Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1976 Jan;39(1):77–83. doi: 10.1136/jnnp.39.1.77

Adenyl cyclase system and cerebral energy state.

G Benzi, R F Villa
PMCID: PMC492218  PMID: 176328

Abstract

The energy charge potential of the cerebral adenylate system, the cerebral lactate: pyruvate system, and the cerebral glycogen level were used to characterize the cerebral energy state of the brain. Cerebral adenyl cyclase activity and cyclic AMP concentrations were investigated to evaluate their possible influence on the regulatory processes in brain metabolism. These biochemical parameters were evaluated on the cortical motor area of the brain of the beagle dog in hypovolaemic hypotension during acute hypoxia (obtained by altering the composition of the inhalation mixture) and during the post-hypoxic recovery (three minutes after the restoration of normal ventilation). This experimental model of acute hypoxia was also used for investigating the action of some substances acting at beta-adrenergic receptor level or at vascular level. The substances were perfused into the carotid artery at the rate of 0.5 ml/min for three to six minutes. During the first stage of hypoxia, the adenyl cyclase system is probably an important biochemical regulatory factor. This system becomes less important when a critical threshold is crossed (oxygen arterial partial pressure less than 25-20 mmHg) below which other factors become rate-limiting. A beta-receptor stimulating agent enhanced the mechanisms of physiological post-hypoxic recovery; inhibition of this action was obtained with a beta-receptor blocking agent. Under these experimental conditions, no correlation existed between the vascular effects of the agents and brain metabolism.

Full text

PDF
77

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson D. E. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry. 1968 Nov;7(11):4030–4034. doi: 10.1021/bi00851a033. [DOI] [PubMed] [Google Scholar]
  2. Aulich A., Stock K., Westermann E. Lipolytic effects of cyclic adenosine-3',5'-monophosphate and its butyryl derivatives in vitro, and their inhibition by alpha- and beta-adrenolytics. Life Sci. 1967 May 1;6(9):929–938. doi: 10.1016/0024-3205(67)90079-3. [DOI] [PubMed] [Google Scholar]
  3. BUTCHER R. W., SUTHERLAND E. W. Adenosine 3',5'-phosphate in biological materials. I. Purification and properties of cyclic 3',5'-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3',5'-phosphate in human urine. J Biol Chem. 1962 Apr;237:1244–1250. [PubMed] [Google Scholar]
  4. Benzi G., Arrigoni E., Manzo L., De Bernardi M., Ferrara A., Panceri P., Berte F. Estimation of changes induced by drugs in cerebral energy-coupling processes in situ in the dog. J Pharm Sci. 1973 May;62(5):758–764. doi: 10.1002/jps.2600620511. [DOI] [PubMed] [Google Scholar]
  5. Biver A., Goffart M. L'action potentiatrice d l'adrénaline sur la contraction du muscle strié de mammifére est-elle un effet de type alpha ou beta? Arch Int Pharmacodyn Ther. 1965 Nov;158(1):59–72. [PubMed] [Google Scholar]
  6. Bowman W. C., Raper C. Adrenotropic receptors in skeletal muscle. Ann N Y Acad Sci. 1967 Feb 10;139(3):741–753. doi: 10.1111/j.1749-6632.1967.tb41241.x. [DOI] [PubMed] [Google Scholar]
  7. Breckenridge B. M., Burn J. H., Matschinsky F. M. Theophylline, epinephrine, and neostigmine facilitation of neuromuscular transmission. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1893–1897. doi: 10.1073/pnas.57.6.1893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Butcher R. W., Ho R. J., Meng H. C., Sutherland E. W. Adenosine 3',5'-monophosphate in biological materials. II. The measurement of adenosine 3',5'-monophosphate in tissues and the role of the cyclic nucleotide in the lipolytic response of fat to epinephrine. J Biol Chem. 1965 Nov;240(11):4515–4523. [PubMed] [Google Scholar]
  9. Butcher R. W., Sutherland E. W. The effects of the catecholamines, adrenergic blocking agents, prostaglandin E1, and insulin on cyclie AMP levels in the rat epididymal fat pad in vitro. Ann N Y Acad Sci. 1967 Feb 10;139(3):849–859. doi: 10.1111/j.1749-6632.1967.tb41255.x. [DOI] [PubMed] [Google Scholar]
  10. Cheung W. Y. Properties of cyclic 3',5'-nucleotide phosphodiesterase from rat brain. Biochemistry. 1967 Apr;6(4):1079–1087. doi: 10.1021/bi00856a017. [DOI] [PubMed] [Google Scholar]
  11. Grahame-Smith D. G., Butcher R. W., Ney R. L., Sutherland E. W. Adenosine 3',5'-monophosphate as the intracellular mediator of the action of adrenocorticotropic hormone on the adrenal cortex. J Biol Chem. 1967 Dec 10;242(23):5535–5541. [PubMed] [Google Scholar]
  12. HOHORST H. J., KREUTZ F. H., BUECHER T. [On the metabolite content and the metabolite concentration in the liver of the rat]. Biochem Z. 1959;332:18–46. [PubMed] [Google Scholar]
  13. Holmin T., Jóhannsson H., Siesjö B. K. Effects on cerebral energy state of arterial hypotension in rats with porta-caval anastomosis. Acta Physiol Scand. 1974 Feb;90(2):345–357. doi: 10.1111/j.1748-1716.1974.tb05596.x. [DOI] [PubMed] [Google Scholar]
  14. KLAINER L. M., CHI Y. M., FREIDBERG S. L., RALL T. W., SUTHERLAND E. W. Adenyl cyclase. IV. The effects of neurohormones on the formation of adenosine 3',5'-phosphate by preparations from brain and other tissues. J Biol Chem. 1962 Apr;237:1239–1243. [PubMed] [Google Scholar]
  15. Kakiuchi S., Rall T. W. The influence of chemical agents on the accumulation of adenosine 3',5'-Phosphate in slices of rabbit cerebellum. Mol Pharmacol. 1968 Jul;4(4):367–378. [PubMed] [Google Scholar]
  16. LEBARON F. N. The resynthesis of glycogen by guinea pig cerebral-cortex slices. Biochem J. 1955 Sep;61(1):80–85. doi: 10.1042/bj0610080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LOWRY O. H., PASSONNEAU J. V., HASSELBERGER F. X., SCHULZ D. W. EFFECT OF ISCHEMIA ON KNOWN SUBSTRATES AND COFACTORS OF THE GLYCOLYTIC PATHWAY IN BRAIN. J Biol Chem. 1964 Jan;239:18–30. [PubMed] [Google Scholar]
  18. NORTHROP G., PARKS R. E., Jr THE EFFECTS OF ADRENERGIC BLOCKING AGENTS AND THEOPHYLLINE ON 3',5'-AMP-INDUCED HYPERGLYCEMIA. J Pharmacol Exp Ther. 1964 Jul;145:87–91. [PubMed] [Google Scholar]
  19. Robison G. A., Butcher R. W., Sutherland E. W. Adenyl cyclase as an adrenergic receptor. Ann N Y Acad Sci. 1967 Feb 10;139(3):703–723. doi: 10.1111/j.1749-6632.1967.tb41239.x. [DOI] [PubMed] [Google Scholar]
  20. SCHMIDT F. H. [Enzymatic determination of glucose and fructose simultaneously]. Klin Wochenschr. 1961 Dec 1;39:1244–1247. doi: 10.1007/BF01506150. [DOI] [PubMed] [Google Scholar]
  21. SUTHERLAND E. W., RALL T. W., MENON T. Adenyl cylase. I. Distribution, preparation, and properties. J Biol Chem. 1962 Apr;237:1220–1227. [PubMed] [Google Scholar]
  22. Schmahl F. W., Betz E., Talke H., Hohorst H. J. Energiereiche Phosphate und Metabolite des Energiestoffwechsels in der Grosshirnrinde der Katze. Biochem Z. 1965 Sep 30;342(5):518–531. [PubMed] [Google Scholar]
  23. Siesjö B. K., Nilsson L. The influence of arterial hypoxemia upon labile phosphates and upon extracellular and intracellular lactate and pyruvate concentrations in the rat brain. Scand J Clin Lab Invest. 1971 Feb;27(1):83–96. doi: 10.3109/00365517109080193. [DOI] [PubMed] [Google Scholar]
  24. Stock K., Westermann E. Hemmung der Lipolyse durch alpha- und beta-Sympathicolytica, Nicotinsäure und Prostaglandin E1. Naunyn Schmiedebergs Arch Pharmakol Exp Pathol. 1966;254(4):334–354. [PubMed] [Google Scholar]
  25. Villa R. F. Effect of hypoxia on the cerebral energy state. Farmaco Sci. 1975 Jul;30(7):561–567. [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES