Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1975 Dec;38(12):1154–1162. doi: 10.1136/jnnp.38.12.1154

EMG analysis of stereotyped voluntary movements in man.

M Hallett, B T Shahani, R R Young
PMCID: PMC492181  PMID: 1219079

Abstract

EMG activity was recorded in biceps and triceps while subjects voluntarily flexed their elbows during a visual matching task. With fast flexion, the initial EMG was characterized by a triphasic pattern with a burst of activity first in biceps, then in triceps with a silent period in biceps, and finally in biceps again; these components were analysed quantitatively. Smooth flexion was characterized by continuous activity in biceps. Inhibition of tonic activity of triceps in relation to a fast flexion occurred in the 50 ms before the initiation of biceps activity. A patients with a severe pansensory neuropathy performed normally on these tasks. Physiological mechanisms underlying these patterns are analysed; an important conclusion is that the triphasic activity with fast flexion is 'centrally programmed'.

Full text

PDF
1154

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angel R. W. Electromyography during voluntary movement: the two-burst pattern. Electroencephalogr Clin Neurophysiol. 1974 May;36(5):493–498. doi: 10.1016/0013-4694(74)90206-5. [DOI] [PubMed] [Google Scholar]
  2. Angel R. W., Garland H., Alston W. Interaction of spinal and supraspinal mechanisms during voluntary innervation of human muscle. Exp Neurol. 1970 Aug;28(2):230–242. doi: 10.1016/0014-4886(70)90232-3. [DOI] [PubMed] [Google Scholar]
  3. BARNETT C. H., HARDING D. The activity of antagonist muscles during voluntary movement. Ann Phys Med. 1955 Oct;2(8):290–293. doi: 10.1093/rheumatology/2.8.290. [DOI] [PubMed] [Google Scholar]
  4. BASMAJIAN J. V., LATIF A. Integrated actions and functions of the chief flexors of the elbow: a detailed electromyographic analysis. J Bone Joint Surg Am. 1957 Oct;39-A(5):1106–1118. [PubMed] [Google Scholar]
  5. BIERMAN W., RALSTON H. J. ELECTROMYOGRAPHIC STUDY DURING PASSIVE AND ACTIVE FLEXION AND EXTENSION OF THE KNEE OF THE NORMAL HUMAN SUBJECT. Arch Phys Med Rehabil. 1965 Jan;46:71–75. [PubMed] [Google Scholar]
  6. Bouisset S., Lestienne F. The organisation of a simple voluntary movement as analysed from its kinematic properties. Brain Res. 1974 May 17;71(2-3):451–457. doi: 10.1016/0006-8993(74)90988-3. [DOI] [PubMed] [Google Scholar]
  7. DeLong M. R., Strick P. L. Relation of basal ganglia, cerebellum, and motor cortex units to ramp and ballistic limb movements. Brain Res. 1974 May 17;71(2-3):327–335. doi: 10.1016/0006-8993(74)90975-5. [DOI] [PubMed] [Google Scholar]
  8. Dijkstra S., van der Gon J. J. An analog computer study of fast, isolated movements. Kybernetik. 1973 Feb;12(2):102–110. doi: 10.1007/BF00272466. [DOI] [PubMed] [Google Scholar]
  9. Garland H., Angel R. W. Spinal and supraspinal factors in voluntary movement. Exp Neurol. 1971 Nov;33(2):343–350. doi: 10.1016/0014-4886(71)90026-4. [DOI] [PubMed] [Google Scholar]
  10. Gottlieb G. L., Agarwal G. C., Stark L. Interactions between voluntary and postural mechanisms of thehuman motor system. J Neurophysiol. 1970 May;33(3):365–381. doi: 10.1152/jn.1970.33.3.365. [DOI] [PubMed] [Google Scholar]
  11. HUFSCHMIDT H. J. Die rasche Willkürkontraktion; beitrag zur elektromyographischen Analyse der menshlichen Willkürmotorik. Z Biol. 1954;107(1):1–24. [PubMed] [Google Scholar]
  12. HUFSCHMIDT H. J., HUFSCHMIDT T. Antagonist inhibition as the earliest sign of a sensory-motor reaction. Nature. 1954 Sep 25;174(4430):607–607. doi: 10.1038/174607a0. [DOI] [PubMed] [Google Scholar]
  13. Kornhuber H. H. Motor functions of cerebellum and basal ganglia: the cerebellocortical saccadic (ballistic) clock, the cerebellonuclear hold regulator, and the basal ganglia ramp (voluntary speed smooth movement) generator. Kybernetik. 1971 Apr;8(4):157–162. doi: 10.1007/BF00290561. [DOI] [PubMed] [Google Scholar]
  14. Marsden C. D., Merton P. A., Morton H. B. Servo action in human voluntary movement. Nature. 1972 Jul 21;238(5360):140–143. doi: 10.1038/238140a0. [DOI] [PubMed] [Google Scholar]
  15. Pierrot-Deseilligny E., Lacert P., Cathala H. P. Amplitude et variabilité des réflexes monosynaptiques avant un mouvement volontaire. Physiol Behav. 1971 Oct;7(4):495–508. doi: 10.1016/0031-9384(71)90100-4. [DOI] [PubMed] [Google Scholar]
  16. Shahani B. T., Young R. R. Human flexor reflexes. J Neurol Neurosurg Psychiatry. 1971 Oct;34(5):616–627. doi: 10.1136/jnnp.34.5.616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shahani B. T., Young R. R. Human orbicularis oculi reflexes. Neurology. 1972 Feb;22(2):149–154. doi: 10.1212/wnl.22.2.149. [DOI] [PubMed] [Google Scholar]
  18. Simoyama M., Tanaka R. Reciprocal La inhibition at the onset of voluntary movements in man. Brain Res. 1974 Dec 27;82(2):334–337. doi: 10.1016/0006-8993(74)90615-5. [DOI] [PubMed] [Google Scholar]
  19. WILKIE D. R. The relation between force and velocity in human muscle. J Physiol. 1949 Dec;110(3-4):249–280. doi: 10.1113/jphysiol.1949.sp004437. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES