 0.55118 (13) 0.0240 (6)
H10A 0.2818 0.5747 0.5054 0.029*
H10B 0.0714 0.5970 0.5626 0.029*
C11 0.5055 (4) 0.72062 (15) 0.50218 (13) 0.0224 (5)
C12 0.5349 (4) 0.81069 (15) 0.49807 (13) 0.0227 (5)
H12 0.4294 0.8480 0.5248 0.027*
C13 0.7180 (4) 0.84514 (14) 0.45502 (13) 0.0224 (5)
C14 0.8748 (4) 0.79094 (15) 0.41502 (13) 0.0227 (5)
C15 0.8425 (4) 0.70107 (15) 0.41989 (13) 0.0254 (6)
H15 0.9464 0.6635 0.3929 0.031*
C16 0.6609 (4) 0.66612 (15) 0.46354 (13) 0.0236 (5)
H16 0.6425 0.6049 0.4671 0.028*
C17 0.7433 (4) 0.93813 (16) 0.44910 (13) 0.0240 (6)
C18 1.0608 (4) 0.82840 (15) 0.36943 (14) 0.0256 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0306 (9) 0.0188 (9) 0.0296 (11) 0.0005 (7) 0.0083 (8) 0.0045 (8)
N1 0.0236 (10) 0.0228 (11) 0.0236 (12) −0.0017 (8) 0.0033 (9) 0.0012 (9)
N2 0.0230 (10) 0.0349 (12) 0.0305 (14) 0.0018 (9) 0.0057 (10) 0.0039 (10)
N3 0.0262 (11) 0.0301 (12) 0.0276 (13) 0.0001 (9) 0.0053 (9) 0.0031 (10)
N4 0.0359 (12) 0.0237 (12) 0.0344 (14) 0.0005 (9) 0.0068 (10) 0.0009 (10)
N5 0.0384 (12) 0.0288 (12) 0.0358 (15) −0.0041 (10) 0.0103 (11) 0.0015 (11)
C1 0.0237 (12) 0.0227 (13) 0.0291 (16) 0.0034 (10) 0.0055 (11) −0.0006 (11)
C2 0.0211 (11) 0.0152 (12) 0.0285 (15) −0.0037 (9) 0.0044 (10) −0.0014 (10)
C3 0.0300 (13) 0.0289 (14) 0.0256 (15) −0.0009 (10) −0.0024 (11) 0.0036 (12)
C4 0.0228 (12) 0.0229 (13) 0.0245 (15) 0.0035 (10) −0.0023 (10) 0.0018 (11)
C5 0.0282 (13) 0.0287 (14) 0.0314 (16) 0.0054 (10) 0.0033 (11) 0.0000 (12)
C6 0.0425 (15) 0.0220 (14) 0.0344 (17) 0.0023 (11) −0.0022 (13) 0.0018 (12)
C7 0.0365 (14) 0.0250 (14) 0.0371 (18) −0.0042 (11) −0.0027 (13) 0.0105 (12)
C8 0.0274 (13) 0.0352 (16) 0.0310 (16) −0.0002 (11) 0.0017 (11) 0.0055 (13)
C9 0.0268 (12) 0.0261 (13) 0.0291 (16) 0.0032 (10) 0.0015 (11) 0.0002 (12)
C10 0.0266 (12) 0.0192 (12) 0.0265 (15) −0.0036 (9) 0.0057 (11) 0.0030 (11)
C11 0.0215 (11) 0.0247 (13) 0.0211 (14) −0.0030 (9) −0.0007 (10) 0.0056 (11)
C12 0.0239 (12) 0.0210 (12) 0.0233 (14) 0.0024 (9) 0.0017 (10) −0.0007 (10)
C13 0.0254 (12) 0.0193 (12) 0.0224 (14) −0.0001 (9) −0.0014 (10) 0.0007 (10)
C14 0.0256 (12) 0.0215 (13) 0.0209 (14) −0.0014 (10) 0.0019 (10) 0.0023 (10)
C15 0.0279 (12) 0.0239 (13) 0.0247 (15) 0.0021 (10) 0.0039 (11) −0.0021 (11)
C16 0.0293 (12) 0.0181 (12) 0.0237 (15) −0.0010 (10) 0.0052 (11) 0.0002 (11)
C17 0.0223 (12) 0.0279 (14) 0.0219 (14) 0.0011 (10) 0.0040 (10) 0.0000 (11)
C18 0.0279 (13) 0.0217 (13) 0.0272 (16) 0.0014 (10) −0.0004 (12) −0.0006 (11)

Geometric parameters (Å, º)

O1—C11 1.363 (3) C6—H6 0.9500
O1—C10 1.449 (3) C7—C8 1.382 (4)
N1—N2 1.346 (3) C7—H7 0.9500
N1—C1 1.347 (3) C8—C9 1.386 (3)
N1—C3 1.467 (3) C8—H8 0.9500
N2—N3 1.322 (3) C9—H9 0.9500
N3—C2 1.363 (3) C10—H10A 0.9900
N4—C17 1.151 (3) C10—H10B 0.9900
N5—C18 1.149 (3) C11—C16 1.388 (3)
C1—C2 1.367 (3) C11—C12 1.397 (3)
C1—H1 0.9500 C12—C13 1.379 (3)
C2—C10 1.494 (3) C12—H12 0.9500
C3—C4 1.509 (3) C13—C14 1.404 (3)
C3—H3A 0.9900 C13—C17 1.441 (3)
C3—H3B 0.9900 C14—C15 1.396 (3)
C4—C9 1.385 (3) C14—C18 1.437 (4)
C4—C5 1.397 (3) C15—C16 1.383 (3)
C5—C6 1.383 (3) C15—H15 0.9500
C5—H5 0.9500 C16—H16 0.9500
C6—C7 1.383 (4)
C11—O1—C10 119.61 (18) C7—C8—H8 119.9
N2—N1—C1 110.8 (2) C9—C8—H8 119.9
N2—N1—C3 120.75 (19) C4—C9—C8 120.4 (2)
C1—N1—C3 128.4 (2) C4—C9—H9 119.8
N3—N2—N1 107.14 (18) C8—C9—H9 119.8
N2—N3—C2 108.6 (2) O1—C10—C2 111.92 (17)
N1—C1—C2 105.1 (2) O1—C10—H10A 109.2
N1—C1—H1 127.5 C2—C10—H10A 109.2
C2—C1—H1 127.5 O1—C10—H10B 109.2
N3—C2—C1 108.3 (2) C2—C10—H10B 109.2
N3—C2—C10 122.6 (2) H10A—C10—H10B 107.9
C1—C2—C10 129.1 (2) O1—C11—C16 125.9 (2)
N1—C3—C4 112.33 (19) O1—C11—C12 113.9 (2)
N1—C3—H3A 109.1 C16—C11—C12 120.2 (2)
C4—C3—H3A 109.1 C13—C12—C11 119.6 (2)
N1—C3—H3B 109.1 C13—C12—H12 120.2
C4—C3—H3B 109.1 C11—C12—H12 120.2
H3A—C3—H3B 107.9 C12—C13—C14 120.9 (2)
C9—C4—C5 119.3 (2) C12—C13—C17 119.6 (2)
C9—C4—C3 120.7 (2) C14—C13—C17 119.4 (2)
C5—C4—C3 120.0 (2) C15—C14—C13 118.6 (2)
C6—C5—C4 120.1 (3) C15—C14—C18 121.4 (2)
C6—C5—H5 120.0 C13—C14—C18 119.9 (2)
C4—C5—H5 120.0 C16—C15—C14 120.7 (2)
C5—C6—C7 120.3 (3) C16—C15—H15 119.7
C5—C6—H6 119.9 C14—C15—H15 119.7
C7—C6—H6 119.9 C15—C16—C11 120.0 (2)
C8—C7—C6 119.9 (2) C15—C16—H16 120.0
C8—C7—H7 120.1 C11—C16—H16 120.0
C6—C7—H7 120.1 N4—C17—C13 178.4 (3)
C7—C8—C9 120.1 (3) N5—C18—C14 177.7 (3)
C1—N1—N2—N3 0.4 (2) C7—C8—C9—C4 −0.1 (4)
C3—N1—N2—N3 179.53 (19) C11—O1—C10—C2 87.8 (2)
N1—N2—N3—C2 −0.2 (2) N3—C2—C10—O1 −84.1 (3)
N2—N1—C1—C2 −0.5 (3) C1—C2—C10—O1 95.6 (3)
C3—N1—C1—C2 −179.5 (2) C10—O1—C11—C16 −3.0 (3)
N2—N3—C2—C1 −0.1 (3) C10—O1—C11—C12 176.24 (18)
N2—N3—C2—C10 179.62 (19) O1—C11—C12—C13 −178.81 (19)
N1—C1—C2—N3 0.4 (3) C16—C11—C12—C13 0.5 (3)
N1—C1—C2—C10 −179.4 (2) C11—C12—C13—C14 0.2 (3)
N2—N1—C3—C4 −109.4 (2) C11—C12—C13—C17 178.1 (2)
C1—N1—C3—C4 69.6 (3) C12—C13—C14—C15 −0.3 (3)
N1—C3—C4—C9 −112.3 (3) C17—C13—C14—C15 −178.2 (2)
N1—C3—C4—C5 67.2 (3) C12—C13—C14—C18 178.7 (2)
C9—C4—C5—C6 0.0 (3) C17—C13—C14—C18 0.8 (3)
C3—C4—C5—C6 −179.5 (2) C13—C14—C15—C16 −0.4 (3)
C4—C5—C6—C7 0.4 (4) C18—C14—C15—C16 −179.4 (2)
C5—C6—C7—C8 −0.6 (4) C14—C15—C16—C11 1.1 (3)
C6—C7—C8—C9 0.5 (4) O1—C11—C16—C15 178.1 (2)
C5—C4—C9—C8 −0.1 (3) C12—C11—C16—C15 −1.1 (3)
C3—C4—C9—C8 179.4 (2)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C11–C16 ring.

D—H···A D—H H···A D···A D—H···A
C10—H10A···N3i 0.99 2.50 3.468 (3) 167
C10—H10B···N3ii 0.99 2.53 3.477 (3) 161
C12—H12···N4iii 0.95 2.47 3.353 (3) 155
C18—N5···Cg1iv 1.15 (1) 3.81 (1) 3.853 (2) 83 (1)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+1, −y+2, −z+1; (iv) x+1, y, z.

References

  1. Agilent (2012). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
  2. Becke, A. D. & Johnson, E. R. (2007). J. Chem. Phys. 127, 124108. [DOI] [PubMed]
  3. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Eberhardt, W. & Hanack, M. (1997). Synthesis, pp. 95–100.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
  7. Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559. [DOI] [PubMed]
  8. Garcia, A., Rios, Z. G., Gonzalez, J., Perez, V. M., Lara, N., Fuentes, A., Gonzalez, C., Corona, D. & Cuevas-Yanez, E. (2011). Lett. Org. Chem. 8, 701–706.
  9. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  10. Jan, C. Y., Shamsudin, N. B. H., Tan, A. L., Young, D. J. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o1074. [DOI] [PMC free article] [PubMed]
  11. Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylo, C., Wolff, S. K., Chenai, C. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: http:// hirshfeldsurface. net/
  12. Kitamura, T., Ikeda, M., Shigaki, K., Inoue, T., Anderson, N. A., Ai, X., Lian, T. Q. & Yanagida, S. (2004). Chem. Mater. 16, 1806–1812.
  13. Kolb, H. C., Finn, M. G. & Sharpless, K. B. (2001). Angew. Chem. Int. Ed. 40, 2004–2021. [DOI] [PubMed]
  14. López-Ruiz, H., de la Cerda-Pedro, J. E., Rojas-Lima, S., Pérez-Pérez, I., Rodíguez-Sánchez, B. V., Santillan, R. & Coreño, O. (2013). ARKIVOC, (iii), 139–164.
  15. Mack, J., Kobayashi, N. & Stillman, M. J. (2006). J. Porphyrins Phthalocyanines, 10, 1219–1237.
  16. Nazeeruddin, M. K., Péchy, P., Renouard, T., Zakeeruddin, S. M., Humphry-Baker, R., Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L., Deacon, G. B., Bignozzi, C. A. & Grätzel, M. (2001). J. Am. Chem. Soc. 123, 1613–1624. [DOI] [PubMed]
  17. Otero-de-la-Roza, A. & Johnson, E. R. (2013). J. Chem. Phys. 138, 204109. [DOI] [PubMed]
  18. Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517–4525.
  19. Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2596–2599. [DOI] [PubMed]
  20. Shamsudin, N., Tan, A. L., Wimmer, F. L., Young, D. J. & Tiekink, E. R. T. (2015). Acta Cryst. E71, 1026–1031. [DOI] [PMC free article] [PubMed]
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  23. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  24. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  25. Tian, M., Wada, T., Kimura-Suda, H. & Sasabe, H. (1997). J. Mater. Chem. 7, 861–863.
  26. Vydrov, O. A., Heyd, J., Krukau, A. V. & Scuseria, G. E. (2006). J. Chem. Phys. 125, 074106. [DOI] [PubMed]
  27. Vydrov, O. A. & Scuseria, G. E. (2006). J. Chem. Phys. 125, 234109. [DOI] [PubMed]
  28. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  29. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia, Australia.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016004722/hb7573sup1.cif

e-72-00563-sup1.cif (547.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016004722/hb7573Isup2.hkl

e-72-00563-Isup2.hkl (281.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989016004722/hb7573Isup3.cml

CCDC reference: 1469592

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES