Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 May 15;89(10):4718–4721. doi: 10.1073/pnas.89.10.4718

Light-induced phosphorylation of a membrane protein plays an early role in signal transduction for phototropism in Arabidopsis thaliana.

P Reymond 1, T W Short 1, W R Briggs 1, K L Poff 1
PMCID: PMC49154  PMID: 11537679

Abstract

Blue light is known to cause rapid phosphorylation of a membrane protein in etiolated seedlings of several plant species, a protein that, at least in etiolated pea seedlings and maize coleoptiles, has been shown to be associated with the plasma membrane. The light-driven phosphorylation has been proposed on the basis of correlative evidence to be an early step in the signal transduction chain for phototropism. In the Arabidopsis thaliana mutant JK224, the sensitivity to blue light for induction of first positive phototropism is known to be 20- to 30-fold lower than in wild type, whereas second positive curvature appears to be normal. While light-induced phosphorylation can be demonstrated in crude membrane preparations from shoots of the mutant, the level of phosphorylation is dramatically lower than in wild type, as is the sensitivity to blue light. Another A. thaliana mutant, JK218, that completely lacks any phototropic responses to up to 2 h of irradiation, shows a normal level of light-induced phosphorylation at saturation. Since its gravitropic sensitivity is normal, it is presumably blocked in some step between photoreception and the confluence of the signal transduction pathways for phototropism and gravitropism. We conclude from mutant JK224 that light-induced phosphorylation plays an early role in the signal transduction chain for phototropism in higher plants.

Full text

PDF
4718

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gallagher S., Short T. W., Ray P. M., Pratt L. H., Briggs W. R. Light-mediated changes in two proteins found associated with plasma membrane fractions from pea stem sections. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8003–8007. doi: 10.1073/pnas.85.21.8003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Khurana J. P., Poff K. L. Mutants of Arabidopsis thaliana with altered phototropism. Planta. 1989;178:400–406. [PubMed] [Google Scholar]
  3. Khurana J. P., Ren Z., Steinitz B., Parks B., Best T. R., Poff K. L. Mutants of Arabidopsis thaliana with decreased amplitude in their phototropic response. Plant Physiol. 1989;91:685–689. doi: 10.1104/pp.91.2.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Konjevic R., Khurana J. P., Poff K. L. Analysis of multiple photoreceptor pigments for phototropism in a mutant of Arabidopsis thaliana. Photochem Photobiol. 1992 May;55(5):789–792. [PubMed] [Google Scholar]
  5. Konjević R., Steinitz B., Poff K. L. Dependence of the phototropic response of Arabidopsis thaliana on fluence rate and wavelength. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9876–9880. doi: 10.1073/pnas.86.24.9876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Short T. W., Briggs W. R. Characterization of a Rapid, Blue Light-Mediated Change in Detectable Phosphorylation of a Plasma Membrane Protein from Etiolated Pea (Pisum sativum L.) Seedlings. Plant Physiol. 1990 Jan;92(1):179–185. doi: 10.1104/pp.92.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES