Skip to main content
Applications in Plant Sciences logoLink to Applications in Plant Sciences
. 2016 Jun 8;4(6):apps.1500137. doi: 10.3732/apps.1500137

Universal multiplexable matK primers for DNA barcoding of angiosperms1

Jacqueline Heckenhauer 2,3, Michael H J Barfuss 2, Rosabelle Samuel 2
PMCID: PMC4915916  PMID: 27347449

Abstract

Premise of the study:

PCR amplification of the matK barcoding region is often difficult when dealing with multiple angiosperm families. We developed a primer cocktail to amplify this region efficiently across angiosperm diversity.

Methods and Results:

We developed 14 matK primers (seven forward, seven reverse) for multiplex PCR, using sequences available in GenBank for 178 taxa belonging to 123 genera in 41 families and 18 orders. Universality of these new multiplexed primers was tested with 53 specimens from 44 representative angiosperm families in 23 different orders. Our primers showed high PCR amplification and sequencing success.

Conclusions:

These results show that our newly developed primers are highly effective for multiplex PCR and can be employed in future barcode projects involving taxonomically diverse samples across angiosperms. Using multiplex primers for barcoding will reduce the cost and time needed for PCR amplification.

Keywords: degenerate primers, DNA barcoding, matK, multiplex PCR


The rapidly evolving and highly variable gene maturase K (matK; Hilu and Liang, 1997) has been recommended as a locus for DNA barcoding by the Consortium for the Barcode of Life (CBOL) Plant Working Group (Hollingsworth et al., 2009). Amplification and sequencing of the matK barcoding region is difficult due to high sequence variability in the primer binding sites (Hollingsworth et al., 2011). Currently, there are three popular matK primer pairs available to amplify approximately the same region of the gene: 390F and 1326R (Sun et al., 2001; Cuénoud et al., 2002), XF and 5R (Ford et al., 2009), and 1R_KIM and 3F_KIM (Hollingsworth et al., 2009; Jeanson et al., 2011). Kress et al. (2009) used these three primer pairs to amplify DNA barcodes from 296 shrub and tree species. These primer combinations showed amplification success in 85% and sequencing success in 69% of the species, proving that reliable amplification is possible across a range of plants, using several primer combinations. However, using more than one primer pair can be time consuming as well as costly and is often complex for large-scale projects (e.g., Heckenhauer et al., unpublished data).

Here, we report a set of universal primers that can be multiplexed in one PCR to amplify matK successfully in angiosperms and expedite high-throughput, rapid, automated, and cost-effective species identification. We present methods that enable efficient PCR amplification and sequencing of the matK barcode region.

METHODS AND RESULTS

Sequences of the matK gene from 178 taxa belonging to 123 genera and 41 families were obtained from GenBank (www.ncbi.nlm.nih.gov/genbank; Appendix S1 (58KB, docx) ) and aligned using the MAFFT plugin (Katoh and Standley, 2013) in Geneious (version 8.0.5; Kearse et al., 2012). Because primers were initially developed for a barcoding project dealing primarily with the tree flora of Southeast Asia, matK sequences of the most representative genera and families of dicots and monocots were used. The target DNA region was located between positions 383 and 1343 of the matK gene (with respect to Arabidopsis thaliana (L.) Heynh.) and includes the binding sites of the three commonly used matK primer pairs. Primers were designed at the most conserved regions, resulting in a fragment between positions 383 and 1256 (positions 414–1226, excluding the primer sequences). Forward primers are at a similar position to the 390F and XF primers, whereas the reverse primers are located downstream from the above-cited reverse primers to avoid a region of up to 11 adenine bases (e.g., Sterculia tragacantha Lindl. AY321178, positions 1257–1267), which could cause PCR and sequencing problems. To minimize primer degeneracy, aligned sequences were clustered into seven groups according to their genetic similarity in the MAFFT alignment, in which sequences are sorted according to their pairwise distances. Thus, for each cluster, primers with no more than five degenerate nucleotide positions were developed. Primers were developed manually considering primer properties (annealing temperature, 3′ and 5′ end stability) and primer secondary structures (cross dimers, dimers, hairpins) with the use of NetPrimer (PREMIER Biosoft International, Palo Alto, California, USA; www.premierbiosoft.com/netprimer/netprlaunch/netprlaunch.html). Primers were designed at the same positions in the matK gene for the forward and reverse primers so that they could be multiplexed in a single PCR for each sample. Seven forward and seven reverse primers were developed. Because using more primer combinations in a multiplex PCR reduces the probability of the most appropriate primers binding to the target region, only five forward and five reverse primers for the most frequent sequences in our alignment were multiplexed (Table 1: C_MATK_F/C_MATK_R). Primers were mixed in different ratios depending on their level of degeneration (Table 1). The remaining two forward and two reverse primers serve as spares for amplification of taxa that fail amplification using the previous five-primer combination. Primers were compared against the National Center for Biotechnology Information (NCBI) GenBank nucleotide reference database using the Mega BLAST algorithm (blast.ncbi.nlm.nih.gov/Blast.cgi). Table 2 shows BLAST results with no mismatches in forward or reverse primers at the family level. Thus, in studies where the species are identified to family level, primers can be combined accordingly in a multiplex PCR. To evaluate the universality of the primers, multiplex PCR was conducted on DNA of 54 species from 48 families, representing frequently occurring trees and palms (e.g., Arecaceae, Dipterocarpaceae, Euphorbiaceae) in Southeast Asia (Table 3), along with other taxa from other parts of the world to improve the coverage of angiosperms (e.g., Leontodon [Asteraceae], Tillandsia [Bromeliaceae], Helianthemum [Cistaceae], Polystachya [Orchidaceae]). Approximately 30 mg of silica gel–dried material (bark or leaves) was transferred into a 96-well plate, and genomic DNA was extracted using the DNeasy 96 Plant Kit (QIAGEN, Hilden, Germany). PCRs included 5 μL of 2× ReddyMix PCR Master Mix with 1.5 mM MgCl2 (#AB-0575/DC/LD/A; Thermo Fisher Scientific, Waltham, Massachusetts, USA), 0.1 μL of forward and reverse primer cocktail each at 50 μM (final concentration 0.5 μM), 1 μL of template DNA, and H2O up to a final volume of 10 μL. Thermocycler conditions were as follows: 95°C for 2 min; five cycles of 95°C for 25 s, 46°C for 35 s, and 70°C for 1 min; 35 cycles of 95°C for 25 s, 48°C for 35 s, and 70°C for 1 min; and a final extension at 72°C for 5 min. For samples that did not amplify using the above-mentioned protocol, the 2× Phusion Green HS II Hi-Fi PCR Master Mix with 1.5 mM MgCl2 (#F-566S, Thermo Fisher Scientific) was used with the following thermocycler conditions: 98°C for 30 s; five cycles of 98°C for 10 s, 53°C for 30 s, and 72°C for 30 s; 35 cycles of 98°C for 10 s, 55°C for 30 s, and 72°C for 30 s; and a final extension at 72°C for 5 min. PCR products were visualized on a 1.5% TAE agarose gel using ethidium bromide staining. After cleaning the PCR products with 1 μL exonuclease I and FastAP thermosensitive alkaline phosphatase mixture (7 units Exo I, 0.7 units FastAP; Thermo Fisher Scientific) at 37°C for 45 min and 85°C for 15 min, barcodes were Sanger sequenced with the BigDye Terminator Kit version 3.1 (Thermo Fisher Scientific) according to the manufacturer’s instructions. Sequencing was carried out using an ABI 3730xL DNA Analyzer (Applied Biosystems, Foster City, California, USA) at the Department of Botany and Biodiversity Research, University of Vienna. Bidirectional sequences were assembled in Geneious and edited.

Table 1.

Primers developed for multiplex PCR used to amplify the matK barcoding region. The forward (C_MATK_F) and reverse (C_MATK_R) primer cocktail as well as the four additional primers are given with their proportions in the primer cocktail.

Cocktail name/Primer name (Direction) Proportion in primer cocktail Primer sequence (5′–3′)a Primer positionb
C_MATK_F 383–413
 matK-413f-1 (Forward) 2 TAATTTACRATCAATTCATTCAATATTTCC
 matK-413f-2 (Forward) 2 TAATTTACGATCYATTCATTCAATATTTCC
 matK-413f-3 (Forward) 1 TAATTTACGATCAATTCATTCAACATTTCC
 matK-413f-4 (Forward) 2 TAATTTMCRATCAATTCATTCCATATTTCC
 matK-413f-5 (Forward) 1 TAATTTACGATCAATTCATTCACTATTTCC
C_MATK_R 1227–1256
 matK-1227r-1 (Reverse) 3 GARGAYCCRCTRTRATAATGAGAAAGATTT
 matK-1227r-2 (Reverse) 1 GAAGAYCCGCTATGATAATGAGAAAGGTTT
 matK-1227r-3 (Reverse) 2 GARGATCCRCTRTRATAATGAAAAAGATTT
 matK-1227r-4 (Reverse) 2 GARGATCCRCTRTRATAATGAGAAAAATTT
 matK-1227r-5 (Reverse) 2 GARGATCCRCTRTRATAATGAGAAATATTT
Additional primers
 matK-413f-6 (Forward) 2 TAATTTACGATCWATTCATTCMATTTTTCC 383–413
 matK-413f-7 (Forward) 1 TAATTTACAATCMATTCATTCAATATTTTC 383–413
 matK-1227r-6 (Reverse) 2 GARGATCCGCTRTAATAATGCGAAAGATTT 1227–1256
 matK-1227r-7 (Reverse) 2 GARGATCCGCTATRATAATGATAAATATTT 1227–1256
a

Ambiguous bases are set in boldface.

b

Primer position is given for Arabidopsis thaliana (GenBank accession no. AF144378.1).

Table 2.

Recommended use of primers for different families, based on BLAST matches with no mismatches.a

Order Family Appropriate forward primer Appropriate reverse primer
Alismanthales Alismataceae matK-413f-2 matK-1227r-1, matK-1227r-3
Araceae matK-413f-2, matK-413f-5 matK-1227r-1
Apiales Araliaceae matK-413f-2, matK-413f-5 matK-1227r-1, matK-1227r-4
Apiaceae matK-413f-7 matK-1227r-1, matK-1227r-5
Aquifoliales Aquifoliaceae matK-413f-1 matK-1227r-1, matK-1227r-3
Cardiopteridaceae (Gonocaryum minus) matK-413f-1 matK-1227r-1, matK-1227r-3
Stemonuraceae matK-413f-1 matK-1227r-1, matK-1227r-3
Arecales Arecaceae (Arecaceae sp.) matK-413f-2 matK-1227r-1, matK-1227r-3
Asparagales Amaryllidaceae matK-413f-6 matK-1227r-1, matK-1227r-3
Asparagaceae matK-413f-6 matK-1227r-1, matK-1227r-4,
matK-1227r-5
Hyacinthaceae matK-413f-6 matK-1227r-1, matK-1227r-3
Iridaceae matK-413f-6 matK-1227r-1, matK-1227r-3,
matK-1227r-5
Orchidaceae (Polystachya humbertii) matK-413f-1, matK-413f-2, matK-1227r-1, matK-1227r-2,
matK-413f-3, matK-413f-6 matK-1227r-3
Tecophilaeaceae matK-413f-6 matK-1227r-1
Xanthorrhoeaceae matK-413f-6 matK-1227r-1, matK-1227r-5
Asterales Asteraceae (Leontodon hispidus) matK-413f-1 matK-1227r-1, matK-1227r-2,
matK-1227r-3, matK-1227r-4,
matK-1227r-5
Campanulaceae matK-413f-2 matK-1227r-1,matK-1227r-5
Goodeniaceae matK-413f-4 matK-1227r-1
Austrobaileyales Austrobaileyaceae matK-413f-2 matK-1227r-2
Schisandraceae matK-413f-2 matK-1227r-2
Trimeniaceae matK-413f-2 matK-1227r-2
Berberidopsidales Berberidopsidaceae matK-413f-1 matK-1227r-1
Boraginales Boraginaceae matK-413f-1, matK-413f-4 matK-1227r-1, matK-1227r-3,
matK-1227r-5
Ehretiaceae matK-413f-1 matK-1227r-1
Brassicales Brassicaceae matK-413f-1, matK-413f-4, matK-413f-6 matK-1227r-1, matK-1227r-5
Capparaceae matK-413f-1 matK-1227r-1
Caricaeae matK-413f-1 matK-1227r-1
Cleomaceae matK-413f-1, matK-413f-3, matK-1227r-1, matK-1227r-2,
matK-413f-4, matK-413f-7 matK-1227r-4, matK-1227r-5
Moringaceae matK-413f-1 matK-1227r-1, matK-1227r-5
Resedaceae matK-413f-1 matK-1227r-1
Bruniales Brunelliaceae matK-413f-1 matK-1227r-1
Buxales Bucaceae matK-413f-1 matK-1227r-1
Caryophyllales Amaranthaceae matK-413f-1 matK-1227r-1
Cactaceae matK-413f-1 matK-1227r-1
Polygonaceae matK-413f-1 matK-1227r-1, matK-1227r-2,
matK-1227r-5
Simmondsiaceae matK-413f-1 matK-1227r-3
Tamaricaceae matK-413f-1 matK-1227r-1
Celastrales Celastraceae matK-413f-1, matK-413f-4, matK-1227r-1, matK-1227r-2,
matK-413f-6 matK-1227r-3, matK-1227r-4,
matK-1227r-5
Lepidobotryaceae matK-413f-1 matK-1227r-5
Chloranthales Chloranthaceae matK-413f-2 matK-1227r-1, matK-1227r-5
Commelinales Commelinaceae matK-413f-2 matK-1227r-1
Haemodoraceae matK-413f-2 matK-1227r-1, matK-1227r-2,
matK-1227r-5
Cornales Cornaceae (Alangium cf. javanicum, Mastixia sp.) matK-413f-1, matK-413f-3 matK-1227r-1, matK-1227r-3,
matK-1227r-4, matK-1227r-5
Grubbiaceae matK-413f-1 matK-1227r-1
Hydrangeaceae matK-413f-1 matK-1227r-1, matK-1227r-4
Loasaceae matK-413f-1, matK-413f-7 matK-1227r-1, matK-1227r-4
Crossosomatales Stachyuraceae matK-413f-1 matK-1227r-1
Staphyleaceae matK-413f-1 matK-1227r-1, matK-1227r-5
Strasburgeriaceae matK-413f-1 matK-1227r-1
Cucurbitales Anisophylleaceae (Anisophyllea sp.) matK-413f-1, matK-413f-6 matK-1227r-1
Begoniaceae matK-413f-1, matK-413f-6 matK-1227r-1
Coriariaceae matK-413f-2 matK-1227r-1
Cucurbitaceae matK-413f-2 matK-1227r-1, matK-1227r-3,
matK-1227r-4, matK-1227r-5
Datiscaceae matK-413f-1 matK-1227r-1
Tetramelaceae matK-413f-1 matK-1227r-3, matK-1227r-5
Dipsacales Adoxaceae matK-413f-4 matK-1227r-1
Caprifoliaceae matK-413f-1, matK-413f-5 matK-1227r-1
Ericales Ebenaceae (Diospyros sp.) matK-413f-1 matK-1227r-1, matK-1227r-3,
matK-1227r-6
Ericaceae matK-413f-1, matK-413f-4 matK-1227r-1, matK-1227r-5
Lecythidaceae (Barringtonia curranii) matK-413f-5 matK-1227r-1
Pentaphylacaceae matK-413f-1 matK-1227r-1
Primulaceae (Ardisia sp.) matK-413f-1, matK-413f-2 matK-1227r-3, matK-1227r-1,
matK-1227r-5, matK-1227r-7
Styracaceae matK-413f-1 matK-1227r-1
Symplocaceae (Symplocos crassipes) matK-413f-1 matK-1227r-1
Theaceae matK-413f-1 matK-1227r-4
Escalloniales Escalloniaceae matK-413f-1 matK-1227r-1
Fabales Fabaceae (Fordia splendidissima) matK-413f-1, matK-413f-2, matK-1227r-1, matK-1227r-3,
matK-413f-4, matK-413f-6, matK-1227r-5
matK-413f-7
Polygalaceae (Xanthophyllum beccarianum) matK-413f-1, matK-413f-2 matK-1227r-1
Fagales Betulaceae matK-413f-2 matK-1227r-1
Casuarinaceae matK-413f-2 matK-1227r-1
Fagaceae (Lithocarpus sp.) matK-413f-2 matK-1227r-1, matK-1227r-3,
matK-1227r-5
Juglandaceae matK-413f-1 matK-1227r-1, matK-1227r-6
Garryales Garryaceae matK-413f-1 matK-1227r-1, matK-1227r-4,
matK-1227r-6
Gentianales Apocynaceae (Tabernaemontana sp.) matK-413f-1, matK-413f-3, matK-1227r-1, matK-1227r-2,
matK-413f-4, matK-413f-5, matK-1227r-6
matK-413f-6
Loganiaceae matK-413f-1 matK-1227r-1, matK-1227r-5
Rubiaceae (Urophyllum sp., Psychotria sp.) matK-413f-1, matK-413f-5 matK-1227r-1, matK-1227r-2
Geraniales Geraniaceae matK-413f-1, matK-413f-6 matK-1227r-1
Melianthaceae matK-413f-1, matK-413f-6 matK-1227r-1
Gunnerales Gunneraceae matK-413f-1, matK-413f-2 matK-1227r-1
Huerteales Dipentodontaceae matK-413f-1 matK-1227r-1
Gerrardinaceae matK-413f-1 matK-1227r-1
Tapisciaceae matK-413f-1 matK-1227r-1, matK-1227r-5
Icacinales Icacinaceae matK-413f-1 matK-1227r-1, matK-1227r-3
Lamiales Acanthaceae matK-413f-1 matK-1227r-1, matK-1227r-2,
matK-1227r-4, matK-1227r-5
Gesneriaceae matK-413f-1 matK-1227r-1, matK-1227r-2,
matK-1227r-5
Lamiaceae (Teijsmanniodendron sp.) matK-413f-1 matK-1227r-1, matK-1227r-2,
matK-1227r-5
Lentibulariaceae matK-413f-1 matK-1227r-1
Myrsinaceae matK-413f-1 matK-1227r-1
Oleaceae matK-413f-1 matK-1227r-1, matK-1227r-2,
matK-1227r-3, matK-1227r-4
Orobanchaceae matK-413f-1 matK-1227r-1, matK-1227r-3,
matK-1227r-4
Laurales Hernandiaceae matK-413f-2 matK-1227r-1
Lauraceae (Litsea sarawacensis) matK-413f-2 matK-1227r-1, matK-1227r-3
Siparunaceae matK-413f-2 matK-1227r-3
Liliales Smilacaceae matK-413f-2 matK-1227r-1, matK-1227r-5
Magnoliales Annonaceae matK-413f-2 matK-1227r-1, matK-1227r-4,
matK-1227r-5
Degeneriaceae matK-413f-2 matK-1227r-1
Eupomatiaceae matK-413f-2 matK-1227r-1
Himantandraceae matK-413f-2 matK-1227r-1
Magnoliaceae (Magnolia sp.) matK-413f-2, matK-413f-6 matK-1227r-1
Myristicaceae matK-413f-2, matK-413f-4 matK-1227r-1, matK-1227r-5
Malpighiales Clusiaceae (Garcinia sp.) matK-413f-1 matK-1227r-1, matK-1227r-3,
matK-1227r-4, matK-1227r-5
Euphorbiaceae matK-413f-1 matK-1227r-1, matK-1227r-3,
(Antidesma sp., Drypetes sp., Koilodepas sp., Macaranga hosei, Mallotus sp.) matK-1227r-4, matK-1227r-5
Linaceae matK-413f-1 matK-1227r-1
Passifloraceae matK-413f-1 matK-1227r-1
Phyllanthaceae matK-413f-1, matK-413f-2, matK-1227r-1
matK-413f-7
Putranjivaceae matK-413f-1 matK-1227r-5 Rhizophoraceae
matK-413f-5 matK-1227r-1, matK-1227r-3 Salicaceae
matK-413f-1 matK-1227r-1, matK-1227r-5 Violaceae (Rinorea sp.)
matK-413f-1 matK-1227r-1, matK-1227r-6 Malvales
Elaeocarpaceae matK-413f-1
matK-1227r-1 Malvaceae (Durio griffithii, Leptonychia sp., Sterculia sp.) matK-413f-1 matK-1227r-1
Myrtales Lythraceae matK-413f-1, matK-413f-5 matK-1227r-1, matK-1227r-3
Melastomataceae matK-413f-7 matK-1227r-1, matK-1227r-4
Myrtaceae (Syzygium sp.) matK-413f-1, matL-413f-4, matK-1227r-1, matK-1227r-3,
matK-413f-6 matK-1227r-4, matK-1227r-5
Onagraceae matK-413f-3 matK-1227r-1
Oxalidales Brunelliaceae matK-413f-1
Cunoniaceae matK-413f-1 matK-1227r-1
Huaceae matK-413f-6 matK-1227r-1
Pandanales Cyclanthaceae matK-413f-2 matK-1227r-1
Pandanaceae matK-413f-2 matK-1227r-1
Paracryphiales Paracryphiaceae matK-413f-1 matK-1227r-1
Piperales Aristolochiaceae matK-413f-2 matK-1227r-1, matK-1227r-5
Piperaceae matK-413f-2 matK-1227r-3
Saururaceae matK-413f-2 matK-1227r-1
Poales Bromeliaceae (Tillandsia cf. caloura) matK-413f-2, matK-413f-6 matK-1227r-1, matK-1227r-3
Typhaceae matK-413f-2 matK-1227r-1, matK-1227r-3
Proteales Nelumbonaceae matK-413f-1 matK-1227r-1
Platanaceae matK-413f-1 matK-1227r-1
Proteaceae matK-413f-1, matK-413f-2, matK-1227r-1, matK-1227r-3,
matK-413f-3 matK-1227r-4, matK-1227r-5
Ranunculales Berberidaceae matK-413f-3 matK-1227r-1
Eupteleaceae matK-413f-1, matK-413f-2 matK-1227r-1
Lardizabalaceae matK-413f-1 matK-1227r-1, matK-1227r-5
Papaveraceae matK-413f-1, matK-413f-2, matK-1227r-1, matK-1227r-3,
matK-413f-3, matK-413f-5 matK-1227r-5
Ranunculaceae matK-413f-4 matK-1227r-1, matK-1227r-6,
matK-1227r-4, matK-1227r-5
Rosales Cannabaceae (Gironniera nervosa) matK-413f-1, matK-413f-3 matK-1227r-1, matK-1227r-3
Moraceae (Artocarpus elasticus) matK-413f-1 matK-1227r-3
Rhamnaceae (Ziziphus angustifolius) matK-413f-1, matK-413f-7 matK-1227r-1, matK-1227r-3
Rosaceae matK-413f-1, matK-413f-2, matK-1227r-1, matK-1227r-3,
matK-413f-6 matK-1227r-4, matK-1227r-5
Ulmaceae matK-413f-1 matK-1227r-3
Urticaceae matK-413f-1 matK-1227r-3
Sabilales Sabiaceae (Meliosma sumatrana) matK-413f-1, matK-413f-2 matK-1227r-1, matK-1227r-4
Santalales Loranthaceae matK-413f-4 matK-1227r-1, matK-1227r-4
Opiliaceae matK-413f-1, matK-413f-2 matK-1227r-1
Santalaceae matK-413f-1, matK-413f-2 matK-1227r-1, matK-1227r-5
Schoepfiaceae matK-413f-1 matK-1227r-1, matK-1227r-4
Sapindales Meliaceae (Aglaia sp.) matK-413f-1, matK-413f-7 matK-1227r-1, matK-1227r-5
Rutaceae (Glycosmis macrantha) matK-413f-1 matK-1227r-1, matK-1227r-6,
matK-1227r-5
Sapindaceae (Lepisanthes sp.) matK-413f-4 matK-1227r-1, matK-1227r-3,
matK-1227r-5
Saxifragales Cercidiphyllaceae matK-413f-1, matK-413f-7 matK-1227r-1
Haloragaceae matK-413f-1 matK-1227r-1
Hamamelidaceae matK-413f-1, matK-413f-5 matK-1227r-1
Paeoniaceae matK-413f-1 matK-1227r-1
Saxifragaceae matK-413f-1, matK-413f-4, matK-1227r-1
matK-413f-5
Solanales Montiniaceae matK-413f-1 matK-1227r-1
Solanaceae matK-413f-1, matK-413f-3 matK-1227r-3
Trochodendrales Trochodendraceae matK-413f-1, matK-413f-6 matK-1227r-1
Vitales Vitaceae matK-413f-1 matK-1227r-1, matk-1227r-2,
matK-1227r-5
a

Species/genera in parentheses were successfully amplified in the family using the primer cocktail C_MATK_F/C_MATK_R.

Table 3.

Taxa used for primer testing.

No.a Order: Family Species GenBank accession no.
1 Laurales: Lauraceae Litsea sarawacensis Gamble KU519656
2 Malphigiales: Euphorbiaceae Antidesma L. KU519677
3 Magnoliales: Myristicaceae Knema Lour. KU519655
4 Asparagales: Orchidaceae Polystachya humbertii H. Perrier* KU519659
5 Arecales: Arecaceae Arecaceae Bercht. & J. Presl KU519652
6 Poales: Bromeliaceae Tillandsia cf. caloura Harms* KU519653
7 Dilleniales: Dilleniaceae Dillenia suffruticosa Martelli KU519692
8 Malpighiales: Achariaceae Hydnocarpus borneensis Sleumer KU519671
9 Malpighiales: Calophyllaceae Kayea oblongifolia Ridl. KU519679
10 Malpighiales: Euphorbiaceae Macaranga hosei King ex Hook. f. KU519674
11 Malpighiales: Euphorbiaceae Koilodepas Hassk. KU519675
12 Malpighiales: Pandaceae Galearia fulva Miq. KU519670
13 Gentianales: Apocynaceae Tabernaemontana L. KU519697
14 Malpighiales: Violaceae Rinorea Aubl. KU519676
15 Malpighiales: Clusiaceae Garcinia L. KU519698
16 Malpighiales: Euphorbiaceae Drypetes Vahl KU519669
17 Malpighiales: Ctenolophonaceae Ctenolophon parvifolius Oliv. KU519672
18 Fabales: Fabaceae Fordia splendidissima (Blume ex Miq.) Buijsen KU519701
19 Fabales: Polygalaceae Xanthophyllum beccarianum Chodat KU519700
20 Rosales: Cannabaceae Gironniera nervosa Planch. KU519681
21 Rosales: Moraceae Artocarpus elasticus Reinw. KU519682
22 Rosales: Chrysobalanaceae Atuna racemosa Raf. KU519699
23 Rosales: Rhamnaceae Ziziphus angustifolia (Miq.) Hatus. ex Steenis KU519680
24 Curcurbitales: Anisophyllaceae Anisophyllea R. Br. ex Sabine KU519651
25 Fagales: Fagaceae Lithocarpus Blume KU519693
26 Sapindales: Anacardiaceae Gluta laxiflora Ridl. KU519684
27 Sapindales: Meliaceae Aglaia F. Allam. KU519686
28 Sapindales: Sapindaceae Lepisanthes Blume KU519685
29 Sapindales: Rutaceae Glycosmis Corrêa KU519687
30, 31 Malvales: Dipterocarpaceae Dipterocarpus palembanicus Slooten KU519691
32 Malvales: Cistaceae Helianthemum obscurum Pers.* KU519702
33 Malvales: Malvaceae Leptonychia Turcz. KU519688
34 Malvales: Malvaceae Durio griffithii Bakh. KU519689
35 Malvales: Malvaceae Sterculia L. KU519690
36 Cornales: Cornaceae Alangium cf. javanicum (Blume) Wangerin KU519664
37 Cornales: Cornaceae Mastixia Blume KU519663
38 Sapindales: Anacardiaceae Saurauia Willd. KU519661
39 Ericales: Ebenaceae Diospyros L. KU519660
40 Ericales: Lecythidaceae Barringtonia curranii Merr. KU519662
41 Ericales: Primulaceae Ardisia Sw. KU519667
42 Ericales: Symplocaceae Symplocos crassipes C. B. Clarke KU519658
43 Gentianales: Rubiaceae Urophyllum Jack ex Wall. KU519696
44 Solanales: Convolvulaceae Erycibe cf. glomerata Blume KU519694
45 Gentianales: Rubiaceae Psychotria L. KU519695
46 Magnoliales: Magnoliaceae Magnolia L. KU519654
47 Myrtales: Myrtaceae Syzygium P. Browne ex Gaertn. KU519678
48 Sabiales: Sabiaceae Meliosma sumatrana (Jack) Walp. KU519657
49 Malpighiales: Euphorbiaceae Mallotus Lour. KU519673
50 Lamiales: Lamiaceae Teijsmanniodendron Koord. KU519668
51 Santalales: Olacaceae Strombosia ceylanica Gardner KU519665
52 Aquifoliales: Cardiopteridaceae Gonocaryum minus Sleumer KU519666
53 Sapindales: Burseraceae Dacryodes excelsa Vahl KU519683
54 Asterales: Asteraceae Leontodon hispidus L.* KU519703

* Species not found in Southeast Asia.

a

Number according to Fig. 1.

Using 2× ReddyMix PCR Master Mix, all samples could be amplified except for one sample with low-quality DNA (Fig. 1, slot 30). This sample was successfully amplified in a PCR with 2× Phusion Green HS II Hi-Fi PCR Master Mix (Fig. 1, slot 31). Overall, the newly designed degenerate primer cocktails were very effective (100%) in amplifying the target matK region, with a product of 813 bp in length in Arabidopsis thaliana. By multiplexing the primers in a single PCR, barcodes were recovered from all samples.

Fig. 1.

Fig. 1.

Images of PCR amplicons for representatives of 53 angiosperm families using multiplex PCR with the newly developed degenerate primers (matK-413f-1 to matK-413f-5, matK-1227r-1 to matK-1227r-5). Bands are approximately 900 bp. Most of the samples were amplified using 2× ReddyMix. Low-quality DNA samples (slot 30) that failed PCR could be amplified using 2× Phusion Green HS II Hi-Fi PCR Master Mix (slot 31). For detailed sample description, see Table 3. Ladder: GeneRuler 100 bp Plus DNA Ladder (#SM0321; Thermo Fisher Scientific, Waltham, Massachusetts, USA). N = negative control.

CONCLUSIONS

We developed 14 universal, partly degenerate primers suitable for DNA barcoding of angiosperms that may also be suitable for multiplexed amplicon sequencing approaches on next-generation sequencing platforms (e.g., fusion primers on the Illumina system, see Elbrecht and Leese, 2015). We confirmed the effectiveness of our multiplexed primers on 53 species from 44 different plant families. Amplification success for these multiplexed primers in the cross-transferability tests with plant families outside Southeast Asia extends their potential usefulness, especially for large-scale barcoding projects with a diverse composition of plant families. Furthermore, by improving the routine amplification of the matK barcode, the establishment of our multiplex PCR approach will reduce laboratory costs as well as potential laboratory errors.

Supplementary Material

Supplementary Material 1

LITERATURE CITED

  1. Cuénoud P., Savolainen V., Chatrou L. W., Powell M., Grayer R. J., Chase M. W. 2002. Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. American Journal of Botany 89: 132–144. [DOI] [PubMed] [Google Scholar]
  2. Elbrecht V., Leese F. 2015. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass–sequence relationships with an innovative metabarcoding protocol. PLoS ONE 10: e0130324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ford C. S., Ayres K. L., Toomey N., Haider N., Van Alphen Stahl J., Kelly L. J., Wikström N., et al. 2009. Selection of candidate coding DNA barcoding regions for use on land plants. Botanical Journal of the Linnean Society 159: 1–11. [Google Scholar]
  4. Hilu K. W., Liang H. 1997. The matK gene: Sequence variation and application in plant systematics. American Journal of Botany 84: 830–839. [PubMed] [Google Scholar]
  5. Hollingsworth P. M., Forrest L. L., Spouge J. L., Hajibabaei M., Ratnasingham S., van der Bank M., Chase M. W., et al. 2009. A DNA barcode for land plants. Proceedings of the National Academy of Sciences, USA 106: 12794–12797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hollingsworth P. M., Graham S. W., Little D. P. 2011. Choosing and using a plant DNA barcode. PLoS ONE 6: e1925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jeanson M. L., Labat J. N., Little D. P. 2011. DNA barcoding: A new tool for palm taxonomists? Annals of Botany 108: 1445–1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Katoh S., Standley D. M. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Bixton S., et al. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kress W. J., Erickson D. L., Jones F. A., Swenson N. G., Perez R., Sanjur O., Bermingham E. 2009. Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proceedings of the National Academy of Sciences, USA 106: 18621–18626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sun H., McLewin W., Fay M. F. 2001. Molecular phylogeny of Helleborus (Ranunculaceae), with an emphasis on the East Asian-Mediterranean disjunction. Taxon 50: 1001–1018. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary Material 1

Articles from Applications in Plant Sciences are provided here courtesy of Wiley

RESOURCES