In the letter “Design and Synthesis of a Mitochondria-Targeted Mimic of Glutathione Peroxidase, MitoEbselen-2, as a Radiation Mitigator”, we regret that a systematic error was introduced in the References list. In all references, page numbers were substituted with the year of publication. The correct references are printed below and the complete article is available on the ACS Publications website at DOI: 10.1021/ml5003635.
References
- Weiss J. Radiochemistry of Aqueous Solutions. Nature 1944, 153, 748–750. 10.1038/153748a0. [DOI] [Google Scholar]
- Patt H. M.; Tyree E. B.; Straube R. L.; Smith D. E. Cysteine Protection against X Irradiation. Science 1949, 110, 213–214. 10.1126/science.110.2852.213. [DOI] [PubMed] [Google Scholar]
- Bacq Z. M.; Herve A.; Fischer P.; Lecomte J.; Pirotte M.; Deschamps G.; Le Bihan H.; Rayet P. Preventive and therapeutic effects of mercapto-ethylamin (becaptan) on radiation sickness. Rev. Med. Liege 1953, 8, 104–109. [PubMed] [Google Scholar]
- Radivojevitch D.; Bacq Z. M.; Beaumariage M. L. Radio-protective action of cysteamine, cystamine and histamine on the dipilation of the young mouse exposed to x-radiation. J. Physiol. (Paris) 1960, 52, 205–206. [PubMed] [Google Scholar]
- Sweeney T. R.A Survey of Compounds from the Antiradiation Drug Development Program of the US Army Medical Research and Development Command; Walter Reed Army Institute of Research: Washington DC, 1979. [Google Scholar]
- Kouvaris J. R.; Kouloulias V. E.; Vlahos L. J. Amifostine: the first selective-target and broad-spectrum radioprotector. Oncologist 2007, 12, 738–747. 10.1634/theoncologist.12-6-738. [DOI] [PubMed] [Google Scholar]
- Kam W. W.; Banati R. B. Effects of ionizing radiation on mitochondria. Free Radical Biol. Med. 2013, 65, 607–619. 10.1016/j.freeradbiomed.2013.07.024. [DOI] [PubMed] [Google Scholar]
- Coelho D.; Holl V.; Weltin D.; Lacornerie T.; Magnenet P.; Dufour P.; Bischoff P. Caspase-3-like activity determines the type of cell death following ionizing radiation in MOLT-4 human leukaemia cells. Br. J. Cancer 2000, 83, 642–649. 10.1054/bjoc.2000.1322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bayir H.; Kagan V. E.; Borisenko G. G.; Tyurina Y. Y.; Janesko K. L.; Vagni V. A.; Billiar T. R.; Williams D. L.; Kochanek P. M. Enhanced oxidative stress in iNOS-deficient mice after traumatic brain injury: support for a neuroprotective role of iNOS. J. Cereb. Blood Flow Metab. 2005, 25, 673–684. 10.1038/sj.jcbfm.9600068. [DOI] [PubMed] [Google Scholar]
- Kagan V. E.; Bayir H.; Shvedova A. A. Nanomedicine and nanotoxicology: two sides of the same coin. Nanomedicine 2005, 1, 313–316. 10.1016/j.nano.2005.10.003. [DOI] [PubMed] [Google Scholar]
- Fabisiak J. P.; Tyurina Y. Y.; Tyurin V. A.; Kagan V. E. Quantification of selective phosphatidylserine oxidation during apoptosis. Methods Mol. Biol. 2005, 291, 449–456. 10.1385/1-59259-840-4:449. [DOI] [PubMed] [Google Scholar]
- Imai H.; Nakagawa Y. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radical Biol. Med. 2003, 34, 145–169. 10.1016/S0891-5849(02)01197-8. [DOI] [PubMed] [Google Scholar]
- Nomura K.; Imai H.; Koumura T.; Kobayashi T.; Nakagawa Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem. J. 2000, 351, 183–193. 10.1042/0264-6021:3510183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nomura K.; Imai H.; Koumura T.; Nakagawa Y. Involvement of mitochondrial phospholipid hydroperoxide glutathione peroxidase as an antiapoptotic factor. Neurosignals 2001, 10, 81–92. 10.1159/000046877. [DOI] [PubMed] [Google Scholar]
- Epperly M. W.; Melendez J. A.; Zhang X.; Nie S.; Pearce L.; Peterson J.; Franicola D.; Dixon T.; Greenberger B. A.; Komanduri P.; Wang H.; Greenberger J. S. Mitochondrial targeting of a catalase transgene product by plasmid liposomes increases radioresistance in vitro and in vivo. Radiat. Res. 2009, 171, 588–595. 10.1667/RR1424.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tak J. K.; Park J. W. The use of ebselen for radioprotection in cultured cells and mice. Free Radical Biol. Med. 2009, 46, 1177–1185. 10.1016/j.freeradbiomed.2009.01.023. [DOI] [PubMed] [Google Scholar]
- Aitken J. B.; Lay P. A.; Duong T. T.; Aran R.; Witting P. K.; Harris H. H.; Lai B.; Vogt S.; Giles G. I. Synchrotron radiation induced X-ray emission studies of the antioxidant mechanism of the organoselenium drug ebselen. JBIC, J. Biol. Inorg. Chem. 2012, 17, 589–598. 10.1007/s00775-012-0879-y. [DOI] [PubMed] [Google Scholar]
- Azad G. K.; Tomar R. S. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways. Mol. Biol. Rep. 2014, 41, 4865–4879. 10.1007/s11033-014-3417-x. [DOI] [PubMed] [Google Scholar]
- Singh N.; Halliday A. C.; Thomas J. M.; Kuznetsova O. V.; Baldwin R.; Woon E. C.; Aley P. K.; Antoniadou I.; Sharp T.; Vasudevan S. R.; Churchill G. C. A safe lithium mimetic for bipolar disorder. Nat. Commun. 2013, 4, 1332. 10.1038/ncomms2320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Filipovska A.; Kelso G. F.; Brown S. E.; Beer S. M.; Smith R. A.; Murphy M. P. Synthesis and characterization of a triphenylphosphonium-conjugated peroxidase mimetic. Insights into the interaction of ebselen with mitochondria. J. Biol. Chem. 2005, 280, 24113–24126. 10.1074/jbc.M501148200. [DOI] [PubMed] [Google Scholar]
- Smith R. A.; Hartley R. C.; Murphy M. P. Mitochondria-targeted small molecule therapeutics and probes. Antioxid. Redox Signaling 2011, 15, 3021–3038. 10.1089/ars.2011.3969. [DOI] [PubMed] [Google Scholar]
- Kabe Y.; Ohmori M.; Shinouchi K.; Tsuboi Y.; Hirao S.; Azuma M.; Watanabe H.; Okura I.; Handa H. Porphyrin accumulation in mitochondria is mediated by 2-oxoglutarate carrier. J. Biol. Chem. 2006, 281, 31729–31735. 10.1074/jbc.M604729200. [DOI] [PubMed] [Google Scholar]
- Stoyanovsky D. A.; Huang Z.; Jiang J.; Belikova N. A.; Tyurin V.; Epperly M. W.; Greenberger J. S.; Bayir H.; Kagan V. E. A manganese-porphyrin complex decomposes H(2)O(2), inhibits apoptosis, and acts as a radiation mitigator in vivo. ACS Med. Chem. Lett. 2011, 2, 814–817. 10.1021/ml200142x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puntel R. L.; Roos D. H.; Folmer V.; Nogueira C. W.; Galina A.; Aschner M.; Rocha J. B. Mitochondrial dysfunction induced by different organochalchogens is mediated by thiol oxidation and is not dependent of the classical mitochondrial permeability transition pore opening. Toxicol. Sci. 2010, 117, 133–143. 10.1093/toxsci/kfq185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Press D. J.; Mercier E. A.; Kuzma D.; Back T. G. Substituent effects upon the catalytic activity of aromatic cyclic seleninate esters and spirodioxyselenuranes that act as glutathione peroxidase mimetics. J. Org. Chem. 2008, 73, 4252–4255. 10.1021/jo800381s. [DOI] [PubMed] [Google Scholar]
- Bhabak K. P.; Mugesh G. Functional mimics of glutathione peroxidase: bioinspired synthetic antioxidants. Acc. Chem. Res. 2010, 43, 1408–1419. 10.1021/ar100059g. [DOI] [PubMed] [Google Scholar]