Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Mar 15;72(Pt 4):498–501. doi: 10.1107/S2056989016004059

Crystal structure of di­aqua­bis­(N,N-di­ethyl­nicotinamide-κN 1)bis­(2,4,6-tri­methyl­benzoato-κO 1)cobalt(II)

Gülçin Şefiye Aşkın a, Hacali Necefoğlu b, Safiye Özkaya c, Raziye Çatak Çelik d, Tuncer Hökelek a,*
PMCID: PMC4910347  PMID: 27375874

The CoII atom in the crystal structure of di­aqua­bis­(N,N-di­ethyl­nicotinamide)­bis­(2,4,6-tri­methyl­benzoato)cobalt(II) is located on an inversion centre and exhibits a slightly distorted octa­hedral N2O4 coordination set. Hydrogen bonds of the type O—H⋯O and C—H⋯O lead to the formation of a three-dimensional network.

Keywords: crystal structure, cobalt(II), transition metal complexes of benzoic acid and nicotinamide derivatives

Abstract

The centrosymmetric mol­ecule in the monomeric title cobalt complex, [Co(C10H11O2)2(C10H14N2O)2(H2O)2], contains two water mol­ecules, two 2,4,6-tri­methyl­benzoate (TMB) ligands and two di­ethyl­nicotinamide (DENA) ligands. All ligands coordinate to the CoII atom in a monodentate fashion. The four O atoms around the CoII atom form a slightly distorted square-planar arrangement, with the distorted octa­hedral coordination sphere completed by two pyridine N atoms of the DENA ligands. The dihedral angle between the planar carboxyl­ate group and the adjacent benzene ring is 84.2 (4)°, while the benzene and pyridine rings are oriented at a dihedral angle of 38.87 (10)°. The water mol­ecules exhibit both intra­molecular (to the non-coordinating carboxyl­ate O atom) and inter­molecular (to the amide carbonyl O atom) O—H⋯O hydrogen bonds. The latter lead to the formation of layers parallel to (100), enclosing R 4 4(32) ring motifs. These layers are further linked via weak C—H⋯O hydrogen bonds, resulting in a three-dimensional network. One of the two ethyl groups of the DENA ligand is disordered over two sets of sites with an occupancy ratio of 0.490 (13):0.510 (13).

Chemical context  

N,N-Di­ethyl­nicotinamide (DENA), a nicotinic acid derivative, is an important respiratory stimulant (Bigoli et al., 1972). The crystal structure of the complex [Co(CH3CO2)2(DENA)2(H2O)2] [(II); Mikelashvili, 1982] is isostructural with the analogous Ni, Mn, Zn and Cd complexes (Sergienko et al., 1980). The structures of some complexes obtained from the reactions of transition metal(II) ions with DENA as ligand, e.g. [Cu2(DENA)2(C6H5COO)4] [(III); Hökelek et al., 1995], [Zn2(C7H5O3)4(DENA)2]·2H2O [(IV); Hökelek & Necefoğlu, 1996], [Mn(DENA)2(NCS)2] [(V); Bigoli et al., 1973a ], [Zn(DENA)2(NCS)2(H2O)2] [(VI); Bigoli et al., 1973b ] and [Cd(DENA)(SCN)2] [(VII); Bigoli et al., 1972], have been determined previously. In complex (V), DENA is a bidentate ligand, while in complexes (III), (IV), (VI) and (VII), DENA is a monodentate ligand. In complex (III), the benzoate ion acts as a bidentate ligand, whereas in complex (IV), two of the benzoate ions act as monodentate ligands, while the other two are bidentate, bridging the two ZnII atoms.

The structure–function–coordination relationships of aryl­carboxyl­ate ions in CoII complexes of benzoic acid derivatives may change depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand mol­ecule or solvent, and the pH conditions and temperature of synthesis (Shnulin et al., 1981; Nadzhafov et al., 1981; Antsyshkina et al., 1980; Adiwidjaja et al., 1978). When pyridine or its derivatives are used instead of water mol­ecules, the resulting structure is completely different (Catterick et al., 1974). In this context, we synthesized a CoII-containing compound with 2,4,6-tri­methyl­benzoate (TMB) and DENA ligands, namely di­aqua­bis­(N,N-di­ethyl­nico­tin­amide-κN 1)bis­(2,4,6-tri­methyl­benzoato-κO 1)cobalt(II), [Co(DENA)2(TMB)2(H2O)2], and report herein its crystal structure.graphic file with name e-72-00498-scheme1.jpg

Structural commentary  

The asymmetric unit of the mononuclear title complex contains one CoII atom located on an inversion centre, one TMB ligand, one DENA ligand and one water mol­ecule, with all ligands coordinating to the metal ion in a monodentate fashion (Fig. 1).

Figure 1.

Figure 1

The mol­ecular structure of the title complex with the atom-numbering scheme for the asymmetric unit. Unlabelled atoms are generated by symmetry code (1 − x, 1 − y, −z). Displacement ellipsoids are drawn at the 40% probability level. Intra­molecular O—H⋯O hydrogen bonds are shown as dashed lines.

The two carboxyl­ate O atoms (O2 and O2i) of the two symmetry-related TMB anions and the two symmetry-related water O atoms (O4 and O4i) form a slightly distorted square-planar arrangement around the Co1 atom. The slightly distorted octa­hedral coordination sphere is completed by the two pyridine N atoms (N1 and N1i) of the two symmetry-related DENA ligands in axial positions [symmetry code: (i) 1 − x, 1 − y, −z] (Fig. 1). The Co—O bond lengths for water oxygens atoms are by ca 0.1 Å longer than those involving the benzoate oxygen atoms. The Co—N bond length is the longest in the CoO4N2 octa­hedron (Table 1). The deviation of the O—Co—O and O—Co—N bond angles from ideal values is minute [range 87.66 (7) to 92.34 (7)° for cis angles; all trans angles are 180° due to symmetry]. The near equalities of the C1—O1 [1.245 (4) Å] and C1—O2 [1.254 (4) Å] bonds in the carboxyl­ate group indicate delocalized bonding arrangements, rather than localized single and double bonds. The dihedral angle between the planar carboxyl­ate group (O1/O2/C1) and the adjacent benzene ring A (C2–C7) is 84.2 (4)°, while the benzene (A) and pyridine rings (B) (N1/C11–C15) are inclined by a dihedral angle of 38.87 (10)°.

Table 1. Selected bond lengths (Å).

Co1—O2 2.0336 (18) Co1—N1 2.1913 (19)
Co1—O4 2.1561 (18)    

Supra­molecular features  

Intra­molecular O—Hw⋯Oc (w = water, c = non-coordinating carboxyl­ate O atom) hydrogen bonds (Table 2) link the water ligands to the TMB anions (Fig. 1). The other water H atom is involved in inter­molecular O—Hw⋯ODENA (ODENA = carbonyl O atom of N,N-di­ethyl­nicotinamide) hydrogen bonds (Table 2), leading to the formation of layers parallel to (100) enclosing Inline graphic(32) ring motifs (Fig. 2). The layers are further linked into a three-dimensional network structure via weak C—HTMB⋯Oc (TMB = 2,4,6-tri­methyl­benzoate) and C—HDENA ⋯ ODENA hydrogen bonds (Table 2), enclosing Inline graphic(7) ring motifs (Fig. 3).

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1W⋯O1i 0.80 (6) 1.87 (6) 2.634 (3) 160 (7)
O4—H2W⋯O3ii 0.76 (7) 2.10 (7) 2.850 (3) 170 (7)
C10—H10A⋯O1iii 0.96 2.43 3.365 (6) 165
C15—H15⋯O3iv 0.93 2.50 3.420 (4) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

Part of the crystal structure viewed approximately down [100]. Intra- and inter­molecular O—H⋯O hydrogen bonds, shown as dashed lines, enclose Inline graphic(32) ring motifs. Only one part of the disordered group and only H atoms involved in hydrogen bonding have been included for clarity.

Figure 3.

Figure 3

A partial view of the crystal packing of the title compound. The O—Hw⋯Oc, O—Hw⋯ODENA, C—HTMB⋯Oc and C—HDENA⋯ODENA (w = water, c = carboxyl­ate, DENA = N,N-di­ethyl­nicotinamide and TMB = 2,4,6-tri­methyl­benzoate) hydrogen bonds, enclosing Inline graphic(7) and Inline graphic(32) ring motifs, are shown as dashed lines (see Table 2). Only one part of the disordered group and only H atoms involved in hydrogen bonding have been included for clarity.

Synthesis and crystallization  

The title compound was prepared by the reaction of CoSO4·7H2O (1.41 g, 5 mmol) in H2O (100 ml) and N,N-di­ethyl­nicotinamide (1.78 g, 10 mmol) in H2O (10 ml) with sodium 2,4,6-tri­methyl­benzoate (1.86 g, 10 mmol) in H2O (150 ml). The mixture was filtered and set aside to crystallize at ambient temperature for three weeks, giving pink single crystals.

Refinement  

Experimental details including crystal data, data collection and refinement are summarized in Table 3. Atoms H1W and H2W (of the water molecule) were located in a difference Fourier map. Their coordinates were refined freely, with U iso(H) = 1.5U eq(O). C-bound H atoms were positioned geometrically, with C—H = 0.93, 0.96 and 0.97 Å for aromatic, methyl and methyl­ene H atoms, respectively, and constrained to ride on their parent atoms, with U iso(H) = k × U eq(C), where k = 1.5 for methyl H atoms and k = 1.2 for other H atoms. The disordered ethyl group (C19, C20) was refined over two sets of sites with distance restraints and SIMU and DELU restraints (Sheldrick, 2008). The refined occupancy ratio of the two orientations is 0.490 (13):0.510 (13).

Table 3. Experimental details.

Crystal data
Chemical formula [Co(C10H11O2)2(C10H14N2O)2(H2O)2]
M r 777.80
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.9646 (4), 10.8636 (3), 15.6297 (5)
β (°) 111.596 (3)
V3) 2046.79 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.47
Crystal size (mm) 0.45 × 0.40 × 0.33
 
Data collection
Diffractometer Bruker SMART BREEZE CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.754, 0.861
No. of measured, independent and observed [I > 2σ(I)] reflections 42492, 5124, 3701
R int 0.041
(sin θ/λ)max−1) 0.670
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.063, 0.155, 1.07
No. of reflections 5124
No. of parameters 270
No. of restraints 42
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.63, −0.39

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016004059/wm5273sup1.cif

e-72-00498-sup1.cif (32.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016004059/wm5273Isup2.hkl

e-72-00498-Isup2.hkl (245.9KB, hkl)

CCDC reference: 1462884

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization).

supplementary crystallographic information

Crystal data

[Co(C10H11O2)2(C10H14N2O)2(H2O)2] F(000) = 826
Mr = 777.80 Dx = 1.262 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9990 reflections
a = 12.9646 (4) Å θ = 2.3–28.4°
b = 10.8636 (3) Å µ = 0.47 mm1
c = 15.6297 (5) Å T = 100 K
β = 111.596 (3)° Block, translucent light pink
V = 2046.79 (12) Å3 0.45 × 0.40 × 0.33 mm
Z = 2

Data collection

Bruker SMART BREEZE CCD diffractometer 5124 independent reflections
Radiation source: fine-focus sealed tube 3701 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
φ and ω scans θmax = 28.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2012) h = −17→16
Tmin = 0.754, Tmax = 0.861 k = −14→14
42492 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0662P)2 + 1.2728P] where P = (Fo2 + 2Fc2)/3
5124 reflections (Δ/σ)max < 0.001
270 parameters Δρmax = 0.63 e Å3
42 restraints Δρmin = −0.39 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Co1 0.5000 0.5000 0.0000 0.03723 (16)
O1 0.7500 (2) 0.6149 (3) 0.1133 (2) 0.1140 (12)
O2 0.64234 (15) 0.45260 (17) 0.10503 (11) 0.0476 (4)
O3 0.47496 (19) 0.62630 (18) 0.39053 (11) 0.0613 (5)
O4 0.41728 (17) 0.35512 (17) 0.04417 (13) 0.0495 (5)
H1W 0.358 (6) 0.358 (7) 0.004 (5) 0.201*
H2W 0.440 (6) 0.290 (6) 0.057 (5) 0.201*
N1 0.45672 (18) 0.62382 (18) 0.09231 (13) 0.0434 (5)
N2 0.3331 (3) 0.5092 (3) 0.30486 (19) 0.0929 (12)
C1 0.7318 (3) 0.5109 (3) 0.1382 (2) 0.0589 (8)
C2 0.8208 (2) 0.4486 (3) 0.21743 (19) 0.0546 (7)
C3 0.8883 (3) 0.3599 (3) 0.2011 (2) 0.0684 (9)
C4 0.9635 (3) 0.2965 (4) 0.2757 (3) 0.0784 (10)
H4 1.0091 0.2369 0.2654 0.094*
C5 0.9713 (3) 0.3208 (4) 0.3649 (2) 0.0761 (10)
C6 0.9055 (3) 0.4105 (4) 0.3785 (2) 0.0713 (9)
H6 0.9109 0.4279 0.4383 0.086*
C7 0.8310 (3) 0.4766 (3) 0.3068 (2) 0.0621 (8)
C8 0.7606 (4) 0.5758 (4) 0.3247 (3) 0.0895 (12)
H8A 0.7634 0.5690 0.3867 0.134*
H8B 0.6853 0.5668 0.2827 0.134*
H8C 0.7882 0.6550 0.3161 0.134*
C9 0.8814 (4) 0.3334 (5) 0.1040 (3) 0.1066 (15)
H9A 0.9321 0.2684 0.1052 0.160*
H9B 0.9005 0.4062 0.0783 0.160*
H9C 0.8072 0.3087 0.0670 0.160*
C10 1.0488 (4) 0.2448 (5) 0.4441 (3) 0.1131 (16)
H10A 1.1133 0.2225 0.4313 0.170*
H10B 1.0112 0.1717 0.4513 0.170*
H10C 1.0709 0.2923 0.4998 0.170*
C11 0.4479 (2) 0.5794 (2) 0.16908 (15) 0.0457 (6)
H11 0.4627 0.4964 0.1823 0.055*
C12 0.4181 (2) 0.6499 (2) 0.22983 (15) 0.0425 (6)
C13 0.4001 (3) 0.7736 (3) 0.21270 (19) 0.0602 (8)
H13 0.3822 0.8244 0.2531 0.072*
C14 0.4095 (3) 0.8204 (3) 0.1337 (2) 0.0735 (10)
H14 0.3980 0.9038 0.1201 0.088*
C15 0.4357 (3) 0.7430 (3) 0.07530 (18) 0.0574 (7)
H15 0.4390 0.7755 0.0213 0.069*
C16 0.4100 (3) 0.5942 (2) 0.31519 (16) 0.0501 (7)
C17 0.3272 (4) 0.4478 (4) 0.3879 (3) 0.1070 (16)
H17A 0.3127 0.3608 0.3753 0.128*
H17B 0.3983 0.4558 0.4381 0.128*
C18 0.2407 (5) 0.5002 (6) 0.4159 (4) 0.154 (3)
H18A 0.2431 0.4618 0.4719 0.231*
H18B 0.1695 0.4862 0.3685 0.231*
H18C 0.2528 0.5871 0.4258 0.231*
C19A 0.2227 (8) 0.5259 (10) 0.2181 (7) 0.080 (3) 0.490 (13)
H19A 0.1601 0.5419 0.2364 0.096* 0.490 (13)
H19B 0.2294 0.5928 0.1794 0.096* 0.490 (13)
C19B 0.2696 (8) 0.4402 (8) 0.2180 (5) 0.077 (3) 0.510 (13)
H19C 0.2477 0.3595 0.2318 0.093* 0.510 (13)
H19D 0.3135 0.4307 0.1798 0.093* 0.510 (13)
C20A 0.2102 (12) 0.4038 (11) 0.1694 (9) 0.128 (5) 0.490 (13)
H20A 0.1443 0.4049 0.1148 0.192* 0.490 (13)
H20B 0.2047 0.3392 0.2094 0.192* 0.490 (13)
H20C 0.2736 0.3896 0.1529 0.192* 0.490 (13)
C20B 0.1696 (11) 0.5203 (13) 0.1714 (9) 0.134 (5) 0.510 (13)
H20D 0.1236 0.4828 0.1146 0.201* 0.510 (13)
H20E 0.1933 0.5999 0.1592 0.201* 0.510 (13)
H20F 0.1281 0.5292 0.2109 0.201* 0.510 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0546 (3) 0.0354 (2) 0.0260 (2) −0.0004 (2) 0.0197 (2) 0.00073 (17)
O1 0.0881 (19) 0.100 (2) 0.115 (2) −0.0333 (16) −0.0081 (16) 0.0591 (18)
O2 0.0552 (11) 0.0477 (10) 0.0375 (9) −0.0020 (9) 0.0143 (8) 0.0047 (8)
O3 0.1013 (16) 0.0519 (11) 0.0305 (9) −0.0127 (11) 0.0240 (10) −0.0057 (8)
O4 0.0709 (13) 0.0412 (10) 0.0428 (10) −0.0004 (9) 0.0287 (9) 0.0037 (8)
N1 0.0644 (14) 0.0388 (11) 0.0315 (10) 0.0001 (10) 0.0231 (10) 0.0017 (8)
N2 0.121 (3) 0.122 (3) 0.0444 (14) −0.066 (2) 0.0413 (17) −0.0121 (15)
C1 0.0588 (18) 0.0664 (19) 0.0506 (16) −0.0066 (15) 0.0188 (14) 0.0134 (14)
C2 0.0478 (16) 0.0628 (17) 0.0507 (15) −0.0064 (14) 0.0154 (13) 0.0107 (13)
C3 0.0615 (19) 0.085 (2) 0.0600 (18) −0.0051 (18) 0.0241 (16) 0.0060 (17)
C4 0.059 (2) 0.093 (3) 0.086 (2) 0.0135 (19) 0.0313 (19) 0.016 (2)
C5 0.0547 (19) 0.100 (3) 0.067 (2) 0.0009 (18) 0.0144 (16) 0.0269 (19)
C6 0.063 (2) 0.095 (3) 0.0503 (17) −0.0042 (19) 0.0149 (15) 0.0123 (17)
C7 0.0588 (18) 0.072 (2) 0.0528 (17) −0.0072 (15) 0.0173 (14) 0.0084 (14)
C8 0.108 (3) 0.088 (3) 0.074 (2) 0.013 (2) 0.036 (2) 0.002 (2)
C9 0.112 (3) 0.142 (4) 0.076 (3) 0.014 (3) 0.046 (3) −0.005 (3)
C10 0.087 (3) 0.147 (4) 0.095 (3) 0.028 (3) 0.021 (2) 0.054 (3)
C11 0.0712 (18) 0.0384 (13) 0.0309 (11) −0.0009 (12) 0.0229 (12) 0.0006 (9)
C12 0.0573 (15) 0.0439 (13) 0.0293 (11) −0.0054 (11) 0.0193 (11) −0.0032 (9)
C13 0.095 (2) 0.0503 (16) 0.0467 (14) 0.0119 (15) 0.0400 (16) −0.0028 (12)
C14 0.136 (3) 0.0410 (15) 0.0594 (17) 0.0231 (17) 0.054 (2) 0.0102 (13)
C15 0.095 (2) 0.0469 (15) 0.0424 (13) 0.0085 (15) 0.0403 (15) 0.0102 (12)
C16 0.0799 (19) 0.0448 (14) 0.0334 (12) −0.0066 (14) 0.0300 (13) −0.0068 (10)
C17 0.167 (5) 0.104 (3) 0.069 (2) −0.057 (3) 0.065 (3) −0.003 (2)
C18 0.151 (5) 0.246 (8) 0.095 (4) −0.066 (5) 0.080 (4) −0.016 (4)
C19A 0.077 (7) 0.100 (7) 0.077 (6) −0.026 (6) 0.043 (5) −0.015 (5)
C19B 0.110 (6) 0.068 (5) 0.064 (5) −0.040 (5) 0.043 (4) −0.023 (4)
C20A 0.129 (10) 0.123 (9) 0.129 (9) −0.050 (8) 0.045 (8) −0.064 (8)
C20B 0.110 (9) 0.165 (13) 0.097 (9) −0.019 (7) 0.004 (7) −0.011 (8)

Geometric parameters (Å, º)

Co1—O2 2.0336 (18) C9—H9C 0.9600
Co1—O2i 2.0336 (18) C10—H10A 0.9600
Co1—O4 2.1561 (18) C10—H10B 0.9600
Co1—O4i 2.1561 (19) C10—H10C 0.9600
Co1—N1 2.1913 (19) C11—H11 0.9300
Co1—N1i 2.1913 (19) C12—C11 1.381 (3)
O2—C1 1.254 (4) C12—C16 1.503 (3)
O4—H1W 0.80 (7) C13—C12 1.374 (4)
O4—H2W 0.76 (7) C13—C14 1.382 (4)
N1—C11 1.336 (3) C13—H13 0.9300
N1—C15 1.330 (3) C14—C15 1.372 (4)
N2—C17 1.486 (4) C14—H14 0.9300
N2—C19A 1.579 (11) C15—H15 0.9300
N2—C19B 1.503 (8) C16—N2 1.325 (4)
C1—O1 1.245 (4) C17—H17A 0.9700
C1—C2 1.508 (4) C17—H17B 0.9700
C2—C7 1.387 (4) C18—C17 1.462 (7)
C3—C2 1.387 (5) C18—H18A 0.9600
C3—C4 1.396 (5) C18—H18B 0.9600
C3—C9 1.514 (5) C18—H18C 0.9600
C4—H4 0.9300 C19A—C20A 1.508 (13)
C5—C4 1.385 (5) C19A—H19A 0.9700
C5—C10 1.519 (5) C19A—H19B 0.9700
C6—C5 1.363 (5) C19B—C20B 1.508 (14)
C6—H6 0.9300 C19B—H19C 0.9700
C7—C6 1.381 (4) C19B—H19D 0.9700
C7—C8 1.504 (5) C20A—H20A 0.9600
C8—H8A 0.9600 C20A—H20B 0.9600
C8—H8B 0.9600 C20A—H20C 0.9600
C8—H8C 0.9600 C20B—H20D 0.9600
C9—H9A 0.9600 C20B—H20E 0.9600
C9—H9B 0.9600 C20B—H20F 0.9600
O2i—Co1—O2 180.00 (13) C5—C10—H10A 109.5
O2—Co1—O4 88.12 (7) C5—C10—H10B 109.5
O2i—Co1—O4 91.88 (7) C5—C10—H10C 109.5
O2—Co1—O4i 91.88 (7) H10A—C10—H10B 109.5
O2i—Co1—O4i 88.12 (7) H10A—C10—H10C 109.5
O2—Co1—N1 90.01 (8) H10B—C10—H10C 109.5
O2i—Co1—N1 89.99 (8) N1—C11—C12 123.7 (2)
O2—Co1—N1i 89.99 (8) N1—C11—H11 118.1
O2i—Co1—N1i 90.01 (8) C12—C11—H11 118.1
O4—Co1—O4i 180.00 (9) C11—C12—C16 121.1 (2)
O4—Co1—N1 87.66 (7) C13—C12—C11 118.6 (2)
O4i—Co1—N1 92.34 (7) C13—C12—C16 120.3 (2)
O4—Co1—N1i 92.34 (7) C12—C13—C14 118.0 (2)
O4i—Co1—N1i 87.66 (7) C12—C13—H13 121.0
N1—Co1—N1i 180.00 (7) C13—C14—H14 120.2
C1—O2—Co1 129.21 (18) C14—C13—H13 121.0
Co1—O4—H1W 99 (5) C15—C14—C13 119.6 (3)
Co1—O4—H2W 125 (5) C15—C14—H14 120.2
H1W—O4—H2W 115 (6) N1—C15—C14 123.1 (2)
C11—N1—Co1 119.79 (16) N1—C15—H15 118.5
C15—N1—Co1 123.32 (16) C14—C15—H15 118.5
C15—N1—C11 116.9 (2) O3—C16—N2 122.6 (2)
C16—N2—C17 119.0 (3) O3—C16—C12 119.6 (2)
C16—N2—C19A 115.4 (4) N2—C16—C12 117.9 (2)
C16—N2—C19B 126.5 (3) N2—C17—H17A 109.1
C17—N2—C19A 118.7 (4) N2—C17—H17B 109.1
C17—N2—C19B 112.2 (4) C18—C17—N2 112.3 (5)
O1—C1—O2 125.6 (3) C18—C17—H17A 109.1
O1—C1—C2 119.2 (3) C18—C17—H17B 109.1
O2—C1—C2 115.1 (2) H17A—C17—H17B 107.9
C3—C2—C1 120.3 (3) C17—C18—H18A 109.5
C3—C2—C7 120.4 (3) C17—C18—H18B 109.5
C7—C2—C1 119.3 (3) C17—C18—H18C 109.5
C2—C3—C4 118.8 (3) H18A—C18—H18B 109.5
C2—C3—C9 120.6 (3) H18A—C18—H18C 109.5
C4—C3—C9 120.6 (4) H18B—C18—H18C 109.5
C3—C4—H4 119.4 N2—C19A—H19A 111.1
C5—C4—C3 121.1 (3) N2—C19A—H19B 111.1
C5—C4—H4 119.4 C20A—C19A—N2 103.1 (10)
C4—C5—C10 119.9 (4) C20A—C19A—H19A 111.1
C6—C5—C4 118.4 (3) C20A—C19A—H19B 111.1
C6—C5—C10 121.7 (4) H19A—C19A—H19B 109.1
C5—C6—C7 122.4 (3) N2—C19B—C20B 103.7 (9)
C5—C6—H6 118.8 N2—C19B—H19C 111.0
C7—C6—H6 118.8 N2—C19B—H19D 111.0
C2—C7—C8 120.4 (3) C20B—C19B—H19C 111.0
C6—C7—C2 118.8 (3) C20B—C19B—H19D 111.0
C6—C7—C8 120.8 (3) H19C—C19B—H19D 109.0
C7—C8—H8A 109.5 C19A—C20A—H20A 109.5
C7—C8—H8B 109.5 C19A—C20A—H20B 109.5
C7—C8—H8C 109.5 C19A—C20A—H20C 109.5
H8A—C8—H8B 109.5 H20A—C20A—H20B 109.5
H8A—C8—H8C 109.5 H20A—C20A—H20C 109.5
H8B—C8—H8C 109.5 H20B—C20A—H20C 109.5
C3—C9—H9A 109.5 C19B—C20B—H20D 109.5
C3—C9—H9B 109.5 C19B—C20B—H20E 109.5
C3—C9—H9C 109.5 C19B—C20B—H20F 109.5
H9A—C9—H9B 109.5 H20D—C20B—H20E 109.5
H9A—C9—H9C 109.5 H20D—C20B—H20F 109.5
H9B—C9—H9C 109.5 H20E—C20B—H20F 109.5
O4—Co1—O2—C1 −165.8 (2) C1—C2—C7—C8 −5.2 (5)
O4i—Co1—O2—C1 14.2 (2) C3—C2—C7—C6 −3.2 (5)
N1—Co1—O2—C1 −78.1 (2) C3—C2—C7—C8 177.8 (3)
N1i—Co1—O2—C1 101.9 (2) C4—C3—C2—C1 −174.6 (3)
O2—Co1—N1—C11 −57.7 (2) C4—C3—C2—C7 2.4 (5)
O2i—Co1—N1—C11 122.3 (2) C9—C3—C2—C1 6.1 (5)
O2—Co1—N1—C15 123.9 (2) C9—C3—C2—C7 −177.0 (3)
O2i—Co1—N1—C15 −56.1 (2) C2—C3—C4—C5 0.0 (5)
O4—Co1—N1—C11 30.5 (2) C9—C3—C4—C5 179.4 (4)
O4i—Co1—N1—C11 −149.5 (2) C6—C5—C4—C3 −1.5 (6)
O4—Co1—N1—C15 −148.0 (2) C10—C5—C4—C3 176.2 (4)
O4i—Co1—N1—C15 32.0 (2) C7—C6—C5—C4 0.7 (5)
Co1—O2—C1—O1 2.1 (5) C7—C6—C5—C10 −177.0 (4)
Co1—O2—C1—C2 179.24 (18) C2—C7—C6—C5 1.6 (5)
Co1—N1—C11—C12 −178.2 (2) C8—C7—C6—C5 −179.4 (3)
C15—N1—C11—C12 0.4 (4) C13—C12—C11—N1 −2.4 (4)
Co1—N1—C15—C14 −179.5 (3) C16—C12—C11—N1 −179.8 (3)
C11—N1—C15—C14 2.0 (5) C11—C12—C16—O3 113.7 (3)
C16—N2—C17—C18 99.5 (5) C11—C12—C16—N2 −64.8 (4)
C19A—N2—C17—C18 −49.9 (7) C13—C12—C16—O3 −63.7 (4)
C19B—N2—C17—C18 −96.4 (6) C13—C12—C16—N2 117.9 (4)
C16—N2—C19A—C20A 125.7 (6) C14—C13—C12—C11 2.0 (5)
C17—N2—C19A—C20A −83.8 (7) C14—C13—C12—C16 179.5 (3)
C19B—N2—C19A—C20A 8.4 (7) C12—C13—C14—C15 0.2 (5)
C16—N2—C19B—C20B −89.3 (8) C13—C14—C15—N1 −2.3 (6)
C17—N2—C19B—C20B 108.1 (8) O3—C16—N2—C17 −1.6 (6)
C19A—N2—C19B—C20B −0.6 (9) O3—C16—N2—C19A 148.8 (5)
O1—C1—C2—C3 −99.3 (4) O3—C16—N2—C19B −163.2 (6)
O1—C1—C2—C7 83.8 (4) C12—C16—N2—C17 176.8 (3)
O2—C1—C2—C3 83.4 (4) C12—C16—N2—C19A −32.8 (5)
O2—C1—C2—C7 −93.6 (4) C12—C16—N2—C19B 15.2 (7)
C1—C2—C7—C6 173.8 (3)

Symmetry code: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H1W···O1i 0.80 (6) 1.87 (6) 2.634 (3) 160 (7)
O4—H2W···O3ii 0.76 (7) 2.10 (7) 2.850 (3) 170 (7)
C10—H10A···O1iii 0.96 2.43 3.365 (6) 165
C15—H15···O3iv 0.93 2.50 3.420 (4) 172

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+2, y−1/2, −z+1/2; (iv) x, −y+3/2, z−1/2.

References

  1. Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.
  2. Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103.
  3. Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.
  4. Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1973a). Acta Cryst. B29, 39–43.
  5. Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1973b). Acta Cryst. B29, 2344–2348.
  6. Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
  7. Catterick (neé Drew), J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844.
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131.
  10. Hökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023.
  11. Mikelashvili, Z. A. (1982). Dissertation, Tbilisi State University, Georgia.
  12. Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.
  13. Sergienko, V. S., Shurkina, V. N., Khodashova, T. S., Poray-Koshits, M. A. & Tsintsadze, G. V. (1980). Koord. Khim. 6, 1606–1609.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989016004059/wm5273sup1.cif

e-72-00498-sup1.cif (32.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016004059/wm5273Isup2.hkl

e-72-00498-Isup2.hkl (245.9KB, hkl)

CCDC reference: 1462884

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES