Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 May 15;89(10):4603–4607. doi: 10.1073/pnas.89.10.4603

Region-specific expression of a K+ channel gene in brain.

B Rudy 1, C Kentros 1, M Weiser 1, D Fruhling 1, P Serodio 1, E Vega-Saenz de Miera 1, M H Ellisman 1, J A Pollock 1, H Baker 1
PMCID: PMC49131  PMID: 1374908

Abstract

Northern blot analysis and in situ hybridization studies reveal the highly localized expression in rat brain of transcripts from a gene (KShIIIA) encoding components for voltage-gated K+ channels. KShIIIA expression is particularly prominent throughout the dorsal thalamus. The expression of KShIIIA is compared to that of a closely related gene, here called NGK2-KV4. These two genes encode transcripts that induce currents in Xenopus oocytes that are as of yet indistinguishable, but they show very different patterns of expression in rat brain. NGK2-KV4 transcripts are particularly abundant in the cerebellar cortex, where KShIIIA expression is very weak. These results demonstrate the existence of cell-type-specific K+ channel components and suggest that one reason for the unusually large diversity of K+ channel proteins is the presence of subtypes that participate in specific brain functions.

Full text

PDF
4603

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baxter D. A., Byrne J. H. Ionic conductance mechanisms contributing to the electrophysiological properties of neurons. Curr Opin Neurobiol. 1991 Jun;1(1):105–112. doi: 10.1016/0959-4388(91)90017-2. [DOI] [PubMed] [Google Scholar]
  2. Beckh S., Pongs O. Members of the RCK potassium channel family are differentially expressed in the rat nervous system. EMBO J. 1990 Mar;9(3):777–782. doi: 10.1002/j.1460-2075.1990.tb08173.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  4. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  5. Jan L. Y., Jan Y. N. How might the diversity of potassium channels be generated? Trends Neurosci. 1990 Oct;13(10):415–419. doi: 10.1016/0166-2236(90)90123-r. [DOI] [PubMed] [Google Scholar]
  6. Klein M., Camardo J., Kandel E. R. Serotonin modulates a specific potassium current in the sensory neurons that show presynaptic facilitation in Aplysia. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5713–5717. doi: 10.1073/pnas.79.18.5713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Llinás R. R. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science. 1988 Dec 23;242(4886):1654–1664. doi: 10.1126/science.3059497. [DOI] [PubMed] [Google Scholar]
  8. Luneau C. J., Williams J. B., Marshall J., Levitan E. S., Oliva C., Smith J. S., Antanavage J., Folander K., Stein R. B., Swanson R. Alternative splicing contributes to K+ channel diversity in the mammalian central nervous system. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3932–3936. doi: 10.1073/pnas.88.9.3932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Luneau C., Wiedmann R., Smith J. S., Williams J. B. Shaw-like rat brain potassium channel cDNA's with divergent 3' ends. FEBS Lett. 1991 Aug 19;288(1-2):163–167. doi: 10.1016/0014-5793(91)81026-5. [DOI] [PubMed] [Google Scholar]
  10. McCormack T., Vega-Saenz de Miera E. C., Rudy B. Molecular cloning of a member of a third class of Shaker-family K+ channel genes in mammals. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5227–5231. doi: 10.1073/pnas.87.13.5227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McCormack T., Vega-Saenz de Miera E. C., Rudy B. Molecular cloning of a member of a third class of Shaker-family K+ channel genes in mammals. Proc Natl Acad Sci U S A. 1991 May 1;88(9):4060–4060. doi: 10.1073/pnas.88.9.4060-b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McKinnon D. Isolation of a cDNA clone coding for a putative second potassium channel indicates the existence of a gene family. J Biol Chem. 1989 May 15;264(14):8230–8236. [PubMed] [Google Scholar]
  13. Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Perney T. M., Kaczmarek L. K. The molecular biology of K+ channels. Curr Opin Cell Biol. 1991 Aug;3(4):663–670. doi: 10.1016/0955-0674(91)90039-2. [DOI] [PubMed] [Google Scholar]
  15. Premack B. A., Thompson S., Coombs-Hahn J. Clustered distribution and variability in kinetics of transient K channels in molluscan neuron cell bodies. J Neurosci. 1989 Nov;9(11):4089–4099. doi: 10.1523/JNEUROSCI.09-11-04089.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rudy B. Diversity and ubiquity of K channels. Neuroscience. 1988 Jun;25(3):729–749. doi: 10.1016/0306-4522(88)90033-4. [DOI] [PubMed] [Google Scholar]
  17. Rudy B., Hoger J. H., Lester H. A., Davidson N. At least two mRNA species contribute to the properties of rat brain A-type potassium channels expressed in Xenopus oocytes. Neuron. 1988 Oct;1(8):649–658. doi: 10.1016/0896-6273(88)90164-x. [DOI] [PubMed] [Google Scholar]
  18. Rudy B., Sen K., Vega-Saenz de Miera E., Lau D., Ried T., Ward D. C. Cloning of a human cDNA expressing a high voltage-activating, TEA-sensitive, type-A K+ channel which maps to chromosome 1 band p21. J Neurosci Res. 1991 Jul;29(3):401–412. doi: 10.1002/jnr.490290316. [DOI] [PubMed] [Google Scholar]
  19. Steriade M., Llinás R. R. The functional states of the thalamus and the associated neuronal interplay. Physiol Rev. 1988 Jul;68(3):649–742. doi: 10.1152/physrev.1988.68.3.649. [DOI] [PubMed] [Google Scholar]
  20. Stone D. M., Wessel T., Joh T. H., Baker H. Decrease in tyrosine hydroxylase, but not aromatic L-amino acid decarboxylase, messenger RNA in rat olfactory bulb following neonatal, unilateral odor deprivation. Brain Res Mol Brain Res. 1990 Oct;8(4):291–300. doi: 10.1016/0169-328x(90)90042-c. [DOI] [PubMed] [Google Scholar]
  21. Vega-Saenz de Miera E., Moreno H., Fruhling D., Kentros C., Rudy B. Cloning of ShIII (Shaw-like) cDNAs encoding a novel high-voltage-activating, TEA-sensitive, type-A K+ channel. Proc Biol Sci. 1992 Apr 22;248(1321):9–18. doi: 10.1098/rspb.1992.0036. [DOI] [PubMed] [Google Scholar]
  22. Wei A., Covarrubias M., Butler A., Baker K., Pak M., Salkoff L. K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse. Science. 1990 May 4;248(4955):599–603. doi: 10.1126/science.2333511. [DOI] [PubMed] [Google Scholar]
  23. Woodgett J. R., Gould K. L., Hunter T. Substrate specificity of protein kinase C. Use of synthetic peptides corresponding to physiological sites as probes for substrate recognition requirements. Eur J Biochem. 1986 Nov 17;161(1):177–184. doi: 10.1111/j.1432-1033.1986.tb10139.x. [DOI] [PubMed] [Google Scholar]
  24. Yokoyama S., Imoto K., Kawamura T., Higashida H., Iwabe N., Miyata T., Numa S. Potassium channels from NG108-15 neuroblastoma-glioma hybrid cells. Primary structure and functional expression from cDNAs. FEBS Lett. 1989 Dec 18;259(1):37–42. doi: 10.1016/0014-5793(89)81488-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES