Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Mar 31;72(Pt 4):575–582. doi: 10.1107/S2056989016005089

Crystal structures of three N-(aryl­sulfon­yl)-4-fluoro­benzamides

P A Suchetan a,*,, S Naveen b, N K Lokanath c, K S Srivishnu d, G M Supriya d, H N Lakshmikantha d
PMCID: PMC4910346  PMID: 27375892

The crystal structures of three N-(aryl­sulfon­yl)-4-fluoro­benzamides, namely 4-fluoro-N-(2-methyl­phenyl­sulfon­yl)­benzamide, (I), N-(2-chloro­phenyl­sulfon­yl)-4-fluoro­benzamide, (II), and N-(4-chloro­phenyl­sulfon­yl)-4-fluoro­benzamide monohydrate, (III), are described and compared with related structures. The conformation of the three mol­ecules is very similar with the aromatic rings being inclined to one another by 82.83 (11) and 85.01 (10)° in the two independent mol­ecules of (I), 89.91 (10)° in (II) and 81.82 (11)° in (III).

Keywords: crystal structure, N-(aryl­sulfon­yl)aryl­amides, N—H⋯O hydrogen bonds, O—H⋯O hydrogen bonds, C—H⋯O inter­actions

Abstract

The crystal structures of three N-aryl­sulfonyl-4-fluoro­benzamides, namely 4-fluoro-N-(2-methyl­phenyl­sulfon­yl)benzamide, C14H12FNO3S, (I), N-(2-chloro­phenyl­sulfon­yl)-4-fluorobenzamide, C13H9ClFNO3S, (II), and N-(4-chloro­phenyl­sulfon­yl)-4-fluoro­benzamide monohydrate, C13H9ClFNO3S·H2O, (III), are described and compared with related structures. The asymmetric unit of (I) contains two independent mol­ecules (A and B), while that of (II) contains just one mol­ecule, and that of (III) contains a mol­ecule of water in addition to one main mol­ecule. The dihedral angle between the benzene rings is 82.83 (11)° in mol­ecule A and 85.01 (10)° in mol­ecule B of (I), compared to 89.91 (10)° in (II) and 81.82 (11)° in (III). The crystal structure of (I) features strong N—H⋯O hydrogen bonds between the A and B mol­ecules, resulting in an R 4 4(16) tetra­meric unit. These tetra­meric units are connected into sheets in the bc plane by various C—H⋯O inter­actions, and adjacent sheets are further inter­linked via C—H⋯πar­yl inter­actions, forming a three-dimensional architecture. The crystal structure is further stabilized by πar­yl–πar­yl and S=O⋯πar­yl inter­actions. In the crystal of (II), mol­ecules are connected into R 2 2(8) and R 2 2(14) dimers via N—H⋯O hydrogen bonds and C—H⋯O inter­actions, respectively; the dimers are further inter­connected via a weak C=O⋯πar­yl inter­action, leading to the formation of chains along [1-10]. In the crystal of (III), N—H⋯O and O—H⋯O hydrogen bonds involving both the main mol­ecule and the solvent water mol­ecule results in the formation of sheets parallel to the bc plane. The sheets are further connected by C—H⋯O inter­actions and weak C—Cl⋯πar­yl, C—F⋯πar­yl and S=O⋯πar­yl inter­actions, forming a three-dimensional architecture.

Chemical context  

Sulfonamide and amide moieties play a very significant role as key constituents in a number of biologically active mol­ecules (Mohan et al., 2013; Manojkumar et al., 2013; Hamad & Abed, 2014). In recent years, N-(aryl­sulfon­yl)aryl­amides have received much attention as they constitute an important class of drugs for Alzheimer’s disease (Hasegawa & Yamamoto, 2000), as well as antibacterial inhibitors of tRNA synthetases (Banwell et al., 2000), antagonists for angiotensin II (Chang et al., 1994) and leukotriene D4-receptors (Musser et al., 1990). Further, N-(aryl­sulfon­yl)aryl­amides are known to be potent anti-tumour agents against a broad spectrum of human tumour xenografts (colon, lung, breast, ovary and prostate) in nude mice (Mader et al., 2005). In view of the importance of N-(aryl­sulfon­yl)aryl­amides, the title compounds, (I), (II) and (III), were synthesized and we report herein on their crystal structures.graphic file with name e-72-00575-scheme1.jpg

Structural commentary  

The asymmetric unit of compound (I) contains two independent mol­ecules (A and B) (Fig. 1), that differ slightly in their mol­ecular conformations. The asymmetric unit of compound (II) (Fig. 2) contains one mol­ecule, while compound (III) (Fig. 3) crystallizes as a water monosolvate. In mol­ecules A and B of (I), the ortho-methyl substituent on the benzene­sulfonyl ring is syn to the N—H bond in the central –C–SO2–N–C(O)– segment (Fig. 1). This is similar to the syn conformation observed for the N—H bond in the central –C–SO2–N–C(O)– segment with respect to the ortho-chloro substitution on the benzene­sulfonyl ring of (II). The dihedral angle between the benzene rings is 82.83 (11)° in mol­ecule A and 85.01 (10)° in mol­ecule B of (I), compared to 89.91 (10)° in (II) and 81.82 (11)° in (III). Further, in (I) the dihedral angles between the benzoic acid ring and the central C8–C7(O3)–N1–S1 segment are 28.99 (1) and 23.81 (9)° in mol­ecules A and B, respectively, while it is 10.41 (10)° in (II) and 21.23 (10)° in (III). The dihedral angles between the sulfonamide ring and the C7(O3)–N1–S1–C1 segment are, respectively, 68.67 (12) and 77.31 (10)° in mol­ecules A and B of (I). The corresponding dihedral angle in (II) is 70.77 (11)°, whereas in (III) the value is much less, viz 48.03 (12)°. An intra­molecular C14B–-H14B⋯O2B hydrogen bond (Fig.1 and Table 1) is observed in mol­ecule B of (I), with an S(6) ring motif.

Figure 1.

Figure 1

A view of the mol­ecular structure of the two independent mol­ecules (A and B) of compound (I), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2.

Figure 2

A view of the mol­ecular structure of compound (II), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 3.

Figure 3

A view of the mol­ecular structure of compound (III), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg is the centroid of the fluoro­benzene ring of mol­ecule B of (I).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O1B 0.81 (3) 2.12 (3) 2.918 (2) 167 (2)
N1B—H1B⋯O1A i 0.83 (3) 2.02 (3) 2.828 (3) 162 (3)
C6A—H6A⋯O3B 0.93 2.57 3.313 (3) 137
C10B—H10B⋯O1B ii 0.93 2.59 3.376 (2) 143
C10B—H10B⋯O3B ii 0.93 2.46 3.215 (2) 139
C4B—H4BCg iii 0.93 2.72 3.646 (2) 173
C14B—H14B⋯O2B 0.96 2.45 3.058 (3) 121

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

The crystal structure of (I), features two strong N—H⋯O hydrogen bonds, namely, N1A—H1A⋯O1B and N1B—H1B⋯O1A hydrogen bonds (Table 1) between the A and B mol­ecules, resulting in a tetra­meric unit (Fig. 4). The unitary level graph-set notation for each hydrogen bond is D(2), while in the second level the tetra­meric unit has a graph-set motif of R 4 4(16). Adjacent tetra­mers are connected into sheets in the bc plane (Fig. 4) via C6A—H6A⋯O3B, C10B—H10B⋯O1B and C10B—H10B⋯O3B inter­actions (Table 1). Adjacent sheets are further inter­connected via C4B—H4B⋯πar­yl inter­actions (involving the centroid of the fluoro­benzoyl ring of mol­ecule B) (Fig. 5 and Table 1) to form chains along the a axis, so forming a three-dimensional architecture. The crystal structure of (I), is further stabilized by πar­yl–πar­yl inter­actions (Fig. 6) [Cg1⋯Cg2 = 3.7413 (12) Å; Cg1 and Cg2 are the centroids of the fluoro­benzoyl rings of mol­ecules A and B, respectively] and also by weak S1A=O2A⋯πar­yl inter­actions [O⋯Cg3 = 3.7991 (19) Å; Cg3 is the centroid of the benzene­sulfonyl ring of mol­ecule B].

Figure 4.

Figure 4

Crystal packing of (I), displaying N—H⋯O hydrogen bonds and C—H⋯O inter­molecular inter­actions (dashed lines), which result in the formation of sheets parallel to the bc plane.

Figure 5.

Figure 5

C—H⋯πar­yl inter­actions (dashed lines) displayed in (I).

Figure 6.

Figure 6

π–π inter­actions (dashed lines) displayed in (I).

In the crystal of (II), mol­ecules are connected into Inline graphic(8) dimers via N1—H1⋯O2 hydrogen bonds (Fig. 7 a and Table 2), and the dimers are further inter­connected via C13—H13⋯O2 inter­actions (Fig. 7 a and Table 2) with an Inline graphic(14) graph-set motif. Weak C7=O3⋯πar­yl inter­actions [O⋯Cg = 3.9157 (19) Å; Cg is the centroid of the fluoro­benzoyl ring] connect these dimers, thus forming a one-dimensional architecture (Fig. 7 b).

Figure 7.

Figure 7

Crystal packing of (II): (a)display of Inline graphic(8) and Inline graphic(14) dimers formed via N—H⋯O hydrogen bonds and C—H⋯O inter­actions, both shown as dashed lines; (b) formation of one-dimensional architecture.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.82 (3) 2.16 (3) 2.968 (2) 172 (2)
C13—H13⋯O2i 0.93 2.40 3.194 (2) 144

Symmetry code: (i) Inline graphic.

In the crystal of (III), mol­ecules are connected via bridging water mol­ecules, through strong N1—H1⋯O4, O4—H1O4⋯O1, O4—H2O4⋯O2 and O4—H2O4⋯O3 hydrogen bonds (Table 3), resulting in the formation of sheets parallel to the bc plane (Figs. 8 and 9). The sheets are further connected by C5—H5⋯O1 inter­actions, forming C6 chains (Table 3) running parallel to the c axis (Fig. 10). The crystal structure is also stabilized by several weak C—H⋯π inter­actions, C4—Cl1⋯Cg1 [Cl⋯Cg1 = 3.7513 (11) Å], C11—F1⋯Cg2 [F1⋯Cg2 = 3.8674 (17) Å] and S1=O2⋯Cg1 inter­actions [O2⋯Cg1 = 3.2039 (17) Å] (Cg1 and Cg2 are the centroids of the benzene­sulfonyl ring and fluoro­benzoyl rings, respectively), forming a complex three-dimensional architecture (Fig. 11).

Table 3. Hydrogen-bond geometry (Å, °) for (III) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.83 (3) 1.91 (3) 2.733 (3) 171 (2)
O4—H1O4⋯O1i 0.79 (3) 2.25 (3) 2.884 (2) 138 (3)
O4—H2O4⋯O2ii 0.82 (2) 2.29 (3) 2.955 (2) 139 (3)
O4—H2O4⋯O3ii 0.82 (2) 2.16 (3) 2.841 (2) 141 (3)
C5—H5⋯O1iii 0.93 2.54 3.124 (3) 121

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 8.

Figure 8

Crystal packing of (III), displaying an infinite two-dimensional sheet parallel to the bc plane formed via N—H⋯O and various O—H⋯O hydrogen bonds (dashed lines).

Figure 9.

Figure 9

Crystal packing of (III) when viewed along the b axis; adjacent two-dimensional sheets are seen.

Figure 10.

Figure 10

Display of C5—H5⋯O1 C(6) chains (dashed lines) running parallel to the c axis in (III).

Figure 11.

Figure 11

Display of various weak inter­actions (dashed lines) in the crystal structure of (III).

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.37, last update February 2016; Groom & Allen, 2014) for similar compounds viz N-(aryl­sulfon­yl)-4-(substituted)benzamides, gave 14 hits. These fourteen compounds along with the three title compounds, (I)–(III), are grouped into three series; series 1: N-(2-methyl­phenyl­sulfon­yl)benzamide, N-(2-methyl­phen­yl­sulfon­yl)-4-(chloro/meth­yl/nitro/meth­oxy)benzamides and (I), series 2: N-(2-chloro­phenyl­sulfon­yl)benzamide, N-(2-chloro­phenyl­sulfon­yl)-4-(chloro/meth­yl/nitro/meth­oxy)benzamides and (II), and series 3: N-(4-chloro­phenyl­sulfon­yl)benzamide, N-(4-chloro­phenyl­sulfon­yl)-4-(chloro/meth­yl/nitro)benzamides and (III).

Series 1: In series 1 (Table 4), the asymmetric units of three compounds, namely, N-(2-methyl­phenyl­sulfon­yl)benzamide (Suchetan et al., 2010d ), N-(2-methyl­phenyl­sulfon­yl)-4-nitro­benzamide (Suchetan et al., 2011b ) and N-(2-methyl­phenyl­sulfon­yl)-4-meth­oxy­benzamide (Sreenivasa et al., 2014a ) contain one mol­ecule, while those of N-(2-methyl­phenyl­sulfon­yl)-4-chloro­benzamide (Suchetan et al., 2010e ), N-(2-methyl­phenyl­sulfon­yl)-4-methyl­benzamide (Gowda et al., 2010a ) and N-(2-methyl­phenyl­sulfon­yl)-4-fluoro­benzamide (I) contain two mol­ecules. In all of the compounds of series 1, the conformation of the ortho-methyl group on the benzene­sulfonyl ring is syn to the N—H bond in the central –C–SO2--N–C(O)– segment. The values of the dihedral angle between the two aromatic rings in the mol­ecules of series 1 fall in the range 73.9 (1)– 89.4 (1)°, the smallest dihedral angle being in N-(2-methyl­phenyl­sulfon­yl)benzamide and the largest in N-(2-methyl­phenyl­sulfon­yl)-4-chloro­benzamide (Table 4). Comparison of the inter­molecular inter­actions displayed in the crystal structures of compounds in this series reveals that, except for the meth­oxy- and fluoro-substituted compounds, the crystal structures all display N—H⋯O(S) hydrogen bonds, while the meth­oxy- and fluoro-substituted compounds display other weak inter­actions of the type C—H⋯O, C—H⋯πar­yl, πar­yl–πar­yl in addition to the N—H⋯O(S) hydrogen bonds. However, except for compound (I), all the compounds display one-dimensional supra­molecular chains, whereas in (I), the supra­molecular architecture is three-dimensional.

Table 4. Comparison of various parameters (°) in the crystal structures of series 1: N-(2-methyl­phenyl­sulfon­yl)-para-substituted-aryl­amides.

Parameters H Cl CH3 NO2 OCH3 F
Crystal System Ortho­rhom­bic Triclinic Triclinic Monoclinic Monoclinic Monoclinic
Z 1 2 2 1 1 2
Orientation of 2-CH3 group to the N—H bond syn syn, syn syn, syn syn syn syn, syn
Angle between aromatic rings 73.9 (1) 89.4 (1), 82.4 (1) 88.1 (1), 83.5 (1) 83.8 (2) 80.81 (1) 82.83 (11), 85.01 (10)
Inter­molecular inter­actions N—H⋯O(S) N—H⋯O(S) N—H⋯O(S) N—H⋯O(S) N—H⋯O(S), C—H⋯O(S), π–π N—H⋯O(S), C—H⋯O(S), C—H⋯π, π–π, S=O⋯π
Supra­molecular architecture 0D chains 0D 0D chains 0D chains 1D chains 3D

Series 2: The asymmetric units of all of the compounds in series 2 (Table 5) contain one mol­ecule and the conformation of the ortho-chloro substituent on the benzene­sulfonyl ring is syn to the N—H bond in the central –C–SO2–N–C(O)– segment. The values of the dihedral angle between the two aromatic rings in the mol­ecules fall in the range 73.3 (1)–89.91 (10)°, which is almost the same as in series 1, the smallest being in N-(2-chloro­phenyl­sulfon­yl)benzamide (Gowda et al., 2010b ) and the largest in N-(2-chloro­phenyl­sulfon­yl)-4-fluoro­benzamide (II) (Table 5). The crystal structures of N-(2-chloro­phenyl­sulfon­yl)-benzamide, N-(2-chloro­phenyl­sulfon­yl)-4-chloro­benzamide (Suchetan et al., 2011c ) and N-(2-chloro­phenyl­sulfon­yl)-4-methyl­benzamide (Gowda et al., 2010c ) display zero-dimensional architectures featuring inversion-related Inline graphic(8) dimers formed via N—H⋯O(S) hydrogen bonds, while strong N—H⋯O(S) hydrogen bonds in N-(2-chloro­phenyl­sulfon­yl)-4-nitro­benzamide (Suchetan et al., 2011d ) lead to one-dimensional chains. Similar to that observed in series 1, the meth­oxy- and fluoro-substituted compounds in series 2 show diversity in their inter­molecular inter­actions. N-(2-chloro­phenyl­sulfon­yl)-4-meth­oxy­benzamide (Sreenivasa et al., 2014b ) features structure-directing N—H⋯O(S) and C—H⋯O(S) hydrogen bonds and weak πar­yl–πar­yl inter­actions, resulting in a two-dimensional structure. However, in N-(2-chloro­phenyl­sulfon­yl)-4-fluoro­benzamide (II), N—H⋯O(S) and C—H⋯O(S) hydrogen bonds (with no structure-directing characteristics) between mol­ecules form inversion-related dimers, and these dimers are inter­connected via C=O⋯πar­yl inter­actions, forming a one-dimensional architecture.

Table 5. Comparison of various parameters (°) in the crystal structures of series 2: N-(2-chloro­phenyl­sulfon­yl)-para-substituted-aryl­amides.

Parameters H Cl CH3 NO2 OCH3 F
Crystal System Triclinic Triclinic Monoclinic Monoclinic Monoclinic Monoclinic
Z 1 1 1 1 1 1
Orientation of 2-Cl group to the N—H bond syn syn syn syn syn syn
Angle between aromatic rings 73.3 (1) 85.7 (1) 89.1 (2) 85.4 (1) 82.07 (1) 89.9 (1)
Inter­molecular inter­actions N—H⋯O(S) N—H⋯O(S) N—H⋯O(S) N—H⋯O(S) N—H⋯O(S), C—H⋯O(S), π–p N—H⋯O(S), C—H⋯O(S), C=O⋯π
Supra­molecular architecture 0D (ring motifs) 0D (ring motifs) 0D (ring motifs) 1D chains 2D 1D

Series 3: In series 3, the parent compound N-(4-chloro­phenyl­sulfon­yl)benzamide (Suchetan et al., 2010a ) crystallizes with two mol­ecules in the asymmetric unit, while N-(4-chloro­phenyl­sulfon­yl)-4-chloro­benzamide (Suchetan et al., 2010b ), N-(4-chloro­phenyl­sulfon­yl)-4-methyl­benzamide (Suchetan et al., 2010c ) and N-(4-chloro­phenyl­sulfon­yl)-4-nitro­benzamide (Suchetan et al., 2011a ) crystallize with one mol­ecule, and N-(4-chloro­phenyl­sulfon­yl)-4-fluoro­benzamide (III) crystallizes with one mol­ecule and a mol­ecule of water in the asymmetric unit. The values of the dihedral angle between the two aromatic rings in the mol­ecules are in the range 62.8 (1)–89.5 (1)°, the smallest value being for N-(4-chloro­phenyl­sulfon­yl)benzamide and the largest for N-(4-chloro­phenyl­sulfon­yl)-4-methyl­benzamide (Table 6). Except for compound (III), the crystals of all of the compounds feature N—H⋯O(S) hydrogen bonds, either forming Inline graphic(8) inversion dimers (zero-dimensional structure) or one-dimensional chains. Once again, the fluoro-substituted compound (III) displays a variety of hydrogen bonds and weak inter­actions (Tables 3 and 6), leading to a three-dimensional architecture.

Table 6. Comparison of various parameters (°) in the crystal structures of series 3: N-(4-chloro­phenyl­sulfon­yl)-para-substituted-aryl­amides.

Parameters H Cl CH3 NO2 F
Crystal System Triclinic Ortho­rhom­bic Ortho­rhom­bic Monoclinic Monoclinic
Z 2 1 1 1 1, H2O
Angle between aromatic rings 62.8 (1), 78.6 (1) 85.6 (1) 89.5 (1) 87.8 (1) 81.82 (11)
Inter­molecular inter­actions N—H⋯O(S) N—H⋯O(S) N—H⋯O(C) N—H⋯O(S) N—H⋯O(W), O(W)—H⋯O(S), O(W)—H⋯O(C), C—H⋯O(S), C—Cl⋯π, C—F⋯π, S=O⋯π
Supra­molecular architecture 0D (ring motifs) 0D chains 0D (ring motifs) D chains 3D

Synthesis and crystallization  

Compounds (I)–(III) were prepared by refluxing a mixture of 4-fluoro­benzoic acid, the corresponding substituted benzene­sulfonamides and phospho­rousoxychloride for 3 h on a water bath. The resultant mixtures were cooled and poured into ice-cold water. The solids obtained were filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solutions. The compounds were later re-precipitated by acidifying the filtered solutions with dilute HCl. They were filtered, dried and recrystallized. [Melting point (m.p.) of (I) = 410 K, (II) = 428 K and (III) = 456 K]. Prism-like, colourless single crystals of all three of the compounds were obtained from slow evaporation of the respective solutions of the compounds in methanol (with few drops of water).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 7. The H atoms of the NH groups in (I)–(III) were located in difference Fourier maps and freely refined. The H atoms of the water mol­ecule in (III) were located in a difference Fourier map and were refined with the bond length restraint O—H = 0.83 (3) Å. The other H atoms were positioned with idealized geometry using a riding model: C—H = 0.93–0.96 Å, with U iso = 1.5U eq(C-meth­yl) and 1.2U eq(C) for other H atoms. In the final cycles of refinement, reflections (0 1 1), (0 0 2) and (Inline graphic 0 20) in (I), (0 0 2) in (II) and (2 0 0) in (III) were omitted due to large differences in F 2 obs and F 2 calc.

Table 7. Experimental details.

  (I) (II) (III)
Crystal data
Chemical formula C14H12FNO3S C13H9ClFNO3S C13H9ClFNO3S·H2O
M r 293.31 313.72 331.74
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, C2/c
Temperature (K) 173 173 173
a, b, c (Å) 10.0259 (3), 12.4289 (3), 21.6241 (6) 7.9009 (2), 9.0775 (3), 18.4216 (5) 45.5989 (11), 4.8853 (1), 12.6517 (3)
β (°) 92.443 (1) 99.801 (1) 94.481 (1)
V3) 2692.15 (13) 1301.92 (6) 2809.73 (11)
Z 8 4 8
Radiation type Cu Kα Cu Kα Cu Kα
μ (mm−1) 2.32 4.29 4.06
Crystal size (mm) 0.28 × 0.26 × 0.21 0.30 × 0.27 × 0.23 0.28 × 0.25 × 0.23
 
Data collection
Diffractometer Bruker APEXII Bruker APEXII Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2009) Multi-scan (SADABS; Bruker, 2009) Multi-scan (SADABS; Bruker, 2009)
T min, T max 0.548, 0.614 0.317, 0.373 0.369, 0.393
No. of measured, independent and observed [I > 2σ(I)] reflections 26667, 4404, 4165 10032, 2124, 2074 11176, 2320, 2030
R int 0.042 0.042 0.054
(sin θ/λ)max−1) 0.587 0.585 0.584
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.121, 1.00 0.041, 0.124, 0.97 0.039, 0.118, 0.94
No. of reflections 4404 2124 2320
No. of parameters 371 185 205
No. of restraints 0 0 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.46 0.37, −0.50 0.34, −0.35

Computer programs: APEX2, SAINT-Plus and XPREP (Bruker, 2009), SHELXS97 and SHELXL97 (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, II, III, global. DOI: 10.1107/S2056989016005089/su5287sup1.cif

e-72-00575-sup1.cif (70.2KB, cif)

CCDC references: 1470505, 1470504, 1470503

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are thankful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction data. GMS thanks the Vision Group on Science and Technology (VGST), Karnataka, India, for financial support under its SPiCE project scheme.

supplementary crystallographic information

Crystal data

C13H9ClFNO3S·H2O Prism
Mr = 331.74 Dx = 1.568 Mg m3
Monoclinic, C2/c Melting point: 456 K
Hall symbol: -C 2yc Cu Kα radiation, λ = 1.54178 Å
a = 45.5989 (11) Å Cell parameters from 163 reflections
b = 4.8853 (1) Å θ = 5.8–64.3°
c = 12.6517 (3) Å µ = 4.06 mm1
β = 94.481 (1)° T = 173 K
V = 2809.73 (11) Å3 Prism, colourless
Z = 8 0.28 × 0.25 × 0.23 mm
F(000) = 1360

Data collection

Bruker APEXII diffractometer 2030 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.054
Graphite monochromator θmax = 64.3°, θmin = 5.8°
phi and φ scans h = −52→51
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −5→5
Tmin = 0.369, Tmax = 0.393 l = −14→14
11176 measured reflections 1 standard reflections every 1 reflections
2320 independent reflections intensity decay: 0.1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0912P)2 + 2.087P] where P = (Fo2 + 2Fc2)/3
2320 reflections (Δ/σ)max = 0.001
205 parameters Δρmax = 0.34 e Å3
2 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.356285 (11) 0.64551 (10) 0.55127 (4) 0.0147 (2)
Cl1 0.261887 (12) −0.14924 (12) 0.34233 (4) 0.0273 (2)
O2 0.36322 (3) 0.8548 (3) 0.47847 (11) 0.0176 (4)
O1 0.34790 (3) 0.7192 (3) 0.65445 (11) 0.0195 (4)
F1 0.49577 (3) −0.3420 (3) 0.62191 (12) 0.0384 (4)
O3 0.39675 (3) 0.4091 (3) 0.40288 (11) 0.0207 (4)
O4 0.38058 (4) 0.1618 (4) 0.75835 (13) 0.0290 (4)
N1 0.38535 (4) 0.4484 (4) 0.57495 (14) 0.0161 (4)
C7 0.40210 (5) 0.3508 (4) 0.49595 (16) 0.0165 (5)
C8 0.42713 (5) 0.1710 (4) 0.53341 (17) 0.0174 (5)
C3 0.28843 (5) 0.1252 (5) 0.50950 (18) 0.0216 (5)
H3 0.2753 0.0371 0.5507 0.026*
C13 0.43853 (5) −0.0018 (5) 0.45932 (17) 0.0218 (5)
H13 0.4305 −0.0004 0.3895 0.026*
C2 0.30931 (5) 0.3027 (5) 0.55508 (17) 0.0206 (5)
H2 0.3105 0.3346 0.6278 0.025*
C1 0.32848 (4) 0.4331 (4) 0.49134 (16) 0.0155 (5)
C6 0.32692 (5) 0.3910 (5) 0.38239 (16) 0.0174 (5)
H6 0.3397 0.4821 0.3406 0.021*
C5 0.30619 (5) 0.2126 (5) 0.33712 (16) 0.0189 (5)
H5 0.3049 0.1814 0.2644 0.023*
C4 0.28742 (5) 0.0806 (5) 0.40070 (17) 0.0190 (5)
C9 0.43954 (5) 0.1702 (5) 0.63795 (18) 0.0241 (5)
H9 0.4321 0.2858 0.6878 0.029*
C10 0.46276 (5) −0.0009 (6) 0.66765 (19) 0.0295 (6)
H10 0.4712 −0.0013 0.7369 0.035*
C12 0.46171 (5) −0.1755 (5) 0.48843 (19) 0.0265 (6)
H12 0.4694 −0.2917 0.4393 0.032*
C11 0.47306 (5) −0.1710 (5) 0.5923 (2) 0.0264 (6)
H1O4 0.3743 (8) 0.011 (6) 0.761 (3) 0.067 (12)*
H1 0.3854 (6) 0.373 (6) 0.634 (2) 0.037 (8)*
H2O4 0.3812 (7) 0.229 (6) 0.8178 (19) 0.039 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0164 (3) 0.0130 (3) 0.0148 (3) 0.0011 (2) 0.0022 (2) −0.00059 (18)
Cl1 0.0245 (4) 0.0239 (4) 0.0326 (4) −0.0091 (2) −0.0040 (3) 0.0024 (2)
O2 0.0191 (8) 0.0126 (8) 0.0213 (8) 0.0000 (6) 0.0024 (6) 0.0004 (6)
O1 0.0221 (8) 0.0194 (8) 0.0173 (7) 0.0012 (7) 0.0040 (6) −0.0034 (6)
F1 0.0277 (8) 0.0398 (10) 0.0466 (9) 0.0179 (7) −0.0037 (7) 0.0018 (7)
O3 0.0240 (8) 0.0209 (8) 0.0173 (8) 0.0031 (7) 0.0034 (6) 0.0016 (6)
O4 0.0504 (12) 0.0206 (11) 0.0165 (8) −0.0034 (8) 0.0067 (8) −0.0021 (7)
N1 0.0180 (10) 0.0154 (10) 0.0149 (9) 0.0003 (8) 0.0004 (7) 0.0021 (7)
C7 0.0165 (11) 0.0135 (11) 0.0195 (11) −0.0041 (8) 0.0010 (8) −0.0018 (8)
C8 0.0145 (11) 0.0155 (11) 0.0225 (11) −0.0025 (8) 0.0030 (8) 0.0011 (8)
C3 0.0181 (11) 0.0233 (13) 0.0240 (12) −0.0016 (9) 0.0048 (9) 0.0060 (9)
C13 0.0210 (11) 0.0217 (13) 0.0227 (11) 0.0006 (10) 0.0017 (9) −0.0018 (9)
C2 0.0211 (12) 0.0232 (13) 0.0175 (11) 0.0012 (10) 0.0022 (9) 0.0013 (9)
C1 0.0156 (11) 0.0114 (11) 0.0195 (10) 0.0029 (9) 0.0014 (8) 0.0003 (8)
C6 0.0159 (11) 0.0176 (12) 0.0191 (10) 0.0016 (9) 0.0031 (8) 0.0031 (9)
C5 0.0183 (11) 0.0213 (12) 0.0168 (10) 0.0010 (9) 0.0001 (8) −0.0011 (9)
C4 0.0158 (11) 0.0133 (11) 0.0273 (11) −0.0003 (9) −0.0024 (8) 0.0010 (9)
C9 0.0224 (12) 0.0268 (14) 0.0230 (11) 0.0033 (10) 0.0005 (9) −0.0032 (9)
C10 0.0225 (12) 0.0397 (16) 0.0255 (12) 0.0043 (11) −0.0040 (9) 0.0016 (11)
C12 0.0227 (12) 0.0236 (14) 0.0335 (13) 0.0022 (10) 0.0045 (10) −0.0069 (10)
C11 0.0163 (12) 0.0251 (14) 0.0374 (13) 0.0061 (10) −0.0016 (10) 0.0050 (10)

Geometric parameters (Å, º)

S1—O2 1.4279 (15) C3—H3 0.9300
S1—O1 1.4346 (14) C13—C12 1.382 (3)
S1—N1 1.6466 (18) C13—H13 0.9300
S1—C1 1.763 (2) C2—C1 1.389 (3)
Cl1—C4 1.740 (2) C2—H2 0.9300
F1—C11 1.360 (3) C1—C6 1.390 (3)
O3—C7 1.217 (3) C6—C5 1.377 (3)
O4—H1O4 0.79 (3) C6—H6 0.9300
O4—H2O4 0.82 (2) C5—C4 1.380 (3)
N1—C7 1.389 (3) C5—H5 0.9300
N1—H1 0.84 (3) C9—C10 1.378 (3)
C7—C8 1.488 (3) C9—H9 0.9300
C8—C13 1.392 (3) C10—C11 1.375 (4)
C8—C9 1.397 (3) C10—H10 0.9300
C3—C2 1.380 (3) C12—C11 1.374 (3)
C3—C4 1.391 (3) C12—H12 0.9300
O2—S1—O1 119.70 (9) C2—C1—C6 121.5 (2)
O2—S1—N1 108.70 (9) C2—C1—S1 118.95 (16)
O1—S1—N1 104.43 (9) C6—C1—S1 119.53 (16)
O2—S1—C1 109.39 (9) C5—C6—C1 119.1 (2)
O1—S1—C1 107.77 (9) C5—C6—H6 120.4
N1—S1—C1 105.99 (10) C1—C6—H6 120.4
H1O4—O4—H2O4 109 (3) C6—C5—C4 119.3 (2)
C7—N1—S1 123.36 (15) C6—C5—H5 120.3
C7—N1—H1 122 (2) C4—C5—H5 120.3
S1—N1—H1 112 (2) C5—C4—C3 122.0 (2)
O3—C7—N1 122.4 (2) C5—C4—Cl1 118.63 (17)
O3—C7—C8 122.48 (19) C3—C4—Cl1 119.37 (17)
N1—C7—C8 115.13 (18) C10—C9—C8 120.4 (2)
C13—C8—C9 119.4 (2) C10—C9—H9 119.8
C13—C8—C7 117.45 (19) C8—C9—H9 119.8
C9—C8—C7 123.2 (2) C9—C10—C11 118.3 (2)
C2—C3—C4 118.7 (2) C9—C10—H10 120.8
C2—C3—H3 120.6 C11—C10—H10 120.8
C4—C3—H3 120.6 C11—C12—C13 117.9 (2)
C12—C13—C8 120.7 (2) C11—C12—H12 121.0
C12—C13—H13 119.6 C13—C12—H12 121.0
C8—C13—H13 119.6 F1—C11—C12 118.4 (2)
C3—C2—C1 119.4 (2) F1—C11—C10 118.3 (2)
C3—C2—H2 120.3 C12—C11—C10 123.3 (2)
C1—C2—H2 120.3
O2—S1—N1—C7 −45.29 (19) O1—S1—C1—C6 163.03 (17)
O1—S1—N1—C7 −174.12 (17) N1—S1—C1—C6 −85.63 (19)
C1—S1—N1—C7 72.20 (19) C2—C1—C6—C5 −1.0 (3)
S1—N1—C7—O3 1.5 (3) S1—C1—C6—C5 176.33 (16)
S1—N1—C7—C8 −178.80 (14) C1—C6—C5—C4 0.2 (3)
O3—C7—C8—C13 −20.8 (3) C6—C5—C4—C3 1.0 (3)
N1—C7—C8—C13 159.45 (19) C6—C5—C4—Cl1 −178.71 (16)
O3—C7—C8—C9 158.7 (2) C2—C3—C4—C5 −1.4 (3)
N1—C7—C8—C9 −21.0 (3) C2—C3—C4—Cl1 178.32 (18)
C9—C8—C13—C12 0.7 (3) C13—C8—C9—C10 −0.3 (3)
C7—C8—C13—C12 −179.7 (2) C7—C8—C9—C10 −179.8 (2)
C4—C3—C2—C1 0.5 (3) C8—C9—C10—C11 −0.6 (4)
C3—C2—C1—C6 0.7 (3) C8—C13—C12—C11 −0.2 (3)
C3—C2—C1—S1 −176.74 (17) C13—C12—C11—F1 179.7 (2)
O2—S1—C1—C2 −151.16 (17) C13—C12—C11—C10 −0.8 (4)
O1—S1—C1—C2 −19.5 (2) C9—C10—C11—F1 −179.3 (2)
N1—S1—C1—C2 91.82 (19) C9—C10—C11—C12 1.2 (4)
O2—S1—C1—C6 31.4 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O4 0.83 (3) 1.91 (3) 2.733 (3) 171 (2)
O4—H1O4···O1i 0.79 (3) 2.25 (3) 2.884 (2) 138 (3)
O4—H2O4···O2ii 0.82 (2) 2.29 (3) 2.955 (2) 139 (3)
O4—H2O4···O3ii 0.82 (2) 2.16 (3) 2.841 (2) 141 (3)
C5—H5···O1iii 0.93 2.54 3.124 (3) 121

Symmetry codes: (i) x, y−1, z; (ii) x, −y+1, z+1/2; (iii) x, −y+1, z−1/2.

References

  1. Banwell, M. G., Crasto, C. F., Easton, C. J., Forrest, A. K., Karoli, T., March, D. R., Mensah, L., Nairn, M. R., O’Hanlon, P. J., Oldham, M. D. & Yue, W. (2000). Bioorg. Med. Chem. Lett. 10, 2263–2266. [DOI] [PubMed]
  2. Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chang, L. L., Ashton, W. T., Flanagan, K. L., Chen, T. B., O’Malley, S. S., Zingaro, G. J., Siegl, P. K. S., Kivlighn, S. D., Lotti, V. J., Chang, R. S. L. & Greenlee, W. J. (1994). J. Med. Chem. 37, 4464–4478. [DOI] [PubMed]
  4. Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010a). Acta Cryst. E66, o747. [DOI] [PMC free article] [PubMed]
  5. Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010b). Acta Cryst. E66, o794. [DOI] [PMC free article] [PubMed]
  6. Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010c). Acta Cryst. E66, o1466. [DOI] [PMC free article] [PubMed]
  7. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  8. Hamad, A. S. & Abed, F. S. (2014). J. Appl. Chem, 3, 56–63.
  9. Hasegawa, T. & Yamamoto, H. (2000). Bull. Chem. Soc. Jpn, 73, 423–428.
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. Mader, M., Shih, C., Considine, E., De Dios, A., Grossman, C., Hipskind, P., Lin, H., Lobb, K., Lopez, B., Lopez, J., Cabrejas, L., Richett, M., White, W., Cheung, Y., Huang, Z., Reilly, J. & Dinn, S. (2005). Bioorg. Med. Chem. Lett. 15, 617–620. [DOI] [PubMed]
  12. Manojkumar, K. E., Sreenivasa, S., Mohan, N. R., Madhu Chakrapani Rao, T. & Harikrishna, T. (2013). J. Appl. Chem, 2, 730–737.
  13. Mohan, N. R., Sreenivasa, S., Manojkumar, K. E. & Chakrapani Rao, T. M. (2013). J. Appl. Chem. 2, 722–729.
  14. Musser, J. H., Kreft, A. F., Bender, R. H. W., Kubrak, D. M., Grimes, D., Carlson, R. P., Hand, J. M. & Chang, J. (1990). J. Med. Chem. 33, 240–245. [DOI] [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sreenivasa, S., Palakshamurthy, B. S., Madankumar, S., Lokanath, N. K. & Suchetan, P. A. (2014a). Acta Cryst. E70, o193. [DOI] [PMC free article] [PubMed]
  17. Sreenivasa, S., Palakshamurthy, B. S., Pampa, K. J., Lokanath, N. K. & Suchetan, P. A. (2014b). Acta Cryst. E70, o199. [DOI] [PMC free article] [PubMed]
  18. Suchetan, P. A., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o904. [DOI] [PMC free article] [PubMed]
  19. Suchetan, P. A., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o929. [DOI] [PMC free article] [PubMed]
  20. Suchetan, P. A., Foro, S. & Gowda, B. T. (2011c). Acta Cryst. E67, o146. [DOI] [PMC free article] [PubMed]
  21. Suchetan, P. A., Foro, S. & Gowda, B. T. (2011d). Acta Cryst. E67, o930. [DOI] [PMC free article] [PubMed]
  22. Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o766. [DOI] [PMC free article] [PubMed]
  23. Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o1253. [DOI] [PMC free article] [PubMed]
  24. Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010c). Acta Cryst. E66, o1501. [DOI] [PMC free article] [PubMed]
  25. Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010d). Acta Cryst. E66, o1024. [DOI] [PMC free article] [PubMed]
  26. Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010e). Acta Cryst. E66, o1997. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, III, global. DOI: 10.1107/S2056989016005089/su5287sup1.cif

e-72-00575-sup1.cif (70.2KB, cif)

CCDC references: 1470505, 1470504, 1470503

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES