Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Mar 24;72(Pt 4):543–547. doi: 10.1107/S2056989016004837

Crystal structures of bis­[2-(pyridin-2-yl)phenyl-κ2 N,C 1]rhodium(III) complexes containing an aceto­nitrile or monodentate thyminate(1−) ligand

Mika Sakate a, Haruka Hosoda a, Takayoshi Suzuki a,*
PMCID: PMC4910344  PMID: 27375885

Bis[2-(pyridin-2-yl)phen­yl]rhodium(III) complexes bearing aceto­nitrile or monodeprotonated thyminate (Hthym) were characterized by X-ray analysis, and in the latter complexes it was revealed that Hthym coordinated to an RhIII centre through the N1 atom together with a hydrogen-bonded methanol or ethanol co-ligand in the cis position.

Keywords: crystal structure, monodentate monoanionic thyminate, intra­molecular hydrogen-bonding inter­action, inter­molecular double hydrogen bonds

Abstract

The crystal structures of bis­[2-(pyridin-2-yl)phen­yl]rhodium(III) complexes with the metal in an octahedral coordination containing chloride and aceto­nitrile ligands, namely (OC-6-42)-aceto­nitrile­chlorido­bis­[2-(pyridin-2-yl)phenyl-κ2 N,C 1]rhodium(III), [RhCl(C11H8N)2(CH3CN)] (1), thyminate(1−) and methanol, namely (OC-6-42)-methanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydro­pyrimidin-1-ido-κN 1)bis­[2-(pyridin-2-yl)phenyl-κ2 N,C 1]rhodium(III), [Rh(C11H8N)2(C5H5N2O2)(CH3OH)]·CH3OH·0.5H2O (2), and thy­min­ate(1−) and ethanol, namely (OC-6-42)-ethanol(5-methyl-2,4-dioxo-1,2,3,4-tetra­hydro­pyrimidin-1-ido-κN 1)bis[2-(pyridin-2-yl)phenyl-κ2 N,C 1]rhodium(III), [Rh(C11H8N)2(C5H5N2O2)(C2H5OH)]·C2H5OH (3), are reported. The aceto­nitrile complex, 1, is isostructural with the IrIII analog. In complexes 2 and 3, the monodeprotonated thyminate (Hthym) ligand coordinates to the RhIII atom through the N atom, and the resulting Rh—N(Hthym) bond lengths are relatively long [2.261 (2) and 2.252 (2) Å for 2 and 3, respectively] as compared to the Rh—N bonds in the related thyminate complexes. In each of the crystals of 2 and 3, the complexes are linked via a pair of inter­molecular N—H⋯O hydrogen bonds between neighbouring Hthym ligands, forming an inversion dimer. A strong intra­molecular O—H⋯O hydrogen bond between the thyminate(1−) and alcohol ligands in mutually cis positions to each other is also observed.

Chemical context  

Thymine (= H2thym) is one of the nucleobases, which are biologically important and fundamental organic mol­ecules, and can release one or two protons, giving a thyminate(1−) (= Hthym) or thyminate(2−) (= thym2–) anion. These anions can act as suitable bridging ligands for the construction of functional polymetallic coordination compounds because they provide multiple donor atoms to metal atoms in a configurationally fixed fashion. For example, some tetra- and penta­nuclear PtII complexes bridged by thym2– have been described (Khutia et al., 2011; Rauterkus & Krebs, 2004). We have also reported some cyclic tetra­nuclear Cp*RhIII (Cp* = penta­methyl­cyclo­penta­dien­yl) complexes bridged by thym2– and incorporating an another metal cation in the central hydro­philic cavity of their metallacalix[4]arene motifs (Kashima et al., 2015; Sakate et al., 2016). In contrast, monoanionic thyminate (Hthym) often acts as an N1-coordinating monodentate ligand, for example, in [{Cp*Rh(Hthym)}2(μ-OH)2] (Sakate et al., 2016), [Cp*IrCl(Hthym)(dmso)] (dmso = di­methyl­sulfoxide; Krämer et al., 1991), [Pt(NH3)2(Hthym)(Mecyto)]ClO4 (Mecyto = 1-meth­yl­cyto­sine; Faggiani et al., 1981) and [(TpCum,Me)Zn(Hthym)]·EtAde {TpCum,Me = hydrido­tris[2-methyl-4-(cumen-4-yl)-1-pyrazor­yl]borate, EtAde = 9-ethyl­adenine; Badura & Vahrenkamp, 2002}. The ZnII complex is an inter­esting example, because the coordinating thyminato ligand forms multiple hydrogen bonds with the co-crystallized 9-ethyl­adenine mol­ecule.

Our next targets are cyclic polymetallic compounds built up with inter­molecular double hydrogen bonds between the coordinating thyminato(1−) and adeninato ligands. One of the complexes in this strategy is [Rh(ppy)2(Hthym)(ade)] [ppy = 2-(pyridin-2-yl)phenyl, ade = adeninato]. For this purpose, we have prepared stepwise from [Rh(ppy)2Cl(CH3CN)] (1), [Rh(ppy)2(Hthym)(CH3OH)]·CH3OH·0.5H2O (2) to [Rh(ppy)2(Hthym)(C2H5OH)]·C2H5OH (3), and have characterized their crystal structures. Attempts to react 2 or 3 with adenine or other monodentate ligands were also examined.graphic file with name e-72-00543-scheme1.jpg

Structural commentary  

Complexes 13 all have an octa­hedral coordination geometry with a trans(N,N)cis(C,C) configuration of the RhIII(ppy)2 fragment. The aceto­nitrile complex 1 (Fig. 1) is isostructural with the IrIII analog, [Ir(ppy)2Cl(CH3CN)] (Blasberg et al., 2011). The mutually trans Rh—N(ppy) bonds are 2.030 (1) and 2.051 (1) Å, and the cis Rh—C(ppy) bonds are almost the same as each other [1.990 (2) and 1.993 (2) Å]. The Rh—Cl and Rh—N(CH3CN) bonds in 1 are 2.4862 (4) and 2.162 (1) Å, respectively, which are almost at the longest end in the ranges of these bond lengths for the related RhIII chlorido and aceto­nitrile complexes. These elongations are caused by the strong trans influence of the phenyl donor group. The aceto­nitrile mol­ecule is almost linearly coordin­ated, as evidenced by the bond angles Rh1—N3—C23 = 175.44 (14)° and N3—C23—C24 = 178.48 (19)°.

Figure 1.

Figure 1

An ORTEP drawing of the mol­ecular structure of [Rh(ppy)2Cl(CH3CN)] (1), showing the atom-numbering scheme, with ellipsoids drawn at the 50% probability level.

Crystals of 2 and 3 are solvatomorphs crystallizing in the space group Pbca, although the lengths of their a axes differ by more than 0.4 Å. In these complexes, the Hthym anion coordinates to the RhIII atom as a monodentate ligand through the N1 atom (Figs. 2 and 3). There is a coordinating solvent (methanol or ethanol) mol­ecule in the cis position to the Hthym anion. The mutually trans Rh—N(ppy) bond lengths in 2 and 3 are in the range 2.023 (2)–2.038 (2) Å. On the other hand, the mutually cis Rh—C(ppy) bonds show explicit deviation; the Rh—C bonds trans to Hthym are 1.994 (2) and 1.989 (2) Å for 2 and 3, respectively, while those trans to MeOH/EtOH in 2 and 3 are slightly shorter at 1.972 (2) and 1.976 (2) Å, respectively. The Rh—N(Hhtym) bonds in 2 and 3 are 2.261 (2) and 2.252 (2) Å, respectively, which are remarkably long as compared to those in the other RhIII–Hthym complexes. For example, the Rh—N(Hthym) bond in [{Cp*Rh(Hthym)}2(μ-OH)2] is 2.126 (3) Å (Sakate et al., 2016). In the cyclic tetra­nuclear complexes bridged by thym2–, the Rh—N(thym2–) bonds are even shorter at 2.07 (1)–2.13 (1) Å. The Rh—O bonds in 2 and 3 are 2.233 (2) and 2.207 (1) Å, respectively, considerably longer than that [2.103 (3) Å] in [RhCl3(bpy)(CH3OH)] (Bieda et al., 2009). However, much longer Rh—O(MeOH or EtOH) bonds (2.240 and 2.264 Å) are observed in trans(C,O)-[(PCP)RhCl2(MeOH or EtOH)] [PCP = 2,6-bis­(di­cyclo­hexyl­phosphinometh­yl)phenyl; Cross et al., 1995]. These examples also indicate the strong trans influence of the phenyl-C donor in the trans position.

Figure 2.

Figure 2

An ORTEP drawing of the mol­ecular structure of [Rh(ppy)(Hthym)(MeOH)]·MeOH·0.5H2O (2), showing the atom-numbering scheme, with ellipsoids drawn at the 30% probability level.

Figure 3.

Figure 3

An ORTEP drawing of the mol­ecular structure of [Rh(ppy)(Hthym)(EtOH)]·EtOH (3), showing the atom-numbering scheme, with ellipsoids drawn at the 30% probability level.

In both 2 and 3, there is an intra­molecular hydrogen bond between atom O2 of the Hthym and O51—H1 of MeOH or EtOH in the mutually cis-position (Tables 2 and 3). These hydrogen bonds may stabilize the coordination of solvent MeOH and EtOH mol­ecules in 2 and 3, even though the Rh—O bonds for these ligands are relatively long. In fact, a reaction of complex 2 or 3 with an equivalent amount of PPh3, P(OMe)3, imidazole or a mixture of adenine and tri­ethyl­amine (L) gave a complicated mixture of products, from which no desirable ligand-substituted complexes of the formula, [Rh(ppy)2(Hthym)(L)] could be isolated.

Supra­molecular features  

In the crystal of the aceto­nitrile complex 1, there are no remarkable inter­molecular hydrogen bonds. As similar to the IrIII analog (Blasberg et al., 2011), there are weak C—H⋯Cl hydrogen bonds (Table 1), which link the complexes into a layer parallel to the bc plane. In addition, C—H⋯π(ppy) [C8—H8⋯C16iii: H8⋯C16iii = 2.81, C8⋯C16iii = 3.620 (3) Å, C8—H8⋯C16iii = 144°; symmetry code: (iii) x + Inline graphic, y, −z + Inline graphic] and C—H⋯π(nitrile) [C14—H14⋯C23iv: H14⋯C23iv = 2.69, C14⋯C23iv = 3.427 (2) Å, C14—H14⋯C23iv = 135°; symmetry code: (iv) −x, y + Inline graphic, −z + Inline graphic] inter­actions are observed.

Table 1. Hydrogen-bond geometry (Å, °) for 1 .

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl1i 0.95 2.79 3.613 (2) 145
C14—H14⋯Cl1ii 0.95 2.78 3.452 (2) 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

In each crystal of the thyminato(1−) complexes of 2 and 3, together with an intra­molecular hydrogen bond mentioned above, there is a pair of inter­molecular N—H⋯O hydrogen bonds (Tables 2 and 3) with an Inline graphic(8) ring motif between the neighboring Hthym ligands, forming an inversion dimer (Figs. 4 and 5). The methanol and ethanol mol­ecules of crystallization in 2 and 3 are each linked to the Hthym ligand via an inter­molecular O—H⋯O hydrogen bond.

Table 2. Hydrogen-bond geometry (Å, °) for 2 .

D—H⋯A D—H H⋯A DA D—H⋯A
O51—H1⋯O2 0.84 (2) 1.69 (2) 2.527 (3) 170 (3)
N3—H3⋯O2i 0.88 1.97 2.844 (3) 173
O61—H2⋯O4ii 0.84 2.01 2.802 (5) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 3. Hydrogen-bond geometry (Å, °) for 3 .

D—H⋯A D—H H⋯A DA D—H⋯A
O51—H1⋯O2 0.83 (1) 1.72 (2) 2.527 (2) 164 (2)
N3—H3⋯O2i 0.88 1.99 2.854 (2) 165
O61—H2⋯O4ii 0.84 (1) 2.01 (4) 2.792 (3) 156 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 4.

Figure 4

A perspective view of 2, showing the intra- and inter­molecular O—H⋯O hydrogen bonds (dotted lines) between the Hthym and MeOH ligands.

Figure 5.

Figure 5

A perspective view of 3, showing the intra- and inter­molecular O—H⋯O hydrogen-bonds (dotted lines) between the Hthym and EtOH ligands.

Synthesis and crystallization  

The starting rhodium(III) complex, [Rh(ppy)2Cl]2, was prepared by a literature method (Sprouse et al., 1984). [Rh(ppy)2Cl]2 (0.050 g, 0.060 mmol) was dissolved in di­chloro­methane (5 mL) and aceto­nitrile (5 mL) was added to the solution. The mixture was allowed to stand in an open air to evaporate the solvent slowly, giving yellow crystals of 1. Yield: 0.047 g (80%). Analysis found: C 58.64, H 3.65, N 8.49%. Calculated for C24H19ClN3Rh: C 59.09, H 3.93, N 8.61%.

To a methanol suspension (10 mL) of [Rh(ppy)2Cl]2 (0.090 g, 0.10 mmol) was added Ag(CF3SO3) (0.051 g, 0.20 mmol). The mixture was stirred at room temperature in the dark overnight, and the resulting white precipitate of AgCl was filtered off. A methanol solution (10 mL) containing thymine (0.025 g, 0.20 mmol) and tri­ethyl­amine (28 µL, 0.20 mmol) was carefully layered on the filtrate, and the mixture was allowed to stand overnight to give yellow crystals of 2. Yield: 0.082 g (68%). Analysis found: C 58.05, H 4.62, N 9.30%. Calculated for C29H30N4O4.5Rh {= [Rh(ppy)2(Hthym)(CH3OH)]·CH3OH·0.5H2O}: C 57.15, H 4.96, N 9.19%. Complex 3 was prepared by a similar method to the above using ethanol as a solvent, instead of methanol. Yield: 64%. Analysis found: C 59.03, H 4.82, N 8.82%. Calculated for C31H33N4O4Rh: C 59.24, H 5.29, N 8.91%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. All H atoms bonded to C and N atoms in 13 were refined using a riding model, with C—H = 0.95 or 0.98 Å and N—H = 0.88 Å, and with U iso(H) = 1.2U eq(C, N). The positions of the O-bound H atoms of the coordinating methanol mol­ecule in 2 and the coordinating and solvated ethanol mol­ecules in 3 were refined with the restraints O—H = 0.84 (1) Å, and with U iso(H) = 1.2U eq(O), while the H atom of the solvated methanol in 2 was refined using a riding model with O—H = 0.84 Å and U iso(H) = 1.2U eq(O). In the crystal of 2, other than the complex and methanol mol­ecules, there is a small electron density remaining in the void, and this was assumed to be a water mol­ecule of crystallization. The H atoms of this water mol­ecule were not introduced in the calculation because of the highly disordered state of the water mol­ecule, which resulted in large thermal displacement parameters for the O atom.

Table 4. Experimental details.

  1 2 3
Crystal data
Chemical formula [RhCl(C11H8N)2(C2H3N)] [Rh(C11H8N)2(C5H5N2O2)(CH4O)]·CH4O·0.5H2O [Rh(C11H8N)2(C5H5N2O2)(C2H6O)]·C2H6O
M r 487.78 609.48 628.52
Crystal system, space group Orthorhombic, P b c a Orthorhombic, P b c a Orthorhombic, P b c a
Temperature (K) 193 192 192
a, b, c (Å) 16.5415 (9), 14.6600 (11), 17.0026 (12) 10.6964 (7), 15.5329 (9), 32.6325 (15) 11.1082 (5), 15.5556 (6), 32.6747 (15)
V3) 4123.1 (5) 5421.8 (5) 5646.0 (4)
Z 8 8 8
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.97 0.67 0.65
Crystal size (mm) 0.40 × 0.30 × 0.20 0.30 × 0.20 × 0.10 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Rigaku R-AXIS RAPID Rigaku R-AXIS RAPID Rigaku R-AXIS RAPID
Absorption correction Numerical (NUMABS; Rigaku, 1999) Numerical (NUMABS; Rigaku, 1999) Numerical (NUMABS; Rigaku, 1999)
T min, T max 0.697, 0.829 0.824, 0.936 0.829, 0.881
No. of measured, independent and observed [I > 2σ(I)] reflections 38163, 4709, 4327 47794, 6196, 5307 52659, 6470, 5886
R int 0.042 0.046 0.030
(sin θ/λ)max−1) 0.649 0.649 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.024, 0.060, 1.07 0.034, 0.096, 1.04 0.029, 0.076, 1.07
No. of reflections 4709 6196 6470
No. of parameters 263 356 370
No. of restraints 0 1 2
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.67, −0.35 1.29, −0.61 1.08, −0.40

Computer programs: RAPID AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2010), Il Milione (Burla et al., 2007), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015) and ORTEP-3 for Windows (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) 1, 2, 3, global. DOI: 10.1107/S2056989016004837/is5448sup1.cif

e-72-00543-sup1.cif (4.1MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989016004837/is54481sup5.hkl

e-72-00543-1sup5.hkl (375.3KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989016004837/is54482sup6.hkl

e-72-00543-2sup6.hkl (493KB, hkl)

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989016004837/is54483sup7.hkl

e-72-00543-3sup7.hkl (514.6KB, hkl)

CCDC references: 1469935, 1469934, 1469933

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was partly supported by a Grant-in-Aid for Scientific Research No. 25410070 from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

supplementary crystallographic information

(1) (OC-6-42)-Acetonitrilechloridobis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) . Crystal data

[RhCl(C11H8N)2(C2H3N)] Dx = 1.572 Mg m3
Mr = 487.78 Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, Pbca Cell parameters from 31949 reflections
a = 16.5415 (9) Å θ = 3.0–27.6°
b = 14.6600 (11) Å µ = 0.97 mm1
c = 17.0026 (12) Å T = 193 K
V = 4123.1 (5) Å3 Block, yellow
Z = 8 0.40 × 0.30 × 0.20 mm
F(000) = 1968

(1) (OC-6-42)-Acetonitrilechloridobis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) . Data collection

Rigaku R-AXIS RAPID diffractometer 4709 independent reflections
Radiation source: fine-focus sealed tube 4327 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.042
Detector resolution: 10.000 pixels mm-1 θmax = 27.5°, θmin = 3.0°
ω scans h = −20→21
Absorption correction: numerical (NUMABS; Rigaku, 1999) k = −18→18
Tmin = 0.697, Tmax = 0.829 l = −22→22
38163 measured reflections

(1) (OC-6-42)-Acetonitrilechloridobis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0309P)2 + 1.6125P] where P = (Fo2 + 2Fc2)/3
4709 reflections (Δ/σ)max = 0.001
263 parameters Δρmax = 0.67 e Å3
0 restraints Δρmin = −0.35 e Å3

(1) (OC-6-42)-Acetonitrilechloridobis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) . Special details

Experimental. The 1H NMR spectrum of 1 in CD2Cl2 at 22 °C: δ 1.97 (s, 3H, MeCN), 5.90 (d, J = 7.8 Hz, 2H, ppy), 6.70 (td, J = 7.6 and 1.4 Hz, 2H, ppy), 6.77–6.96 (m, 4H, ppy), 7.62 (dd, J = 7.7 and 1.4 Hz, 2H, ppy), 7.81–7.98 (m, 4H, ppy) and 9.22 (d, J = 5.7 Hz, 2H, ppy).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(1) (OC-6-42)-Acetonitrilechloridobis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Rh1 0.12078 (2) 0.55701 (2) 0.36161 (2) 0.01986 (5)
Cl1 0.10904 (2) 0.64708 (3) 0.48498 (2) 0.02906 (9)
N1 0.15175 (8) 0.44472 (8) 0.42460 (8) 0.0238 (3)
N2 0.09842 (8) 0.66466 (9) 0.28773 (8) 0.0235 (3)
N3 −0.00853 (9) 0.53554 (10) 0.36314 (8) 0.0265 (3)
C1 0.09933 (10) 0.38632 (11) 0.45823 (9) 0.0272 (3)
H1 0.0433 0.4006 0.4579 0.033*
C2 0.12459 (10) 0.30643 (13) 0.49304 (11) 0.0339 (4)
H2 0.0865 0.2662 0.5165 0.041*
C3 0.20657 (11) 0.28542 (12) 0.49338 (11) 0.0358 (4)
H3 0.2251 0.2298 0.5157 0.043*
C4 0.26051 (10) 0.34604 (12) 0.46102 (10) 0.0309 (3)
H4 0.3167 0.3329 0.4617 0.037*
C5 0.23289 (9) 0.42661 (11) 0.42724 (9) 0.0247 (3)
C6 0.28290 (9) 0.49821 (11) 0.39221 (9) 0.0252 (3)
C7 0.36733 (10) 0.49704 (13) 0.39354 (10) 0.0326 (4)
H7 0.3954 0.4472 0.4166 0.039*
C8 0.40989 (12) 0.56954 (14) 0.36084 (11) 0.0381 (4)
H8 0.4673 0.5693 0.3614 0.046*
C9 0.36859 (10) 0.64198 (13) 0.32751 (12) 0.0370 (4)
H9 0.3979 0.6915 0.3054 0.044*
C10 0.28439 (10) 0.64280 (12) 0.32621 (10) 0.0305 (3)
H10 0.2568 0.6929 0.3031 0.037*
C11 0.24040 (10) 0.57124 (11) 0.35831 (8) 0.0234 (3)
C12 0.07628 (10) 0.74823 (11) 0.31092 (10) 0.0302 (3)
H12 0.0715 0.7604 0.3656 0.036*
C13 0.06014 (12) 0.81726 (12) 0.25807 (11) 0.0373 (4)
H13 0.0435 0.8758 0.2758 0.045*
C14 0.06879 (12) 0.79919 (12) 0.17872 (11) 0.0381 (4)
H14 0.0591 0.8459 0.1411 0.046*
C15 0.09143 (11) 0.71342 (12) 0.15440 (10) 0.0322 (4)
H15 0.0978 0.7007 0.1000 0.039*
C16 0.10502 (9) 0.64548 (11) 0.20997 (9) 0.0243 (3)
C17 0.12356 (8) 0.54991 (11) 0.19292 (10) 0.0238 (3)
C18 0.12867 (10) 0.51469 (13) 0.11672 (10) 0.0301 (4)
H18 0.1222 0.5540 0.0728 0.036*
C19 0.14314 (12) 0.42299 (13) 0.10501 (11) 0.0363 (4)
H19 0.1462 0.3990 0.0532 0.044*
C20 0.15317 (12) 0.36630 (13) 0.16931 (11) 0.0383 (4)
H20 0.1636 0.3033 0.1614 0.046*
C21 0.14813 (11) 0.40060 (12) 0.24553 (10) 0.0315 (3)
H21 0.1555 0.3607 0.2890 0.038*
C22 0.13243 (8) 0.49280 (11) 0.25894 (9) 0.0233 (3)
C23 −0.07658 (11) 0.52843 (12) 0.36004 (9) 0.0285 (3)
C24 −0.16431 (11) 0.51736 (16) 0.35764 (12) 0.0425 (5)
H24A −0.1903 0.5768 0.3653 0.051*
H24B −0.1813 0.4756 0.3995 0.051*
H24C −0.1802 0.4923 0.3065 0.051*

(1) (OC-6-42)-Acetonitrilechloridobis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Rh1 0.01770 (8) 0.02111 (8) 0.02077 (8) −0.00061 (4) 0.00062 (4) 0.00068 (4)
Cl1 0.03143 (19) 0.0321 (2) 0.02369 (18) −0.00410 (15) 0.00318 (15) −0.00310 (15)
N1 0.0238 (7) 0.0248 (7) 0.0228 (6) −0.0004 (5) 0.0003 (5) 0.0010 (5)
N2 0.0213 (6) 0.0243 (7) 0.0249 (6) −0.0005 (5) −0.0002 (5) 0.0017 (5)
N3 0.0238 (7) 0.0272 (7) 0.0286 (7) −0.0010 (5) 0.0007 (5) 0.0000 (5)
C1 0.0245 (7) 0.0302 (8) 0.0268 (8) −0.0028 (6) 0.0017 (6) 0.0020 (6)
C2 0.0350 (9) 0.0313 (9) 0.0355 (9) −0.0043 (7) 0.0047 (7) 0.0069 (7)
C3 0.0401 (10) 0.0285 (9) 0.0386 (9) 0.0051 (7) 0.0012 (8) 0.0085 (7)
C4 0.0276 (8) 0.0321 (9) 0.0329 (8) 0.0057 (6) 0.0000 (7) 0.0029 (7)
C5 0.0231 (8) 0.0277 (8) 0.0233 (7) 0.0014 (6) 0.0011 (6) −0.0003 (6)
C6 0.0220 (7) 0.0296 (8) 0.0241 (7) 0.0004 (6) 0.0009 (6) −0.0008 (6)
C7 0.0225 (8) 0.0409 (10) 0.0345 (9) 0.0027 (7) 0.0017 (7) 0.0017 (8)
C8 0.0189 (9) 0.0473 (12) 0.0480 (12) −0.0035 (7) 0.0055 (7) 0.0016 (8)
C9 0.0274 (8) 0.0365 (10) 0.0470 (11) −0.0098 (7) 0.0076 (8) 0.0027 (8)
C10 0.0266 (8) 0.0292 (8) 0.0356 (9) −0.0032 (6) 0.0024 (7) 0.0010 (7)
C11 0.0195 (7) 0.0275 (8) 0.0232 (7) −0.0026 (6) 0.0028 (6) −0.0028 (6)
C12 0.0353 (8) 0.0276 (8) 0.0275 (8) 0.0017 (7) −0.0012 (7) −0.0011 (6)
C13 0.0496 (11) 0.0245 (8) 0.0377 (9) 0.0061 (7) −0.0038 (8) 0.0000 (7)
C14 0.0524 (11) 0.0283 (9) 0.0336 (9) 0.0017 (8) −0.0068 (8) 0.0070 (7)
C15 0.0389 (10) 0.0328 (9) 0.0248 (8) −0.0019 (7) −0.0012 (7) 0.0041 (7)
C16 0.0200 (7) 0.0274 (8) 0.0254 (7) −0.0016 (6) −0.0008 (6) 0.0011 (6)
C17 0.0184 (7) 0.0268 (8) 0.0261 (8) −0.0007 (5) −0.0003 (6) −0.0006 (6)
C18 0.0299 (8) 0.0361 (10) 0.0243 (8) 0.0018 (7) 0.0008 (6) −0.0006 (7)
C19 0.0409 (10) 0.0388 (10) 0.0291 (9) 0.0022 (8) 0.0017 (8) −0.0089 (7)
C20 0.0463 (11) 0.0282 (9) 0.0403 (10) 0.0030 (8) 0.0018 (9) −0.0077 (7)
C21 0.0360 (9) 0.0275 (9) 0.0308 (8) 0.0009 (7) 0.0012 (7) −0.0005 (7)
C22 0.0194 (7) 0.0260 (8) 0.0244 (7) −0.0020 (5) 0.0010 (6) −0.0015 (6)
C23 0.0276 (9) 0.0283 (9) 0.0296 (8) −0.0005 (7) 0.0000 (6) 0.0006 (6)
C24 0.0220 (9) 0.0547 (13) 0.0507 (12) −0.0032 (8) −0.0031 (8) 0.0034 (9)

(1) (OC-6-42)-Acetonitrilechloridobis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) . Geometric parameters (Å, º)

Rh1—C11 1.9904 (16) C9—H9 0.9500
Rh1—C22 1.9926 (15) C10—C11 1.388 (2)
Rh1—N1 2.0296 (13) C10—H10 0.9500
Rh1—N2 2.0507 (13) C12—C13 1.379 (2)
Rh1—N3 2.1621 (14) C12—H12 0.9500
Rh1—Cl1 2.4862 (4) C13—C14 1.382 (3)
N1—C1 1.346 (2) C13—H13 0.9500
N1—C5 1.369 (2) C14—C15 1.376 (3)
N2—C12 1.338 (2) C14—H14 0.9500
N2—C16 1.356 (2) C15—C16 1.391 (2)
N3—C23 1.132 (2) C15—H15 0.9500
C1—C2 1.377 (2) C16—C17 1.463 (2)
C1—H1 0.9500 C17—C18 1.397 (2)
C2—C3 1.391 (2) C17—C22 1.408 (2)
C2—H2 0.9500 C18—C19 1.380 (3)
C3—C4 1.374 (2) C18—H18 0.9500
C3—H3 0.9500 C19—C20 1.383 (3)
C4—C5 1.391 (2) C19—H19 0.9500
C4—H4 0.9500 C20—C21 1.393 (2)
C5—C6 1.463 (2) C20—H20 0.9500
C6—C7 1.397 (2) C21—C22 1.395 (2)
C6—C11 1.405 (2) C21—H21 0.9500
C7—C8 1.391 (3) C23—C24 1.461 (3)
C7—H7 0.9500 C24—H24A 0.9800
C8—C9 1.384 (3) C24—H24B 0.9800
C8—H8 0.9500 C24—H24C 0.9800
C9—C10 1.393 (2)
C11—Rh1—C22 85.91 (6) C10—C9—H9 119.8
C11—Rh1—N1 81.31 (6) C11—C10—C9 120.75 (17)
C22—Rh1—N1 93.13 (6) C11—C10—H10 119.6
C11—Rh1—N2 94.67 (6) C9—C10—H10 119.6
C22—Rh1—N2 81.05 (6) C10—C11—C6 118.35 (15)
N1—Rh1—N2 173.19 (5) C10—C11—Rh1 127.68 (13)
C11—Rh1—N3 177.47 (6) C6—C11—Rh1 113.96 (11)
C22—Rh1—N3 92.15 (5) N2—C12—C13 122.19 (16)
N1—Rh1—N3 97.20 (5) N2—C12—H12 118.9
N2—Rh1—N3 86.62 (5) C13—C12—H12 118.9
C11—Rh1—Cl1 92.62 (4) C12—C13—C14 118.37 (16)
C22—Rh1—Cl1 176.01 (5) C12—C13—H13 120.8
N1—Rh1—Cl1 90.30 (4) C14—C13—H13 120.8
N2—Rh1—Cl1 95.40 (4) C15—C14—C13 119.78 (16)
N3—Rh1—Cl1 89.42 (4) C15—C14—H14 120.1
C1—N1—C5 119.62 (14) C13—C14—H14 120.1
C1—N1—Rh1 125.26 (11) C14—C15—C16 119.62 (16)
C5—N1—Rh1 114.97 (10) C14—C15—H15 120.2
C12—N2—C16 119.94 (14) C16—C15—H15 120.2
C12—N2—Rh1 124.99 (11) N2—C16—C15 120.05 (15)
C16—N2—Rh1 115.03 (11) N2—C16—C17 114.12 (14)
C23—N3—Rh1 175.44 (14) C15—C16—C17 125.79 (15)
N1—C1—C2 121.87 (15) C18—C17—C22 120.88 (15)
N1—C1—H1 119.1 C18—C17—C16 123.39 (15)
C2—C1—H1 119.1 C22—C17—C16 115.67 (15)
C1—C2—C3 119.09 (16) C19—C18—C17 120.29 (17)
C1—C2—H2 120.5 C19—C18—H18 119.9
C3—C2—H2 120.5 C17—C18—H18 119.9
C4—C3—C2 119.22 (16) C18—C19—C20 119.47 (17)
C4—C3—H3 120.4 C18—C19—H19 120.3
C2—C3—H3 120.4 C20—C19—H19 120.3
C3—C4—C5 120.08 (15) C19—C20—C21 120.76 (17)
C3—C4—H4 120.0 C19—C20—H20 119.6
C5—C4—H4 120.0 C21—C20—H20 119.6
N1—C5—C4 120.04 (15) C20—C21—C22 120.86 (16)
N1—C5—C6 113.69 (14) C20—C21—H21 119.6
C4—C5—C6 126.28 (15) C22—C21—H21 119.6
C7—C6—C11 121.09 (15) C21—C22—C17 117.72 (14)
C7—C6—C5 123.36 (15) C21—C22—Rh1 128.23 (12)
C11—C6—C5 115.52 (14) C17—C22—Rh1 114.05 (12)
C8—C7—C6 119.36 (17) N3—C23—C24 178.48 (19)
C8—C7—H7 120.3 C23—C24—H24A 109.5
C6—C7—H7 120.3 C23—C24—H24B 109.5
C9—C8—C7 120.01 (17) H24A—C24—H24B 109.5
C9—C8—H8 120.0 C23—C24—H24C 109.5
C7—C8—H8 120.0 H24A—C24—H24C 109.5
C8—C9—C10 120.43 (17) H24B—C24—H24C 109.5
C8—C9—H9 119.8
C5—N1—C1—C2 −2.5 (2) C16—N2—C12—C13 −0.5 (2)
Rh1—N1—C1—C2 173.05 (13) Rh1—N2—C12—C13 −178.34 (13)
N1—C1—C2—C3 −0.1 (3) N2—C12—C13—C14 −1.2 (3)
C1—C2—C3—C4 1.9 (3) C12—C13—C14—C15 1.3 (3)
C2—C3—C4—C5 −1.1 (3) C13—C14—C15—C16 0.3 (3)
C1—N1—C5—C4 3.2 (2) C12—N2—C16—C15 2.2 (2)
Rh1—N1—C5—C4 −172.74 (12) Rh1—N2—C16—C15 −179.80 (12)
C1—N1—C5—C6 −176.83 (14) C12—N2—C16—C17 −175.52 (14)
Rh1—N1—C5—C6 7.22 (17) Rh1—N2—C16—C17 2.54 (16)
C3—C4—C5—N1 −1.5 (2) C14—C15—C16—N2 −2.1 (3)
C3—C4—C5—C6 178.60 (16) C14—C15—C16—C17 175.30 (16)
N1—C5—C6—C7 175.24 (15) N2—C16—C17—C18 176.48 (14)
C4—C5—C6—C7 −4.8 (3) C15—C16—C17—C18 −1.0 (2)
N1—C5—C6—C11 −3.0 (2) N2—C16—C17—C22 −0.54 (19)
C4—C5—C6—C11 176.96 (16) C15—C16—C17—C22 −178.06 (15)
C11—C6—C7—C8 0.1 (3) C22—C17—C18—C19 −0.5 (2)
C5—C6—C7—C8 −178.03 (16) C16—C17—C18—C19 −177.33 (15)
C6—C7—C8—C9 0.1 (3) C17—C18—C19—C20 −0.5 (3)
C7—C8—C9—C10 −0.2 (3) C18—C19—C20—C21 0.6 (3)
C8—C9—C10—C11 0.1 (3) C19—C20—C21—C22 0.3 (3)
C9—C10—C11—C6 0.1 (2) C20—C21—C22—C17 −1.3 (2)
C9—C10—C11—Rh1 −178.98 (14) C20—C21—C22—Rh1 178.95 (14)
C7—C6—C11—C10 −0.2 (2) C18—C17—C22—C21 1.3 (2)
C5—C6—C11—C10 178.05 (14) C16—C17—C22—C21 178.43 (14)
C7—C6—C11—Rh1 179.01 (13) C18—C17—C22—Rh1 −178.86 (11)
C5—C6—C11—Rh1 −2.72 (17) C16—C17—C22—Rh1 −1.75 (16)

(1) (OC-6-42)-Acetonitrilechloridobis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1···Cl1i 0.95 2.79 3.613 (2) 145
C14—H14···Cl1ii 0.95 2.78 3.452 (2) 128

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+3/2, z−1/2.

(2) (OC-6-42)-Methanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ido-κN1)bis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) . Crystal data

[Rh(C11H8N)2(C5H5N2O2)(CH4O)]·CH4O·0.5H2O Dx = 1.493 Mg m3
Mr = 609.48 Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, Pbca Cell parameters from 34894 reflections
a = 10.6964 (7) Å θ = 3.1–27.5°
b = 15.5329 (9) Å µ = 0.67 mm1
c = 32.6325 (15) Å T = 192 K
V = 5421.8 (5) Å3 Block, yellow
Z = 8 0.30 × 0.20 × 0.10 mm
F(000) = 2504

(2) (OC-6-42)-Methanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ido-κN1)bis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) . Data collection

Rigaku R-AXIS RAPID diffractometer 6196 independent reflections
Radiation source: fine-focus sealed tube 5307 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.046
Detector resolution: 10.000 pixels mm-1 θmax = 27.5°, θmin = 3.1°
ω scans h = −13→13
Absorption correction: numerical (NUMABS; Rigaku, 1999) k = −20→20
Tmin = 0.824, Tmax = 0.936 l = −42→40
47794 measured reflections

(2) (OC-6-42)-Methanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ido-κN1)bis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0469P)2 + 5.8148P] where P = (Fo2 + 2Fc2)/3
6196 reflections (Δ/σ)max = 0.001
356 parameters Δρmax = 1.29 e Å3
1 restraint Δρmin = −0.61 e Å3

(2) (OC-6-42)-Methanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ido-κN1)bis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) . Special details

Experimental. The 1H NMR spectrum of 2 in CDCl3 at 22 °C: δ 1.50 (s, 3H, Hthym CH3), 6.17 (d, J = 7.7 Hz, 2H, ppy), 6.40 (s, 1H, Hthym C6-H), 6.81 (t, J = 7.3 Hz, 2H ppy), 6.94 (t, J = 7.6 Hz, 2H, ppy), 7.28–7.31 (m, 2H, ppy), 7.58–7.60 (m, 2H, ppy), 7.87–7.91 (m, 4H, ppy), 8.35 (s, 1H, Hthym N3-H), 8.59 (d, J = 5.3 Hz, 1H ppy) and 8.99 (d, J = 5.3 Hz, 1H, ppy).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(2) (OC-6-42)-Methanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ido-κN1)bis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Rh1 0.21119 (2) 0.49429 (2) 0.36187 (2) 0.02250 (7)
O2 0.0485 (2) 0.47720 (13) 0.45127 (6) 0.0465 (5)
O4 0.18704 (18) 0.69252 (12) 0.53187 (5) 0.0375 (4)
O61 0.2102 (6) 0.3378 (3) 0.57003 (13) 0.1420 (19)
H2 0.2587 0.2984 0.5624 0.170*
O71 0.5000 0.5000 0.5000 0.523 (18)
O51 0.07868 (16) 0.39468 (11) 0.38528 (5) 0.0320 (4)
H1 0.067 (3) 0.4167 (17) 0.4086 (5) 0.038*
N1 0.19674 (18) 0.56450 (13) 0.42240 (6) 0.0267 (4)
N3 0.12027 (19) 0.58796 (14) 0.48895 (6) 0.0321 (4)
H3 0.0659 0.5725 0.5078 0.039*
N11 0.36388 (18) 0.43094 (12) 0.38330 (6) 0.0272 (4)
N22 0.06810 (18) 0.55596 (13) 0.33315 (6) 0.0275 (4)
C1 0.3749 (3) 0.74950 (19) 0.47238 (8) 0.0464 (7)
H1A 0.4254 0.7569 0.4476 0.056*
H1B 0.4295 0.7349 0.4955 0.056*
H1C 0.3303 0.8032 0.4784 0.056*
C2 0.1210 (2) 0.54094 (16) 0.45317 (7) 0.0301 (5)
C4 0.1962 (2) 0.65651 (15) 0.49803 (7) 0.0286 (5)
C5 0.2822 (2) 0.67846 (16) 0.46584 (7) 0.0301 (5)
C6 0.2756 (2) 0.63197 (16) 0.43056 (7) 0.0306 (5)
H6 0.3316 0.6480 0.4093 0.037*
C12 0.3605 (3) 0.35579 (16) 0.40370 (8) 0.0339 (5)
H12 0.2819 0.3308 0.4102 0.041*
C13 0.4688 (3) 0.31390 (18) 0.41551 (9) 0.0432 (6)
H13 0.4647 0.2609 0.4300 0.052*
C14 0.5827 (3) 0.3501 (2) 0.40600 (10) 0.0485 (7)
H14 0.6581 0.3224 0.4139 0.058*
C15 0.5860 (3) 0.42733 (18) 0.38490 (9) 0.0417 (6)
H15 0.6640 0.4526 0.3779 0.050*
C16 0.4754 (2) 0.46771 (16) 0.37397 (7) 0.0292 (5)
C17 0.4635 (2) 0.54941 (15) 0.35162 (7) 0.0275 (5)
C18 0.5653 (2) 0.60157 (17) 0.34154 (8) 0.0367 (6)
H18 0.6478 0.5839 0.3483 0.044*
C19 0.5459 (3) 0.67878 (18) 0.32166 (9) 0.0410 (6)
H19 0.6150 0.7144 0.3148 0.049*
C20 0.4252 (2) 0.70452 (17) 0.31173 (8) 0.0368 (6)
H20 0.4119 0.7578 0.2981 0.044*
C21 0.3236 (2) 0.65245 (16) 0.32164 (7) 0.0299 (5)
H21 0.2416 0.6705 0.3145 0.036*
C22 0.3404 (2) 0.57451 (15) 0.34184 (6) 0.0254 (4)
C23 −0.0065 (2) 0.61523 (17) 0.35045 (8) 0.0354 (5)
H23 0.0084 0.6314 0.3781 0.042*
C24 −0.1031 (3) 0.65325 (19) 0.32980 (9) 0.0440 (7)
H24 −0.1535 0.6956 0.3428 0.053*
C25 −0.1262 (3) 0.6288 (2) 0.28947 (9) 0.0465 (7)
H25 −0.1927 0.6542 0.2745 0.056*
C26 −0.0512 (2) 0.56704 (18) 0.27151 (8) 0.0383 (6)
H26 −0.0667 0.5491 0.2442 0.046*
C27 0.0469 (2) 0.53132 (16) 0.29358 (7) 0.0288 (5)
C28 0.1342 (2) 0.46567 (16) 0.27854 (7) 0.0282 (5)
C29 0.1326 (3) 0.43303 (17) 0.23851 (7) 0.0359 (5)
H29 0.0719 0.4527 0.2195 0.043*
C30 0.2196 (3) 0.37214 (19) 0.22686 (8) 0.0401 (6)
H30 0.2188 0.3498 0.1998 0.048*
C31 0.3081 (3) 0.34358 (17) 0.25468 (8) 0.0381 (6)
H31 0.3680 0.3018 0.2465 0.046*
C32 0.3101 (2) 0.37542 (16) 0.29443 (8) 0.0321 (5)
H32 0.3710 0.3548 0.3132 0.039*
C33 0.2237 (2) 0.43744 (15) 0.30723 (7) 0.0263 (5)
C51 −0.0423 (3) 0.3826 (2) 0.36788 (9) 0.0435 (7)
H51A −0.0836 0.3338 0.3813 0.052*
H51B −0.0341 0.3709 0.3385 0.052*
H51C −0.0923 0.4348 0.3719 0.052*
C61 0.2442 (8) 0.4080 (4) 0.55466 (19) 0.136 (3)
H61A 0.3340 0.4059 0.5488 0.164*
H61B 0.2271 0.4548 0.5740 0.164*
H61C 0.1981 0.4181 0.5292 0.164*

(2) (OC-6-42)-Methanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ido-κN1)bis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Rh1 0.02134 (11) 0.02767 (11) 0.01849 (11) 0.00008 (6) 0.00094 (6) −0.00116 (6)
O2 0.0542 (13) 0.0539 (11) 0.0314 (10) −0.0286 (10) 0.0183 (9) −0.0145 (9)
O4 0.0430 (10) 0.0444 (10) 0.0252 (8) −0.0030 (8) 0.0005 (7) −0.0095 (7)
O61 0.255 (6) 0.082 (2) 0.089 (3) 0.020 (3) 0.047 (3) −0.015 (2)
O71 0.76 (5) 0.48 (3) 0.33 (2) 0.23 (3) 0.14 (3) 0.003 (18)
O51 0.0315 (9) 0.0361 (9) 0.0283 (8) −0.0060 (7) 0.0054 (7) −0.0050 (7)
N1 0.0281 (10) 0.0318 (10) 0.0200 (9) −0.0024 (8) 0.0025 (7) −0.0021 (8)
N3 0.0340 (11) 0.0420 (11) 0.0203 (9) −0.0089 (9) 0.0083 (8) −0.0063 (8)
N11 0.0283 (10) 0.0317 (10) 0.0215 (9) 0.0022 (8) −0.0007 (7) −0.0006 (8)
N22 0.0238 (10) 0.0340 (10) 0.0247 (9) 0.0013 (8) −0.0003 (7) −0.0008 (8)
C1 0.0575 (18) 0.0505 (16) 0.0314 (13) −0.0242 (15) 0.0039 (12) −0.0054 (12)
C2 0.0311 (12) 0.0364 (12) 0.0227 (11) −0.0044 (10) 0.0033 (9) −0.0043 (9)
C4 0.0305 (12) 0.0333 (12) 0.0219 (11) 0.0024 (9) −0.0027 (9) −0.0008 (9)
C5 0.0341 (13) 0.0331 (12) 0.0231 (11) −0.0045 (10) −0.0006 (9) −0.0001 (9)
C6 0.0343 (13) 0.0352 (12) 0.0222 (11) −0.0048 (10) 0.0027 (9) −0.0004 (9)
C12 0.0377 (14) 0.0323 (12) 0.0318 (12) −0.0002 (10) −0.0025 (10) 0.0038 (10)
C13 0.0503 (17) 0.0382 (14) 0.0412 (15) 0.0050 (12) −0.0116 (12) 0.0081 (12)
C14 0.0406 (16) 0.0465 (16) 0.0583 (18) 0.0106 (13) −0.0144 (13) 0.0058 (14)
C15 0.0286 (13) 0.0460 (15) 0.0503 (16) 0.0023 (11) −0.0068 (11) 0.0039 (13)
C16 0.0275 (12) 0.0352 (12) 0.0250 (11) 0.0010 (10) −0.0013 (9) −0.0008 (10)
C17 0.0256 (11) 0.0324 (12) 0.0244 (11) 0.0005 (9) 0.0014 (9) −0.0004 (9)
C18 0.0255 (12) 0.0438 (14) 0.0408 (14) −0.0017 (10) 0.0021 (10) 0.0027 (11)
C19 0.0325 (14) 0.0440 (15) 0.0464 (15) −0.0086 (11) 0.0056 (11) 0.0062 (12)
C20 0.0405 (15) 0.0347 (13) 0.0354 (13) −0.0019 (11) 0.0028 (11) 0.0070 (10)
C21 0.0286 (12) 0.0344 (12) 0.0265 (11) 0.0027 (9) 0.0013 (9) 0.0002 (9)
C22 0.0248 (11) 0.0315 (11) 0.0200 (10) −0.0009 (9) 0.0034 (8) −0.0039 (9)
C23 0.0319 (13) 0.0420 (14) 0.0323 (12) 0.0057 (11) 0.0005 (10) −0.0068 (11)
C24 0.0374 (15) 0.0517 (16) 0.0429 (15) 0.0159 (12) −0.0012 (12) −0.0071 (13)
C25 0.0372 (15) 0.0627 (18) 0.0395 (15) 0.0171 (13) −0.0062 (12) 0.0025 (13)
C26 0.0359 (14) 0.0506 (15) 0.0284 (12) 0.0075 (12) −0.0061 (10) −0.0017 (11)
C27 0.0263 (12) 0.0368 (12) 0.0233 (11) −0.0005 (10) −0.0002 (9) 0.0014 (9)
C28 0.0280 (12) 0.0346 (12) 0.0219 (10) −0.0010 (9) 0.0002 (9) −0.0015 (9)
C29 0.0371 (14) 0.0451 (14) 0.0255 (12) −0.0014 (11) −0.0029 (10) −0.0048 (10)
C30 0.0437 (16) 0.0508 (16) 0.0257 (12) −0.0038 (12) 0.0023 (10) −0.0116 (11)
C31 0.0372 (14) 0.0406 (13) 0.0366 (14) 0.0035 (11) 0.0067 (11) −0.0123 (11)
C32 0.0289 (12) 0.0368 (13) 0.0306 (12) 0.0020 (10) 0.0005 (9) −0.0048 (10)
C33 0.0258 (12) 0.0307 (11) 0.0223 (10) −0.0036 (9) 0.0019 (8) −0.0020 (9)
C51 0.0346 (15) 0.0534 (17) 0.0424 (15) −0.0136 (13) 0.0015 (11) −0.0088 (13)
C61 0.243 (8) 0.070 (3) 0.095 (4) −0.039 (4) −0.041 (5) −0.015 (3)

(2) (OC-6-42)-Methanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ido-κN1)bis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) . Geometric parameters (Å, º)

Rh1—C22 1.972 (2) C16—C17 1.469 (3)
Rh1—C33 1.994 (2) C17—C18 1.397 (3)
Rh1—N11 2.0309 (19) C17—C22 1.410 (3)
Rh1—N22 2.0344 (19) C18—C19 1.379 (4)
Rh1—O51 2.2331 (17) C18—H18 0.9500
Rh1—N1 2.2614 (19) C19—C20 1.390 (4)
O2—C2 1.259 (3) C19—H19 0.9500
O4—C4 1.242 (3) C20—C21 1.393 (3)
O61—C61 1.255 (6) C20—H20 0.9500
O61—H2 0.8400 C21—C22 1.390 (3)
O51—C51 1.425 (3) C21—H21 0.9500
O51—H1 0.844 (10) C23—C24 1.368 (4)
N1—C2 1.341 (3) C23—H23 0.9500
N1—C6 1.371 (3) C24—C25 1.392 (4)
N3—C4 1.372 (3) C24—H24 0.9500
N3—C2 1.377 (3) C25—C26 1.380 (4)
N3—H3 0.8800 C25—H25 0.9500
N11—C12 1.344 (3) C26—C27 1.388 (3)
N11—C16 1.357 (3) C26—H26 0.9500
N22—C23 1.343 (3) C27—C28 1.467 (3)
N22—C27 1.366 (3) C28—C29 1.401 (3)
C1—C5 1.499 (3) C28—C33 1.409 (3)
C1—H1A 0.9800 C29—C30 1.380 (4)
C1—H1B 0.9800 C29—H29 0.9500
C1—H1C 0.9800 C30—C31 1.384 (4)
C4—C5 1.437 (3) C30—H30 0.9500
C5—C6 1.361 (3) C31—C32 1.389 (4)
C6—H6 0.9500 C31—H31 0.9500
C12—C13 1.383 (4) C32—C33 1.398 (3)
C12—H12 0.9500 C32—H32 0.9500
C13—C14 1.377 (4) C51—H51A 0.9800
C13—H13 0.9500 C51—H51B 0.9800
C14—C15 1.383 (4) C51—H51C 0.9800
C14—H14 0.9500 C61—H61A 0.9800
C15—C16 1.386 (4) C61—H61B 0.9800
C15—H15 0.9500 C61—H61C 0.9800
C22—Rh1—C33 86.35 (9) C18—C17—C22 121.0 (2)
C22—Rh1—N11 81.77 (9) C18—C17—C16 123.4 (2)
C33—Rh1—N11 92.25 (8) C22—C17—C16 115.6 (2)
C22—Rh1—N22 94.40 (9) C19—C18—C17 119.8 (2)
C33—Rh1—N22 81.20 (9) C19—C18—H18 120.1
N11—Rh1—N22 172.65 (7) C17—C18—H18 120.1
C22—Rh1—O51 174.82 (8) C18—C19—C20 120.0 (2)
C33—Rh1—O51 92.39 (8) C18—C19—H19 120.0
N11—Rh1—O51 93.27 (7) C20—C19—H19 120.0
N22—Rh1—O51 90.36 (7) C19—C20—C21 120.2 (2)
C22—Rh1—N1 91.88 (8) C19—C20—H20 119.9
C33—Rh1—N1 177.45 (8) C21—C20—H20 119.9
N11—Rh1—N1 89.31 (7) C22—C21—C20 121.0 (2)
N22—Rh1—N1 97.12 (7) C22—C21—H21 119.5
O51—Rh1—N1 89.54 (6) C20—C21—H21 119.5
C61—O61—H2 109.5 C21—C22—C17 117.9 (2)
C51—O51—Rh1 122.08 (16) C21—C22—Rh1 128.13 (18)
C51—O51—H1 106 (2) C17—C22—Rh1 113.87 (17)
Rh1—O51—H1 97 (2) N22—C23—C24 122.5 (2)
C2—N1—C6 115.77 (19) N22—C23—H23 118.7
C2—N1—Rh1 124.30 (15) C24—C23—H23 118.7
C6—N1—Rh1 119.75 (15) C23—C24—C25 118.8 (3)
C4—N3—C2 126.3 (2) C23—C24—H24 120.6
C4—N3—H3 116.9 C25—C24—H24 120.6
C2—N3—H3 116.9 C26—C25—C24 119.2 (2)
C12—N11—C16 120.0 (2) C26—C25—H25 120.4
C12—N11—Rh1 124.73 (17) C24—C25—H25 120.4
C16—N11—Rh1 115.20 (15) C25—C26—C27 119.8 (2)
C23—N22—C27 119.4 (2) C25—C26—H26 120.1
C23—N22—Rh1 125.19 (16) C27—C26—H26 120.1
C27—N22—Rh1 115.39 (15) N22—C27—C26 120.3 (2)
C5—C1—H1A 109.5 N22—C27—C28 113.9 (2)
C5—C1—H1B 109.5 C26—C27—C28 125.8 (2)
H1A—C1—H1B 109.5 C29—C28—C33 121.0 (2)
C5—C1—H1C 109.5 C29—C28—C27 123.8 (2)
H1A—C1—H1C 109.5 C33—C28—C27 115.3 (2)
H1B—C1—H1C 109.5 C30—C29—C28 119.8 (2)
O2—C2—N1 123.4 (2) C30—C29—H29 120.1
O2—C2—N3 117.1 (2) C28—C29—H29 120.1
N1—C2—N3 119.6 (2) C29—C30—C31 120.0 (2)
O4—C4—N3 119.6 (2) C29—C30—H30 120.0
O4—C4—C5 126.4 (2) C31—C30—H30 120.0
N3—C4—C5 113.9 (2) C30—C31—C32 120.6 (2)
C6—C5—C4 117.4 (2) C30—C31—H31 119.7
C6—C5—C1 123.0 (2) C32—C31—H31 119.7
C4—C5—C1 119.6 (2) C31—C32—C33 120.9 (2)
C5—C6—N1 127.0 (2) C31—C32—H32 119.5
C5—C6—H6 116.5 C33—C32—H32 119.5
N1—C6—H6 116.5 C32—C33—C28 117.7 (2)
N11—C12—C13 121.6 (2) C32—C33—Rh1 128.05 (18)
N11—C12—H12 119.2 C28—C33—Rh1 114.24 (16)
C13—C12—H12 119.2 O51—C51—H51A 109.5
C14—C13—C12 119.0 (3) O51—C51—H51B 109.5
C14—C13—H13 120.5 H51A—C51—H51B 109.5
C12—C13—H13 120.5 O51—C51—H51C 109.5
C13—C14—C15 119.3 (3) H51A—C51—H51C 109.5
C13—C14—H14 120.4 H51B—C51—H51C 109.5
C15—C14—H14 120.4 O61—C61—H61A 109.5
C14—C15—C16 119.9 (3) O61—C61—H61B 109.5
C14—C15—H15 120.0 H61A—C61—H61B 109.5
C16—C15—H15 120.0 O61—C61—H61C 109.5
N11—C16—C15 120.1 (2) H61A—C61—H61C 109.5
N11—C16—C17 113.5 (2) H61B—C61—H61C 109.5
C15—C16—C17 126.4 (2)
C6—N1—C2—O2 −175.8 (3) C18—C19—C20—C21 −0.2 (4)
Rh1—N1—C2—O2 −0.7 (4) C19—C20—C21—C22 0.5 (4)
C6—N1—C2—N3 4.4 (3) C20—C21—C22—C17 −0.6 (3)
Rh1—N1—C2—N3 179.45 (17) C20—C21—C22—Rh1 175.86 (18)
C4—N3—C2—O2 176.3 (2) C18—C17—C22—C21 0.4 (3)
C4—N3—C2—N1 −3.8 (4) C16—C17—C22—C21 178.3 (2)
C2—N3—C4—O4 −178.9 (2) C18—C17—C22—Rh1 −176.57 (19)
C2—N3—C4—C5 0.3 (4) C16—C17—C22—Rh1 1.4 (3)
O4—C4—C5—C6 −178.7 (2) C27—N22—C23—C24 −0.8 (4)
N3—C4—C5—C6 2.1 (3) Rh1—N22—C23—C24 −178.6 (2)
O4—C4—C5—C1 2.1 (4) N22—C23—C24—C25 0.9 (5)
N3—C4—C5—C1 −177.2 (2) C23—C24—C25—C26 0.0 (5)
C4—C5—C6—N1 −1.4 (4) C24—C25—C26—C27 −1.0 (5)
C1—C5—C6—N1 177.9 (3) C23—N22—C27—C26 −0.2 (4)
C2—N1—C6—C5 −2.0 (4) Rh1—N22—C27—C26 177.76 (19)
Rh1—N1—C6—C5 −177.3 (2) C23—N22—C27—C28 −179.4 (2)
C16—N11—C12—C13 −0.3 (4) Rh1—N22—C27—C28 −1.5 (3)
Rh1—N11—C12—C13 176.5 (2) C25—C26—C27—N22 1.1 (4)
N11—C12—C13—C14 −0.2 (4) C25—C26—C27—C28 −179.8 (3)
C12—C13—C14—C15 0.0 (4) N22—C27—C28—C29 −177.8 (2)
C13—C14—C15—C16 0.7 (5) C26—C27—C28—C29 3.0 (4)
C12—N11—C16—C15 1.0 (3) N22—C27—C28—C33 1.2 (3)
Rh1—N11—C16—C15 −176.1 (2) C26—C27—C28—C33 −178.0 (2)
C12—N11—C16—C17 179.9 (2) C33—C28—C29—C30 0.2 (4)
Rh1—N11—C16—C17 2.8 (3) C27—C28—C29—C30 179.1 (2)
C14—C15—C16—N11 −1.2 (4) C28—C29—C30—C31 −0.1 (4)
C14—C15—C16—C17 −180.0 (3) C29—C30—C31—C32 0.2 (4)
N11—C16—C17—C18 175.1 (2) C30—C31—C32—C33 −0.5 (4)
C15—C16—C17—C18 −6.0 (4) C31—C32—C33—C28 0.6 (4)
N11—C16—C17—C22 −2.8 (3) C31—C32—C33—Rh1 −178.35 (19)
C15—C16—C17—C22 176.1 (2) C29—C28—C33—C32 −0.5 (3)
C22—C17—C18—C19 −0.1 (4) C27—C28—C33—C32 −179.4 (2)
C16—C17—C18—C19 −177.9 (2) C29—C28—C33—Rh1 178.66 (19)
C17—C18—C19—C20 0.0 (4) C27—C28—C33—Rh1 −0.3 (3)

(2) (OC-6-42)-Methanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ido-κN1)bis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O51—H1···O2 0.84 (2) 1.69 (2) 2.527 (3) 170 (3)
N3—H3···O2i 0.88 1.97 2.844 (3) 173
O61—H2···O4ii 0.84 2.01 2.802 (5) 157

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1/2, y−1/2, z.

(3) (OC-6-42)-Ethanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ido-κN1)bis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) . Crystal data

[Rh(C11H8N)2(C5H5N2O2)(C2H6O)]·C2H6O Dx = 1.479 Mg m3
Mr = 628.52 Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, Pbca Cell parameters from 41739 reflections
a = 11.1082 (5) Å θ = 3.1–27.6°
b = 15.5556 (6) Å µ = 0.65 mm1
c = 32.6747 (15) Å T = 192 K
V = 5646.0 (4) Å3 Block, yellow
Z = 8 0.30 × 0.20 × 0.20 mm
F(000) = 2592

(3) (OC-6-42)-Ethanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ido-κN1)bis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) . Data collection

Rigaku R-AXIS RAPID diffractometer 6470 independent reflections
Radiation source: fine-focus sealed tube 5886 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
Detector resolution: 10.000 pixels mm-1 θmax = 27.5°, θmin = 3.1°
ω scans h = −14→14
Absorption correction: numerical (NUMABS; Rigaku, 1999) k = −20→20
Tmin = 0.829, Tmax = 0.881 l = −42→40
52659 measured reflections

(3) (OC-6-42)-Ethanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ido-κN1)bis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0365P)2 + 4.0646P] where P = (Fo2 + 2Fc2)/3
6470 reflections (Δ/σ)max = 0.002
370 parameters Δρmax = 1.08 e Å3
2 restraints Δρmin = −0.40 e Å3

(3) (OC-6-42)-Ethanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ido-κN1)bis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) . Special details

Experimental. The 1H NMR spectrum of 3 in CDCl3 at 22 °C: δ 1.53 (s, 3H, Hthym CH3), 6.17 (d, J = 7.7 Hz, 2H, ppy), 6.42 (s, 1H, Hthym C6-H), 6.81 (t, J = 7.4 Hz, 2H, ppy), 6.95 (t, J = 7.40 Hz, 2H, ppy), 7.28–7.30 (m, 2H, ppy), 7.58–7.61 (m, 2H, ppy), 7.88–7.92 (m, 4H, ppy), 8.10 (s, 1H, Hthym N3-H), 8.59 (d, J = 5.5 Hz, 1H, ppy) and 9.01 (d, J = 5.8 Hz, 1H, ppy).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(3) (OC-6-42)-Ethanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ido-κN1)bis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Rh1 0.21339 (2) 0.02045 (2) 0.63615 (2) 0.02373 (6)
O2 0.04210 (14) 0.02427 (10) 0.54944 (5) 0.0446 (4)
O4 0.18318 (15) −0.19254 (10) 0.47134 (4) 0.0420 (3)
O51 0.09395 (13) 0.11923 (9) 0.60966 (4) 0.0350 (3)
H1 0.065 (2) 0.0932 (14) 0.5896 (5) 0.042*
O61 0.2437 (4) 0.16196 (16) 0.42791 (10) 0.1286 (13)
H2 0.286 (4) 0.200 (3) 0.4388 (16) 0.154*
N1 0.20026 (14) −0.05157 (11) 0.57654 (5) 0.0281 (3)
N3 0.11666 (15) −0.08594 (11) 0.51266 (5) 0.0332 (4)
H3 0.0599 −0.0752 0.4946 0.040*
N11 0.36121 (14) 0.08209 (10) 0.61499 (5) 0.0284 (3)
N22 0.06964 (15) −0.03762 (10) 0.66331 (5) 0.0303 (3)
C1 0.3788 (2) −0.23404 (14) 0.52698 (7) 0.0427 (5)
H1A 0.4369 −0.2336 0.5496 0.051*
H1B 0.4207 −0.2223 0.5012 0.051*
H1C 0.3400 −0.2905 0.5255 0.051*
C2 0.11859 (17) −0.03524 (13) 0.54715 (6) 0.0308 (4)
C4 0.19492 (17) −0.15193 (13) 0.50373 (6) 0.0313 (4)
C5 0.28503 (17) −0.16615 (12) 0.53424 (6) 0.0305 (4)
C6 0.28117 (16) −0.11607 (13) 0.56826 (6) 0.0300 (4)
H6 0.3407 −0.1268 0.5885 0.036*
C12 0.35950 (19) 0.15538 (13) 0.59301 (6) 0.0368 (4)
H12 0.2841 0.1797 0.5856 0.044*
C13 0.4633 (2) 0.19605 (15) 0.58094 (7) 0.0445 (5)
H13 0.4598 0.2478 0.5655 0.053*
C14 0.5724 (2) 0.16073 (16) 0.59152 (8) 0.0490 (6)
H14 0.6454 0.1877 0.5834 0.059*
C15 0.57473 (19) 0.08549 (15) 0.61410 (7) 0.0430 (5)
H15 0.6496 0.0605 0.6216 0.052*
C16 0.46783 (17) 0.04653 (13) 0.62583 (6) 0.0310 (4)
C17 0.45550 (17) −0.03176 (12) 0.65058 (6) 0.0298 (4)
C18 0.55323 (19) −0.07910 (14) 0.66478 (7) 0.0390 (5)
H18 0.6329 −0.0618 0.6582 0.047*
C19 0.5340 (2) −0.15135 (14) 0.68842 (7) 0.0421 (5)
H19 0.6006 −0.1835 0.6984 0.050*
C20 0.4182 (2) −0.17709 (13) 0.69765 (6) 0.0376 (4)
H20 0.4055 −0.2267 0.7140 0.045*
C21 0.32003 (18) −0.13088 (12) 0.68316 (6) 0.0317 (4)
H21 0.2408 −0.1495 0.6895 0.038*
C22 0.33663 (16) −0.05717 (12) 0.65930 (5) 0.0263 (3)
C23 −0.00383 (19) −0.09457 (14) 0.64515 (6) 0.0373 (4)
H23 0.0148 −0.1136 0.6183 0.045*
C24 −0.1053 (2) −0.12629 (16) 0.66412 (7) 0.0475 (5)
H24 −0.1558 −0.1666 0.6507 0.057*
C25 −0.1317 (2) −0.09808 (18) 0.70328 (7) 0.0500 (6)
H25 −0.2011 −0.1190 0.7171 0.060*
C26 −0.0573 (2) −0.03967 (16) 0.72216 (7) 0.0428 (5)
H26 −0.0752 −0.0199 0.7490 0.051*
C27 0.04446 (18) −0.00956 (13) 0.70185 (6) 0.0319 (4)
C28 0.13082 (18) 0.05356 (13) 0.71778 (6) 0.0315 (4)
C29 0.1252 (2) 0.08784 (14) 0.75730 (6) 0.0410 (5)
H29 0.0629 0.0706 0.7755 0.049*
C30 0.2101 (2) 0.14662 (17) 0.76979 (7) 0.0471 (6)
H30 0.2067 0.1698 0.7967 0.057*
C31 0.3000 (2) 0.17192 (15) 0.74343 (7) 0.0455 (5)
H31 0.3587 0.2123 0.7523 0.055*
C32 0.30553 (18) 0.13867 (13) 0.70386 (6) 0.0357 (4)
H32 0.3674 0.1573 0.6859 0.043*
C33 0.22157 (16) 0.07850 (12) 0.69031 (6) 0.0284 (4)
C51 0.0044 (2) 0.16798 (18) 0.62979 (8) 0.0531 (6)
H51A 0.0037 0.2267 0.6181 0.064*
H51B 0.0261 0.1730 0.6591 0.064*
C52 −0.1159 (2) 0.1322 (2) 0.62678 (9) 0.0660 (8)
H52A −0.1196 0.0782 0.6422 0.079*
H52B −0.1351 0.1212 0.5980 0.079*
H52C −0.1741 0.1731 0.6381 0.079*
C61 0.2473 (4) 0.0866 (2) 0.44860 (13) 0.0826 (10)
H61A 0.2355 0.0396 0.4286 0.099*
H61B 0.1776 0.0854 0.4675 0.099*
C62 0.3536 (3) 0.0669 (2) 0.47211 (13) 0.0849 (10)
H62A 0.3677 0.1127 0.4922 0.102*
H62B 0.4231 0.0626 0.4537 0.102*
H62C 0.3423 0.0121 0.4864 0.102*

(3) (OC-6-42)-Ethanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ido-κN1)bis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Rh1 0.02103 (8) 0.02848 (9) 0.02167 (8) −0.00084 (5) −0.00246 (5) −0.00128 (5)
O2 0.0414 (8) 0.0577 (10) 0.0347 (8) 0.0210 (7) −0.0152 (7) −0.0141 (7)
O4 0.0502 (9) 0.0446 (8) 0.0313 (7) 0.0013 (7) −0.0040 (6) −0.0118 (6)
O51 0.0326 (7) 0.0364 (7) 0.0359 (7) 0.0067 (6) −0.0090 (6) −0.0056 (6)
O61 0.227 (4) 0.0573 (14) 0.101 (2) 0.0135 (19) −0.095 (2) −0.0207 (14)
N1 0.0277 (8) 0.0331 (8) 0.0236 (7) 0.0015 (6) −0.0042 (6) −0.0021 (6)
N3 0.0317 (8) 0.0428 (9) 0.0251 (7) 0.0027 (7) −0.0081 (6) −0.0056 (7)
N11 0.0260 (7) 0.0333 (8) 0.0260 (7) −0.0025 (6) −0.0026 (6) 0.0011 (6)
N22 0.0264 (8) 0.0360 (8) 0.0285 (8) −0.0027 (7) −0.0026 (6) 0.0006 (6)
C1 0.0490 (13) 0.0445 (12) 0.0346 (10) 0.0128 (10) 0.0014 (9) −0.0023 (9)
C2 0.0287 (9) 0.0379 (10) 0.0258 (9) 0.0011 (8) −0.0031 (7) −0.0039 (7)
C4 0.0338 (10) 0.0332 (9) 0.0269 (9) −0.0039 (8) 0.0016 (7) −0.0011 (7)
C5 0.0338 (10) 0.0308 (9) 0.0269 (9) 0.0012 (8) 0.0018 (7) 0.0015 (7)
C6 0.0302 (10) 0.0352 (9) 0.0247 (8) 0.0015 (8) −0.0028 (7) 0.0006 (7)
C12 0.0361 (10) 0.0391 (10) 0.0351 (10) −0.0013 (9) −0.0034 (8) 0.0078 (8)
C13 0.0453 (13) 0.0424 (11) 0.0458 (12) −0.0057 (10) 0.0020 (10) 0.0147 (10)
C14 0.0367 (12) 0.0525 (13) 0.0579 (14) −0.0114 (10) 0.0062 (10) 0.0125 (11)
C15 0.0275 (10) 0.0492 (12) 0.0521 (13) −0.0019 (9) 0.0012 (9) 0.0080 (10)
C16 0.0269 (9) 0.0353 (9) 0.0308 (9) −0.0014 (8) −0.0013 (7) −0.0008 (8)
C17 0.0266 (9) 0.0325 (9) 0.0304 (9) −0.0005 (7) −0.0041 (7) −0.0015 (7)
C18 0.0274 (10) 0.0408 (11) 0.0487 (12) 0.0020 (9) −0.0060 (9) 0.0024 (9)
C19 0.0381 (11) 0.0394 (11) 0.0487 (12) 0.0062 (9) −0.0111 (9) 0.0050 (9)
C20 0.0487 (12) 0.0306 (9) 0.0335 (10) 0.0024 (9) −0.0035 (9) 0.0030 (8)
C21 0.0348 (10) 0.0331 (9) 0.0271 (9) −0.0017 (8) −0.0004 (8) −0.0006 (7)
C22 0.0275 (9) 0.0298 (8) 0.0217 (8) 0.0003 (7) −0.0044 (7) −0.0033 (7)
C23 0.0329 (10) 0.0448 (11) 0.0343 (10) −0.0078 (9) −0.0016 (8) −0.0031 (9)
C24 0.0382 (12) 0.0567 (14) 0.0475 (12) −0.0181 (11) −0.0037 (10) 0.0005 (11)
C25 0.0351 (11) 0.0698 (16) 0.0450 (12) −0.0142 (11) 0.0028 (10) 0.0105 (11)
C26 0.0367 (11) 0.0573 (13) 0.0344 (10) −0.0038 (10) 0.0049 (9) 0.0038 (9)
C27 0.0290 (9) 0.0395 (10) 0.0272 (9) 0.0011 (8) −0.0001 (7) 0.0024 (8)
C28 0.0319 (10) 0.0365 (9) 0.0262 (9) 0.0039 (8) −0.0026 (7) −0.0002 (8)
C29 0.0464 (12) 0.0499 (12) 0.0266 (9) 0.0052 (10) 0.0011 (9) −0.0032 (8)
C30 0.0555 (14) 0.0558 (14) 0.0300 (10) 0.0076 (11) −0.0072 (9) −0.0123 (10)
C31 0.0458 (13) 0.0454 (12) 0.0455 (13) −0.0004 (10) −0.0135 (10) −0.0160 (10)
C32 0.0325 (10) 0.0374 (10) 0.0373 (11) −0.0006 (8) −0.0039 (8) −0.0061 (8)
C33 0.0271 (9) 0.0311 (9) 0.0269 (8) 0.0035 (7) −0.0050 (7) −0.0034 (7)
C51 0.0538 (15) 0.0620 (15) 0.0435 (12) 0.0242 (13) −0.0116 (11) −0.0180 (11)
C52 0.0464 (15) 0.099 (2) 0.0528 (15) 0.0173 (15) 0.0058 (12) 0.0035 (15)
C61 0.086 (2) 0.0521 (17) 0.110 (3) −0.0008 (17) −0.019 (2) −0.0211 (18)
C62 0.090 (3) 0.0581 (18) 0.106 (3) −0.0073 (18) −0.012 (2) 0.0058 (18)

(3) (OC-6-42)-Ethanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ido-κN1)bis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) . Geometric parameters (Å, º)

Rh1—C22 1.9760 (18) C18—C19 1.380 (3)
Rh1—C33 1.9890 (18) C18—H18 0.9500
Rh1—N11 2.0232 (15) C19—C20 1.381 (3)
Rh1—N22 2.0381 (16) C19—H19 0.9500
Rh1—O51 2.2068 (14) C20—C21 1.389 (3)
Rh1—N1 2.2516 (15) C20—H20 0.9500
O2—C2 1.259 (2) C21—C22 1.399 (3)
O4—C4 1.240 (2) C21—H21 0.9500
O51—C51 1.414 (3) C23—C24 1.377 (3)
O51—H1 0.833 (10) C23—H23 0.9500
O61—C61 1.354 (4) C24—C25 1.384 (3)
O61—H2 0.836 (10) C24—H24 0.9500
N1—C2 1.345 (2) C25—C26 1.375 (3)
N1—C6 1.374 (2) C25—H25 0.9500
N3—C2 1.376 (2) C26—C27 1.392 (3)
N3—C4 1.376 (3) C26—H26 0.9500
N3—H3 0.8800 C27—C28 1.468 (3)
N11—C12 1.347 (2) C28—C29 1.399 (3)
N11—C16 1.354 (2) C28—C33 1.404 (3)
N22—C23 1.343 (3) C29—C30 1.376 (3)
N22—C27 1.362 (3) C29—H29 0.9500
C1—C5 1.502 (3) C30—C31 1.377 (4)
C1—H1A 0.9800 C30—H30 0.9500
C1—H1B 0.9800 C31—C32 1.394 (3)
C1—H1C 0.9800 C31—H31 0.9500
C4—C5 1.430 (3) C32—C33 1.393 (3)
C5—C6 1.358 (3) C32—H32 0.9500
C6—H6 0.9500 C51—C52 1.450 (4)
C12—C13 1.373 (3) C51—H51A 0.9900
C12—H12 0.9500 C51—H51B 0.9900
C13—C14 1.375 (3) C52—H52A 0.9800
C13—H13 0.9500 C52—H52B 0.9800
C14—C15 1.384 (3) C52—H52C 0.9800
C14—H14 0.9500 C61—C62 1.442 (5)
C15—C16 1.387 (3) C61—H61A 0.9900
C15—H15 0.9500 C61—H61B 0.9900
C16—C17 1.468 (3) C62—H62A 0.9800
C17—C18 1.391 (3) C62—H62B 0.9800
C17—C22 1.407 (3) C62—H62C 0.9800
C22—Rh1—C33 84.55 (7) C18—C19—C20 120.18 (19)
C22—Rh1—N11 81.84 (7) C18—C19—H19 119.9
C33—Rh1—N11 92.97 (7) C20—C19—H19 119.9
C22—Rh1—N22 96.04 (7) C19—C20—C21 120.44 (19)
C33—Rh1—N22 81.34 (7) C19—C20—H20 119.8
N11—Rh1—N22 174.11 (6) C21—C20—H20 119.8
C22—Rh1—O51 172.81 (7) C20—C21—C22 120.71 (19)
C33—Rh1—O51 93.46 (6) C20—C21—H21 119.6
N11—Rh1—O51 91.38 (6) C22—C21—H21 119.6
N22—Rh1—O51 90.48 (6) C21—C22—C17 117.82 (17)
C22—Rh1—N1 94.13 (6) C21—C22—Rh1 128.53 (14)
C33—Rh1—N1 176.92 (7) C17—C22—Rh1 113.63 (13)
N11—Rh1—N1 89.59 (6) N22—C23—C24 122.3 (2)
N22—Rh1—N1 96.06 (6) N22—C23—H23 118.8
O51—Rh1—N1 88.18 (5) C24—C23—H23 118.8
C51—O51—Rh1 127.90 (14) C23—C24—C25 118.4 (2)
C51—O51—H1 110.9 (17) C23—C24—H24 120.8
Rh1—O51—H1 101.5 (17) C25—C24—H24 120.8
C61—O61—H2 113 (4) C26—C25—C24 119.8 (2)
C2—N1—C6 116.01 (16) C26—C25—H25 120.1
C2—N1—Rh1 124.55 (13) C24—C25—H25 120.1
C6—N1—Rh1 119.42 (12) C25—C26—C27 119.8 (2)
C2—N3—C4 126.26 (16) C25—C26—H26 120.1
C2—N3—H3 116.9 C27—C26—H26 120.1
C4—N3—H3 116.9 N22—C27—C26 119.99 (19)
C12—N11—C16 119.82 (17) N22—C27—C28 114.08 (17)
C12—N11—Rh1 124.86 (13) C26—C27—C28 125.92 (19)
C16—N11—Rh1 115.27 (12) C29—C28—C33 121.12 (19)
C23—N22—C27 119.70 (17) C29—C28—C27 123.58 (19)
C23—N22—Rh1 125.17 (14) C33—C28—C27 115.30 (16)
C27—N22—Rh1 114.94 (13) C30—C29—C28 119.8 (2)
C5—C1—H1A 109.5 C30—C29—H29 120.1
C5—C1—H1B 109.5 C28—C29—H29 120.1
H1A—C1—H1B 109.5 C29—C30—C31 120.1 (2)
C5—C1—H1C 109.5 C29—C30—H30 119.9
H1A—C1—H1C 109.5 C31—C30—H30 119.9
H1B—C1—H1C 109.5 C30—C31—C32 120.4 (2)
O2—C2—N1 123.48 (17) C30—C31—H31 119.8
O2—C2—N3 117.38 (17) C32—C31—H31 119.8
N1—C2—N3 119.14 (17) C33—C32—C31 121.0 (2)
O4—C4—N3 119.64 (18) C33—C32—H32 119.5
O4—C4—C5 126.16 (19) C31—C32—H32 119.5
N3—C4—C5 114.19 (17) C32—C33—C28 117.59 (18)
C6—C5—C4 117.37 (17) C32—C33—Rh1 128.18 (15)
C6—C5—C1 123.66 (18) C28—C33—Rh1 114.23 (13)
C4—C5—C1 118.96 (18) O51—C51—C52 114.3 (2)
C5—C6—N1 126.91 (17) O51—C51—H51A 108.7
C5—C6—H6 116.5 C52—C51—H51A 108.7
N1—C6—H6 116.5 O51—C51—H51B 108.7
N11—C12—C13 122.1 (2) C52—C51—H51B 108.7
N11—C12—H12 119.0 H51A—C51—H51B 107.6
C13—C12—H12 119.0 C51—C52—H52A 109.5
C12—C13—C14 118.9 (2) C51—C52—H52B 109.5
C12—C13—H13 120.5 H52A—C52—H52B 109.5
C14—C13—H13 120.5 C51—C52—H52C 109.5
C13—C14—C15 119.3 (2) H52A—C52—H52C 109.5
C13—C14—H14 120.4 H52B—C52—H52C 109.5
C15—C14—H14 120.4 O61—C61—C62 118.3 (3)
C14—C15—C16 120.0 (2) O61—C61—H61A 107.7
C14—C15—H15 120.0 C62—C61—H61A 107.7
C16—C15—H15 120.0 O61—C61—H61B 107.7
N11—C16—C15 119.87 (18) C62—C61—H61B 107.7
N11—C16—C17 113.66 (16) H61A—C61—H61B 107.1
C15—C16—C17 126.47 (18) C61—C62—H62A 109.5
C18—C17—C22 121.06 (18) C61—C62—H62B 109.5
C18—C17—C16 123.36 (18) H62A—C62—H62B 109.5
C22—C17—C16 115.59 (16) C61—C62—H62C 109.5
C19—C18—C17 119.8 (2) H62A—C62—H62C 109.5
C19—C18—H18 120.1 H62B—C62—H62C 109.5
C17—C18—H18 120.1
C6—N1—C2—O2 −176.78 (19) C19—C20—C21—C22 −0.6 (3)
Rh1—N1—C2—O2 2.0 (3) C20—C21—C22—C17 0.0 (3)
C6—N1—C2—N3 3.7 (3) C20—C21—C22—Rh1 −178.63 (14)
Rh1—N1—C2—N3 −177.51 (13) C18—C17—C22—C21 0.9 (3)
C4—N3—C2—O2 177.57 (19) C16—C17—C22—C21 −179.34 (16)
C4—N3—C2—N1 −2.9 (3) C18—C17—C22—Rh1 179.69 (16)
C2—N3—C4—O4 −179.81 (19) C16—C17—C22—Rh1 −0.5 (2)
C2—N3—C4—C5 −0.1 (3) C27—N22—C23—C24 0.0 (3)
O4—C4—C5—C6 −178.4 (2) Rh1—N22—C23—C24 −174.60 (17)
N3—C4—C5—C6 1.9 (3) N22—C23—C24—C25 0.1 (4)
O4—C4—C5—C1 2.3 (3) C23—C24—C25—C26 0.1 (4)
N3—C4—C5—C1 −177.40 (18) C24—C25—C26—C27 −0.2 (4)
C4—C5—C6—N1 −1.0 (3) C23—N22—C27—C26 −0.2 (3)
C1—C5—C6—N1 178.31 (19) Rh1—N22—C27—C26 174.94 (16)
C2—N1—C6—C5 −1.9 (3) C23—N22—C27—C28 −179.02 (18)
Rh1—N1—C6—C5 179.19 (16) Rh1—N22—C27—C28 −3.9 (2)
C16—N11—C12—C13 0.1 (3) C25—C26—C27—N22 0.3 (3)
Rh1—N11—C12—C13 177.28 (17) C25—C26—C27—C28 179.0 (2)
N11—C12—C13—C14 0.2 (4) N22—C27—C28—C29 −177.02 (19)
C12—C13—C14—C15 −0.2 (4) C26—C27—C28—C29 4.3 (3)
C13—C14—C15—C16 0.0 (4) N22—C27—C28—C33 3.2 (3)
C12—N11—C16—C15 −0.3 (3) C26—C27—C28—C33 −175.5 (2)
Rh1—N11—C16—C15 −177.76 (16) C33—C28—C29—C30 −0.4 (3)
C12—N11—C16—C17 178.46 (17) C27—C28—C29—C30 179.8 (2)
Rh1—N11—C16—C17 1.0 (2) C28—C29—C30—C31 0.3 (3)
C14—C15—C16—N11 0.3 (3) C29—C30—C31—C32 0.3 (4)
C14—C15—C16—C17 −178.3 (2) C30—C31—C32—C33 −0.9 (3)
N11—C16—C17—C18 179.47 (18) C31—C32—C33—C28 0.7 (3)
C15—C16—C17—C18 −1.9 (3) C31—C32—C33—Rh1 −178.48 (16)
N11—C16—C17—C22 −0.3 (3) C29—C28—C33—C32 −0.1 (3)
C15—C16—C17—C22 178.3 (2) C27—C28—C33—C32 179.67 (18)
C22—C17—C18—C19 −1.2 (3) C29—C28—C33—Rh1 179.23 (16)
C16—C17—C18—C19 179.0 (2) C27—C28—C33—Rh1 −1.0 (2)
C17—C18—C19—C20 0.6 (3) Rh1—O51—C51—C52 −94.8 (2)
C18—C19—C20—C21 0.3 (3)

(3) (OC-6-42)-Ethanol(5-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ido-κN1)bis[2-(pyridin-2-yl)phenyl-κ2N,C1]rhodium(III) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O51—H1···O2 0.83 (1) 1.72 (2) 2.527 (2) 164 (2)
N3—H3···O2i 0.88 1.99 2.854 (2) 165
O61—H2···O4ii 0.84 (1) 2.01 (4) 2.792 (3) 156 (4)

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, y+1/2, z.

References

  1. Badura, D. & Vahrenkamp, H. (2002). Inorg. Chem. 41, 6020–6027. [DOI] [PubMed]
  2. Bieda, R., Ott, I., Dobroschke, M., Prokop, A., Gust, R. & Sheldrick, W. S. (2009). J. Inorg. Biochem. 103, 698–708. [DOI] [PubMed]
  3. Blasberg, F., Bats, J. W., Wagner, M. & Lerner, H.-W. (2011). Acta Cryst. E67, m1837–m1838. [DOI] [PMC free article] [PubMed]
  4. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
  5. Cross, R. J., Kennedy, A. R., Manojlović-Muir, L. & Muir, K. W. (1995). J. Organomet. Chem. 493, 243–249.
  6. Faggiani, R., Lippert, B., Lock, C. J. L. & Pfab, R. (1981). Inorg. Chem. 20, 2381–2386.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Kashima, A., Sakate, M., Ota, H., Fuyuhiro, A., Sunatsuki, Y. & Suzuki, T. (2015). Chem. Commun. 51, 1889–1892. [DOI] [PubMed]
  9. Khutia, A., Sanz Miguel, P. J. & Lippert, B. (2011). Chem. Eur. J. 17, 4195–4204. [DOI] [PubMed]
  10. Krämer, R., Polborn, K. & Beck, W. (1991). J. Organomet. Chem. 410, 110–116.
  11. Rauterkus, M. J. & Krebs, B. (2004). Angew. Chem. Int. Ed. 43, 1300–1303. [DOI] [PubMed]
  12. Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
  13. Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
  14. Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
  15. Sakate, M., Kashima, A., Hosoda, H., Ota, H., Sunatsuki, Y., Fuyuhiro, A. & Suzuki, T. (2016). Inorg. Chim. Acta. In the press. doi: 10.1016/j.ica.2016.01.023.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  18. Sprouse, S., King, K. A., Spellane, P. J. & Watts, R. J. (1984). J. Am. Chem. Soc. 106, 6647–6653.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2, 3, global. DOI: 10.1107/S2056989016004837/is5448sup1.cif

e-72-00543-sup1.cif (4.1MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989016004837/is54481sup5.hkl

e-72-00543-1sup5.hkl (375.3KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989016004837/is54482sup6.hkl

e-72-00543-2sup6.hkl (493KB, hkl)

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989016004837/is54483sup7.hkl

e-72-00543-3sup7.hkl (514.6KB, hkl)

CCDC references: 1469935, 1469934, 1469933

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES